
GUO ET AL.: NETWORK DECOUPLING 1

Network Decoupling: From Regular to
Depthwise Separable Convolutions

Jianbo Guo1

jianboguo@outlook.com

Yuxi Li2

lyxok1@sjtu.edu.cn

Weiyao Lin2

hellomikelin@gmail.com

Yurong Chen3

yurong.chen@intel.com

Jianguo Li3

jianguo.li@intel.com

1 Institute for Interdisciplinary Information
Sciences, Tsinghua University, China

2 Shanghai Jiaotong University, China
3 Intel Labs China

Abstract

Depthwise separable convolution has shown great efficiency in network design, but
requires time-consuming training procedure with full training-set available. This pa-
per first analyzes the mathematical relationship between regular convolutions and depth-
wise separable convolutions, and proves that the former one could be approximated with
the latter one in closed form. We show depthwise separable convolutions are principal
components of regular convolutions. And then we propose network decoupling (ND),
a training-free method to accelerate convolutional neural networks (CNNs) by trans-
ferring pre-trained CNN models into the MobileNet-like depthwise separable convolu-
tion structure, with a promising speedup yet negligible accuracy loss. We further verify
through experiments that the proposed method is orthogonal to other training-free meth-
ods like channel decomposition, spatial decomposition, etc. Combining the proposed
method with them will bring even larger CNN speedup. For instance, ND itself achieves
about 2× speedup for the widely used VGG16, and combined with other methods, it
reaches 3.7× speedup with graceful accuracy degradation. We demonstrate that ND is
widely applicable to classification networks like ResNet, and object detection network
like SSD300.

1 Introduction
Convolutional neural networks (CNNs) demonstrate great success in various computer vision
tasks, such as image classification [18], object detection [7], image segmentation [24], etc.
However, they suffer from high computation cost when deployed to resource-constrained de-
vices. Many efforts have been devoted to optimize/accelerate the inference speed of CNNs,
which could be roughly divided into three categories. First, design-time network optimiza-
tion considers designing efficient network structures from scratch in a handcraft way or au-
tomatic search way. Typical handcraft based works include Xception [2], MobileNet [13],

c© 2018. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Krizhevsky and Hinton} 2012

Citation
Citation
{Girshick, Donahue, etprotect unhbox voidb@x penalty @M {}al.} 2014

Citation
Citation
{Long, Shelhamer, etprotect unhbox voidb@x penalty @M {}al.} 2015

Citation
Citation
{Chollet} 2016

Citation
Citation
{Howard, Zhu, etprotect unhbox voidb@x penalty @M {}al.} 2017

2 GUO ET AL.: NETWORK DECOUPLING

and networks with channel interleaving/shuffle [30, 32], while typical works on automatic
network architecture search are NASNet [33], PNASNet [20].

Second, training-time network optimization takes pre-defined network structures as in-
put, and refines the structures through regularized retraining or fine-tuning or even knowl-
edge distilling [12]. Typical works involve weight pruning [8, 9], structure (filters/channels)
pruning [19, 22, 25, 29], weight hashing/quantization [1], low-bit networks [3, 26].

Third, deploy-time network optimization takes pre-trained CNN models as input, and re-
places some redundant and less-efficient CNN structures with efficient ones in a training-free
way. Low-rank decomposition [5], spatial decomposition [14], and channel decomposition
[31] fall into this category.

Methods in the first two categories require time-consuming training procedure to pro-
duce desired outputs, with full training-set available. On the contrary, methods in the third
category may not require training-set at all, or in some cases require a small calibration-set
(e.g., 5,000 images) to tune some parameters. The optimization procedure can typically be
done within dozens of minutes. Hence, it is of great value when software/hardware vendors
assist their customers to optimize CNN based solutions in case that either the time budget
is so tight that training based solutions are not feasible, or the customer data are unavailable
due to privacy or confidential issues. Therefore, there is a strong demand for modern deep
learning frameworks or hardware (GPU/ASIC/FPGA, etc) vendors to provide deploy-time
model optimization tools.

Meanwhile, handcraft designed structures such as depthwise separable convolution [2,
13, 32] have shown great efficiency over regular convolution, while still keeping high accu-
racy. To the best of our knowledge, the mathematical relationship between regular convo-
lutions and depthwise separable convolutions is not yet studied and unknown to the public.
Our motivation is to show their relationship, and present a solution to decouple the regular
convolutions into depthwise separable convolutions in a training-free way for deploy-time
network optimization/acceleration. Our main contributions are summarized as below:

• We are the first to analyze and disclose the mathematical relationship between regular
convolutions and depthwise separable convolutions. This theoretic result enables a lot
of possibilities for future studies.

• We present a closed-form and data-free tensor decomposition to decouple regular con-
volutions into depthwise separable convolutions, and show that network decoupling
(ND) enables noticeable speedup for different CNN models, such as VGG16 [28],
ResNet [10], as well as object detection network SSD [21].

• We demonstrate that ND is complementary to other training-free methods like chan-
nel decomposition [31], spatial decomposition [14], and channel pruning [11]. For
instance, network decoupling itself achieves about 1.8× speedup for VGG16. When
combined with other training-free methods, it achieves 3.7× speedup.

• We show extremely decoupled network is friendly to fine-tuning. The extremely de-
coupled network will bring more speedup but larger accuracy drop. For instance, 4×
speedup will bring >50% accuracy drop, while 2× speedup has <1% drop. We show
the larger accuracy drop can be recovered with just several epochs of fine-tuning.

2 Related Work
Here we only discuss related works on deploy-time network optimization. Low-rank decom-
position [5] exploits low-rank nature within CNN layers, and shows that fully-connected

Citation
Citation
{Zhang, Qi, etprotect unhbox voidb@x penalty @M {}al.} 2017{}

Citation
Citation
{Zhang, Zhou, etprotect unhbox voidb@x penalty @M {}al.} 2017{}

Citation
Citation
{Zoph and Le} 2016

Citation
Citation
{Liu, Zoph, etprotect unhbox voidb@x penalty @M {}al.} 2017{}

Citation
Citation
{Hinton, Vinyals, etprotect unhbox voidb@x penalty @M {}al.} 2015

Citation
Citation
{Han, Pool, etprotect unhbox voidb@x penalty @M {}al.} 2015

Citation
Citation
{Han, Mao, and Dally} 2016

Citation
Citation
{Li, Kadav, etprotect unhbox voidb@x penalty @M {}al.} 2016

Citation
Citation
{Liu, Li, etprotect unhbox voidb@x penalty @M {}al.} 2017{}

Citation
Citation
{Luo, Wu, etprotect unhbox voidb@x penalty @M {}al.} 2017

Citation
Citation
{Wen, Wu, etprotect unhbox voidb@x penalty @M {}al.} 2016

Citation
Citation
{Chen, Wilson, etprotect unhbox voidb@x penalty @M {}al.} 2015

Citation
Citation
{Courbariaux and Bengio} 2016

Citation
Citation
{Rastegari, Ordonez, etprotect unhbox voidb@x penalty @M {}al.} 2016

Citation
Citation
{Denton, Zaremba, etprotect unhbox voidb@x penalty @M {}al.} 2014

Citation
Citation
{Jaderberg, Vedaldi, etprotect unhbox voidb@x penalty @M {}al.} 2014

Citation
Citation
{Zhang, Zou, etprotect unhbox voidb@x penalty @M {}al.} 2016

Citation
Citation
{Chollet} 2016

Citation
Citation
{Howard, Zhu, etprotect unhbox voidb@x penalty @M {}al.} 2017

Citation
Citation
{Zhang, Zhou, etprotect unhbox voidb@x penalty @M {}al.} 2017{}

Citation
Citation
{Simonyan and Zisserman} 2015

Citation
Citation
{He, Zhang, etprotect unhbox voidb@x penalty @M {}al.} 2016

Citation
Citation
{Liu, Anguelov, etprotect unhbox voidb@x penalty @M {}al.} 2016

Citation
Citation
{Zhang, Zou, etprotect unhbox voidb@x penalty @M {}al.} 2016

Citation
Citation
{Jaderberg, Vedaldi, etprotect unhbox voidb@x penalty @M {}al.} 2014

Citation
Citation
{He, Zhang, and Others} 2017

Citation
Citation
{Denton, Zaremba, etprotect unhbox voidb@x penalty @M {}al.} 2014

GUO ET AL.: NETWORK DECOUPLING 3

Input Features
Output Features

Regular Conv
𝑘ℎ × 𝑘𝑤 kernel

⋮

(a) Regular Convolution

Input Features

Output Features

PW Conv
1 × 1 kernel

⋮⋮

DW Conv
𝑘ℎ × 𝑘𝑤 kernel

(b) DW+PW Convolution

Input Features
Output Features

PW Conv
1 × 1 kernel

⋮

DW Conv
𝑘ℎ × 𝑘𝑤 kernel

(c) PW+DW Convolution
Figure 1: Regular convolutions vs. depthwise separable convolutions. (a) Regular convolution; (b) depthwise
separable convolution in the DW+PW form (depthwise followed by pointwise); (c) depthwise separable convolution
in the PW+DW form.

layers can be efficiently compressed and accelerated with low-rank decomposition, while
convolutional layers can not. Spatial decomposition [14] takes a single channel filter as in-
put, and do per-channel spatial decomposition on regular convolution for each input/output
channel, i.e., factorizing the kh× kw filter into 1× kw and kh×1 filters.

Channel decomposition [31] decomposes one conv-layer into two conv-layers, where
the first one has the same filter-size but with fewer channels, and the second one is a 1×1
convolution. Channel pruning [11] develops a training free method to prune useless filter
channels by minimizing the response reconstruction error with a small-size calibration set.

Our motivation is different from all these methods, since we consider the possibility to
decompose regular convolutions into depthwise separable convolutions.

3 Theory
Our key insight is that different filter channels in regular convolutions are strongly cou-
pled, and may involve plenty of redundancy. Our analysis shows that this coupling induced
redundancy is corresponding to some kind of low-rank assumption, with similar spirit of
[5, 14, 31]. Here, we first analyze and disclose the mathematical relationship between regu-
lar convolutions and depthwise separable convolutions.

3.1 Regular vs. Depthwise Separable Convolutions
A regular convolution kernel (Figure 1a) is tasked to build both cross-channel correlation and
spatial correlations. Formally, we consider a convolution layer represented by a 4D tensor
W∈Rno×ni×kh×kw , where no and ni are the number of output and input channels respectively,
and kh and kw are the spatial height and width of the kernel respectively. When the filter is
applied to an input patch x with size ni× kh× kw, we obtain a response vector y ∈ Rno as

y = W∗x, (1)
where yo =∑

ni
i=1 Wo,i ∗xi,o∈ [no], i∈ [ni], and ∗means convolution operation. Wo,i =W[o, i, :

, :] is a tensor slice along the i-th input and o-th output channels, xi = x[i, :, :] is a tensor slice
along the i-th channel of 3D tensor x. And the computational complexity for patch x is
O(no× ni× kh× kw). It is easy to extend the complexity from patch level to feature map
level. Given the feature map size H×W , the complexity is O(H×W ×no×ni× kh× kw).

Compared with the regular convolution, a depthwise separable convolution consists of a
depthwise (DW) convolution followed by a pointwise (PW) convolution, where DW focuses
on spatial relationship modeling with 2D channel-wise convolutions, and PW focuses on
cross-channel relationship modeling with 1×1 convolution across channels. This factoriza-
tion form, denoted by DW+PW, is shown in Figure 1b. To ensure the same shape output as
the regular convolution W, we set the DW convolution kernel tensor D ∈ Rni×1×kh×kw , and

Citation
Citation
{Jaderberg, Vedaldi, etprotect unhbox voidb@x penalty @M {}al.} 2014

Citation
Citation
{Zhang, Zou, etprotect unhbox voidb@x penalty @M {}al.} 2016

Citation
Citation
{He, Zhang, and Others} 2017

Citation
Citation
{Denton, Zaremba, etprotect unhbox voidb@x penalty @M {}al.} 2014

Citation
Citation
{Jaderberg, Vedaldi, etprotect unhbox voidb@x penalty @M {}al.} 2014

Citation
Citation
{Zhang, Zou, etprotect unhbox voidb@x penalty @M {}al.} 2016

4 GUO ET AL.: NETWORK DECOUPLING

the PW convolution tensor P ∈ Rno×ni×1×1. When applying it to the input patch x, we can
obtain the corresponding response vector y′ as

y′ = (P◦D)∗x, (2)
where y′o = ∑

ni
i=1 Po,i (Di ∗ xi), ◦ is the compound operation, Po,i = P[o, i, :, :] and Di = D[i, :, :

, :]. And the computational complexity for the whole feature map is O(H×W × (ni× kh×
kw +ni×no)).

Alternatively, we could put PW convolution before DW and obtain another factorization
form PW+DW as shown in Figure 1c. In this case, P ∈Rno×ni×1×1, D ∈Rno×1×kh×kw . When
it is applied to the input patch x, the response vector y′′ is

y′′ = (D◦P)∗x, (3)
where y′′o = Do ∗

(
∑

ni
i=1 Po,ixi

)
, and Do = D[o, :, :, :]. Here, the computational complexity is

O(H ×W × (ni× no + no× kh× kw)). It is obvious that DW+PW and PW+DW are more
efficient than regular convolutions according to the computational complexity.

3.2 Relationship

We have shown regular convolutions model the spatial correlation and cross-channel corre-
lation simultaneously with one tensor kernel, while depthwise separable convolutions model
these two correlations in a decoupling way. Is there any relationship between these two con-
volution formulations? Is it possible to approximate regular convolutions with depthwise
separable convolutions precisely? We give the following theorem to answer these questions.

Theorem 1. Regular convolutions can be losslessly expanded to a sum of several depthwise
separable convolutions, without the increase of computational complexity. Formally, ∀ W
with spatial kernel size kh× kw, ∃ {Pk,Dk}K

k=1,
s.t. (a)K ≤ khkw;

(b)W =

{
∑

K
k=1 Pk ◦Dk for DW+PW

∑
K
k=1 Dk ◦Pk for PW+DW.

(4)

Proof. This problem is similar to the Kronecker product decomposition problem [16, 23],
which factorizes a tensor into a linear combination of tensor/matrix Kronecker products. We
adopt similar techniques to prove the above theorem. As DW+PW and PW+DW cases are
similar, for simplicity, we only discuss the DW+PW case below.

In the DW+PW case, Dk ∈ Rni×1×kh×kw and Pk ∈ Rno×ni×1×1. Given an input patch x,
the response difference between regular convolution and DW+PW convolution is

‖y−y′‖2
2 = ‖(W−

K

∑
k=1

Pk ◦Dk)∗ x‖2
2 =

no

∑
o=1

(
ni

∑
i=1

Wo,i ∗ xi−
K

∑
k=1

ni

∑
i=1

Pk
o,i(D

k
i ∗ xi))

2

≤
no

∑
o=1

ni

∑
i=1

((Wo,i−
K

∑
k=1

Pk
o,iD

k
i)∗ xi)

2 ≤
no

∑
o=1

ni

∑
i=1
‖Wo,i−

K

∑
k=1

Pk
o,iD

k
i ‖2

F · ‖xi‖2
F ,

where Pk
o,i = Pk[o, i, :, :], Dk

i = Dk[i, :, :, :] are tensor slices, and ‖ · ‖F is the Frobenius norm.
For the rightmost term,

no

∑
o=1

ni

∑
i=1
‖Wo,i−

K

∑
k=1

Pk
o,iD

k
i ‖2

F =
ni

∑
i=1
‖W̃:,i−

K

∑
k=1

P̃k
:,iD̃

k
i

ᵀ
‖2

F ,

where W̃:,i = W̃[:, i, :] is a slice of the reshaped tensor W̃ ∈ Rno×ni×(khkw) from W, D̃k
i =

Vec(Dk
i) is the vector view of Dk

i , and P̃k
:,i = Pk[:, i, :, :] is a tensor fiber. W̃:,i can be viewed as

a matrix of size no× (khkw) with rank(W̃:,i)≤min{no,khkw}.

Citation
Citation
{Kim and Wong} 2017

Citation
Citation
{Loan} 2000

GUO ET AL.: NETWORK DECOUPLING 5

{PW, DW}

{PW, DW}

⋮

Input
Features

Output
Features

Figure 2: Approximating regular con-
volution by the sum of depthwise sep-
arable convolutions. {PW, DW} can
be either PW+DW or DW+PW.

0 1 2 3 4 5 6 7 8 9
T

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

m
ul

at
iv

e
En

er
gy

 R
at

io
(%

) conv1_1
conv1_2
conv2_1
conv2_2
conv3_1
conv3_2
conv3_3
conv4_1
conv4_2
conv4_3
conv5_1
conv5_2
conv5_3

0 1 2 3 4 5 6 7 8 9
T

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

m
ul

at
iv

e
En

er
gy

 R
at

io
(%

) conv1_1
conv1_2
conv2_1
conv2_2
conv3_1
conv3_2
conv3_3
conv4_1
conv4_2
conv4_3
conv5_1
conv5_2
conv5_3

Figure 3: Accumulative energy ratio in the DW+PW case (left) and in
the PW+DW case (right).

Suppose W̃:,i = USVᵀ is the singular value decomposition. Let P̃k
:,i = UkS(k) where Uk

is the k-th column of U and S(k) is the k-th singular value, D̃k
i = Vk where Vk is the k-th

column of V . When we set K = maxi rank(W̃:,i), the rightmost term equals to zero. And
then ‖Wo,i−∑

K
k=1 Pk

o,iD
k
i ‖2

F = 0. Hence W = ∑
K
k=1 Pk ◦Dk. As no � khkw generally holds,

K = maxi rank(W̃:,i)≤min{no,khkw}. Therefore, K ≤ khkw holds.
The computational complexity of this expansion is thus O(K×H ×W × (ni× khkw +

ni× no)), where H×W is the resolution of current feature map. The computing cost ratio
of the regular convolution to this expansion is r = khkw/K(khkw/no+1). As no � khkw, r ≈
khkw/K. Since K ≤ khkw, r≥ 1 holds. That means the lossless expansion does not increase the
computational complexity over the regular convolution.

4 Network Decoupling
Theorem 1 actually presents a closed-form tensor decomposition to decouple regular con-
volutions into depthwise separable convolutions. We name this solution as exact network
decoupling, and K as the decoupling rank of W which reflects the coupling induced redun-
dancy in W. When K is low, for instance, K = 1, there is significant redundancy in W, so
that exact network decoupling can bring great computation cost reduction. When K = khkw,
there is no redundancy, and hence no benefit with exact network decoupling.

4.1 Approximated Network Decoupling
For less redundant CNN layers, the exact network decoupling may bring unsatisfied speedup.
Due to the decomposition nature, the energy is not equally distributed among the K depth-
wise separable convolution (DSC) blocks. In fact, substantial energy is concentrated in a
fraction of those K DSC blocks. Hence, we can realize the approximated network decou-
pling for better CNN speedup based on the following corollary deduced from Theorem 1.

Corollary 1. Given a regular convolution tensor W with spatial kernel size kh× kw, we can
approximate it with top-T (≤ K) depthwise separable convolutions as

W≈
{

∑
T
k=1 Pk ◦Dk for DW+PW

∑
T
k=1 Dk ◦Pk for PW+DW,

(5)

and the acceleration over the original regular convolution is khkw/T .
Figure 2 illustrates our depthwise separable convolution approximation to the regular

convolution. Note that the proposed network decoupling does not require any training data.
We will further study the possibility to combine it with other existing training-free methods
for even larger CNN speedup in Section 4.2.

6 GUO ET AL.: NETWORK DECOUPLING

How good is the approximated decoupling? Let’s take VGG16 for example, in which
khkw = 9 for all the convolutional layers. For the DW+PW case, we compute the singular
values of W̃:,i (i ∈ [ni]), and average the ratio of the square sum of the top-T largest singular
values to the total square sum. The same thing is done for PW+DW. Figure 3 plots the
average energy ratio for both cases. We can see that substantial energy is from several top
singular vectors. For example, in both cases, the top-4 singular vectors contribute over 90%
energy in all the layers except the conv2_2 layer in DW+PW case. Especially, in the conv1_2
layer by PW+DW, the top-4 singular vectors account for over 99% energy. This indicates
that we can only use a fraction of depthwise separable convolutions to precisely approximate
the original regular convolutions. Note that energy in PW+DW is more concentrated than
that in DW+PW, which means PW+DW can realize the same quality approximation with
fewer DSC blocks, and thus yields a better speedup. One possible reason is that for the
layer with tensor kernel ni× kw× kh× no, the PW+DW case will produce no separate DW
channels, while the DW+PW case only has ni DW channels. When no > ni, the PW+DW
case will have more parameters than the DW+PW case so that PW+DW may have better
approximation. We will verify this result by experiments later.

4.2 Complementary Methods

ND focuses on decomposing a regular convolution into a sum of T depthwise separable
convolutions. The method not only has a closed-form solution, but also is training-data free.

Besides our work, there are some works considering network decomposition from differ-
ent perspectives, like channel decomposition [31], spatial decomposition [14], and channel
pruning [11]. All these methods require a small calibration dataset (for instance 5000 im-
ages from 1.2 million ImageNet images for ImageNet models) to reduce possible accuracy
loss. Different from these methods, the proposed network decoupling does not involve any
channel reduction and spatial size reduction, which implies our method should be comple-
mentary to them. Hence we propose to combine network decoupling with these methods to
further accelerate deep CNN models. Additionally, this combination even provides us the
possibility to reduce the accumulated error with the calibration set.

Let’s take the combination of ND and channel decomposition as an example. For a layer
with tensor kernel ni×kw×kh×no, we first apply CD to decompose it into two layers, where
the first layer has tensor kernel ni×kw×kh×d, and the second layer is 1×1 conv-layer with
tensor kernel d×1×1×no. CD sets d < no to ensure acceleration. We then apply ND to the
layer with kernel ni× kw× kh× d to decouple it into one point-wise convolution layer and
one depthwise convolution layer. We process the next layer in the original network with the
same procedure. As is known, CD will minimize the reconstruction error of the responses
between original networks and decomposed one with a small calibration set. When apply
CD to next layer, it will compensate the accumulated error somewhat from two successive
approximations in previous layer. This procedure is adopted sequentially until all the layers
in the original network are processed. We will show in the experiments that the combined
solution can bring significantly better CNN model acceleration than any single methods.

5 Experiments
We conduct extensive experiments to evaluate the proposed method on different network
structures such as VGG16 [28] and ResNet18 [10] pre-trained on ImageNet [4] with Caffe

Citation
Citation
{Zhang, Zou, etprotect unhbox voidb@x penalty @M {}al.} 2016

Citation
Citation
{Jaderberg, Vedaldi, etprotect unhbox voidb@x penalty @M {}al.} 2014

Citation
Citation
{He, Zhang, and Others} 2017

Citation
Citation
{Simonyan and Zisserman} 2015

Citation
Citation
{He, Zhang, etprotect unhbox voidb@x penalty @M {}al.} 2016

Citation
Citation
{Deng, Dong, etprotect unhbox voidb@x penalty @M {}al.} 2009

GUO ET AL.: NETWORK DECOUPLING 7

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
conv1_2 Speed-up Ratio

0

1

2

3

4

5
De

cr
ea

se
 o

f A
cc

ur
ac

y(
%

)
PW+DW
DW+PW

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
conv2_1 Speed-up Ratio

0

1

2

3

4

5

De
cr

ea
se

 o
f A

cc
ur

ac
y(

%
)

PW+DW
DW+PW

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
conv2_2 Speed-up Ratio

0

1

2

3

4

5

De
cr

ea
se

 o
f A

cc
ur

ac
y(

%
)

PW+DW
DW+PW

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
conv3_1 Speed-up Ratio

0

1

2

3

4

5

De
cr

ea
se

 o
f A

cc
ur

ac
y(

%
)

PW+DW
DW+PW

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
conv4_1 Speed-up Ratio

0

1

2

3

4

5

De
cr

ea
se

 o
f A

cc
ur

ac
y(

%
)

PW+DW
DW+PW

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
conv5_3 Speed-up Ratio

0

1

2

3

4

5

De
cr

ea
se

 o
f A

cc
ur

ac
y(

%
)

PW+DW
DW+PW

Figure 4: DW+PW vs. PW+DW decoupling for VGG16: single layer performance under different speedup ratios,
measured by decrease of top-5 accuracy on ImageNet (smaller is better). The speedup ratios are computed by the
theoretical complexity of that layer.

[15]. The top-5 accuracy (measured by single center-crop test) of VGG16 is 88.66% with
15.35G FLOPs, and ResNet18 is 88.09% with 1.83G FLOPs. We also evaluate the proposed
method for the object detection framework SSD300 [21] (with VGG16 as backbone) on
PASCAL VOC 2007 benchmark [6]. We further study how fine-tuning can help extremely
decoupled networks. All these studies are conducted without fine-tuning unless specified.

5.1 Single Layer Decoupling
We first evaluate the single layer acceleration performance using our network decoupling
method. In this study, we decouple one given layer with all the remaining layers unchanged.
The speedup ratio reported only involves that single layer, which is shown as the theoretical
ratio computed by the complexity (FLOPs). Figure 4 illustrates the speedup vs. the accuracy
drop for different layers of VGG16 under both the DW+PW and the PW+DW decoupling.

We can see that when speeding up a single layer by 2×, the accuracy drop is rather
marginal or negligible, especially in the PW+DW case. In this case, there is no accuracy
drop for layer conv1_2 and conv5_3, and less than 0.5% accuracy loss for all other layers.
It also shows that PW+DW decoupling consistently outperforms the DW+PW case. This
result can be explained by Figure 3: to accumulate the same energy, PW+DW decoupling
needs smaller T , hence better acceleration. In the later experiments, we only use PW+DW
decoupling. We also find that decoupling brings less speedup for the intermediate layers
compared with shallower and deeper (front and end) layers. It implies shallower and deeper
layers have much more redundancy. This property is different from channel decomposition
[31] and channel pruning [11], where redundancy concentrates only in the shallower lay-
ers. This verifies network decoupling and channel decomposition/pruning are intrinsically
complementary, and we can combine our decoupling with them to speed up CNNs further.

5.2 Whole Model Decoupling of VGG16
5.2.1 Experiments on Single Methods
Next, we evaluate the acceleration performance of PW+DW decoupling on the whole VGG16
model. We sequentially approximate the layers involved (conv1_2 to conv5_3). The first

Citation
Citation
{Jia, Shelhamer, etprotect unhbox voidb@x penalty @M {}al.} 2014

Citation
Citation
{Liu, Anguelov, etprotect unhbox voidb@x penalty @M {}al.} 2016

Citation
Citation
{Everingham, Gool, etprotect unhbox voidb@x penalty @M {}al.} 2010

Citation
Citation
{Zhang, Zou, etprotect unhbox voidb@x penalty @M {}al.} 2016

Citation
Citation
{He, Zhang, and Others} 2017

8 GUO ET AL.: NETWORK DECOUPLING

Method FLOPs top-1 drop (%)
Original VGG16 15.35G 0

CD[31] 6.52G 2.10
SD[14] 7.20G 1.96
CP[11] 9.89G 1.68
Ours 8.61G 1.55

(a) Single methods

Method FLOPs
without ND with ND (ND+X)

CD [31] 6.52G 4.72G
SD [14] 7.20G 4.15G
CP [11] 9.89G 8.49G

CD+SD [31] 4.32G 4.28G
CD+CP 7.16G 5.45G

CD+SD+CP [11] 4.92G 4.70G

(b) Combined methods
Table 1: Acceleration performance on VGG16 with (a) single method and (b) combined method. “with ND"
means the experiments are conducted in combination with our network decoupling (ND). The number of FLOPs
is computed by the theoretical complexity of the approximated model. Except for original VGG16, all the other
models are tuned with fixed 1.0% top-5 accuracy drop. (a) also lists the corresponding top-1 accuracy drops.

layer conv1_1 is not decoupled, since it only contributes 0.3% computation. Guided by the
single layer experiments above, we decouple more aggressively for both shallower layer and
deeper layer, by using smaller T . The computing cost (in FLOPs) of the decoupled model is
reported with fixed 1% top-5 accuracy drop, where the corresponding top-1 accuracy drops
range from 1.5% to 2.1%. As shown in Table 1a, our decoupling method can reduce about
45% of the total FLOPs, which demonstrates significant redundancy inside VGG16.

We also compare our decoupling method with other design-time network optimization
methods like channel decomposition (CD) [31], spatial decomposition (SD) [14] and channel
pruning (CP) [11], which are recent state-of-the-art training/fine-tuning free solutions for
CNNs acceleration. The comparison is based on the re-implementation of [11, 31]. Note that
all these three compared methods require a small portion of training set (i.e., 5000 images)
in their optimization procedure. Even though, our method still outperforms the data-driven
based channel pruning as shown in Table 1a, which indicates that decoupling convolutions is
promising for CNN acceleration. Although our method performs somewhat worse than CD
and SD, we should emphasize that our method is totally data-free, while all these three are
data-driven methods. Moreover, we will show below that our network decoupling combined
with these methods will bring state-of-the-art CNN acceleration in the training-free setting.

5.2.2 Experiments on Combined Methods
As discussed in Section 4.2 and 5.1, our network decoupling is intrinsically complementary
to channel decomposition, spatial decomposition and channel pruning. In this part, we will
study the performance of combined methods. We not only test the performance of combining
our decoupling with each of the above methods separately, but also conduct the experiments
of the existing compound methods with/without our decoupling scheme. Note that these
combined models require a small portion of training dataset for data-driven based optimiza-
tion. For fair comparison, we randomly pick up 5000 images out of ImageNet training set
(1.2 million images) and use them for all the evaluated methods.

Table 1b shows the results. Clearly, combined with our network decoupling, each of the
above methods has significant improvement, which verifies that our decoupling exploits a
new cardinality. In the best result, our combined method (ND+SD) could reduce about 73%
of the original FLOPs (3.7× speedup), with only 1% top-5 accuracy drop.

Interestingly, we find that CD+CP performs worse than CD alone (FLOPs increase from
6.52G to 7.16G). We speculate that channel pruning and channel decomposition are not
complementary to some extent. They both exploit the inter-channel redundancy and reduce
the number of channels. Furthermore, both CD and CP captures more redundancy in the
shallower layers according to [11, 31]. Therefore, their combination may yield conflicts

Citation
Citation
{Zhang, Zou, etprotect unhbox voidb@x penalty @M {}al.} 2016

Citation
Citation
{Jaderberg, Vedaldi, etprotect unhbox voidb@x penalty @M {}al.} 2014

Citation
Citation
{He, Zhang, and Others} 2017

Citation
Citation
{Zhang, Zou, etprotect unhbox voidb@x penalty @M {}al.} 2016

Citation
Citation
{Jaderberg, Vedaldi, etprotect unhbox voidb@x penalty @M {}al.} 2014

Citation
Citation
{He, Zhang, and Others} 2017

Citation
Citation
{Zhang, Zou, etprotect unhbox voidb@x penalty @M {}al.} 2016

Citation
Citation
{He, Zhang, and Others} 2017

Citation
Citation
{Zhang, Zou, etprotect unhbox voidb@x penalty @M {}al.} 2016

Citation
Citation
{Jaderberg, Vedaldi, etprotect unhbox voidb@x penalty @M {}al.} 2014

Citation
Citation
{He, Zhang, and Others} 2017

Citation
Citation
{He, Zhang, and Others} 2017

Citation
Citation
{Zhang, Zou, etprotect unhbox voidb@x penalty @M {}al.} 2016

Citation
Citation
{He, Zhang, and Others} 2017

Citation
Citation
{Zhang, Zou, etprotect unhbox voidb@x penalty @M {}al.} 2016

GUO ET AL.: NETWORK DECOUPLING 9

Method top-5 Accuracy FLOPs
Original ResNet18 88.09 1.83G

CD [31] 83.69 1.32G
SD [14] 85.20 1.25G

Ours 86.68 1.20G

Table 2: Training-free acceleration for ResNet18.

Method mAP FLOPs
Original SSD300 82.29 31.37G

CD [31] 80.99 18.69G
Ours 81.41 20.27G

Ours+CD 80.71 15.01G

Table 3: Training-free acceleration for SSD300.

between them. Compared with CD and CP, our network decoupling can capture redundancy
from both shallower layers and deeper layers (see Figure 4). Hence, we can enhance both of
them. This result also holds for the combination with spatial decomposition.

5.3 Decoupling ResNet

Modern networks like ResNet [10] are designed for both efficiency and high accuracy, which
are usually not easy to accelerate in the training-free setting. In this part, we evaluate network
decoupling on ResNet18, which has a VGG16 comparable top-5 accuracy (88.09) but with
much lower computation cost (1.83G FLOPs).

Table 2 shows that our network decoupling alone can reduce about 34% of total FLOPs
(1.5× speedup) with 1.4% drop of top-5 accuracy. This result is not as graceful as that of
VGG16, since modern structures tend to have less redundancy by design. As a comparison,
CD is not a data-free solution, which only reduces 28% total FLOPS (1.36× speedup), and
brings 4.4% top-5 accuracy drop. Other methods like [11] handle the accuracy drop with a
limited epoch fine-tuning. We will explore the benefit of this solution later.

5.4 Decoupling SSD300

Object detection suffers from even higher computing cost than image classification due to its
relatively high-resolution input. We evaluate our network decoupling for one of widely used
object detection framework SSD300 [21] on the PASCAL VOC 2007 [6]. The backbone of
SSD300 is based on VGG16, which is popular in many object detection frameworks [27].
The performance is measured by mean Average Precision (mAP) and total FLOPs of the
detection networks.

Different from [11, 31], we extract backbone from the pre-trained SSD model, decom-
pose the filters inside the backbone, and then use the approximated backbone to take the
detection task, where no fine-tuning is involved. From Table 3, we observe that network
decoupling alone achieves 35% FLOPs reduction with mAP drop less than 1.0%, which is
acceptable in most scenes. Further, if combining our approach with other training-free meth-
ods like channel decomposition, we could at most reduce the FLOPs to 48% of the original
model (2.1× speedup) with only 1.58% loss in mAP, which is also acceptable. Note although
the backbone is based on VGG16, SSD300 has different speedup performance from that of
the VGG16 classification network. This is because SSD300 changes the model parameters
of backbone network during training procedure due to different target loss functions and
different inputs & resolutions, so that detection backbone has less redundance than that of
classification network. Similar phenomena have been observed by [11, 31].

5.5 Extremely decoupling with Fine-tuning

Here we study the possibility of combining network decoupling with fine-tuning for even
better speedup like [11, 17]. We first perform extremely or aggressively network decoupling,
which will usually bring large accuracy drop. We then fine-tune the extremely decoupled

Citation
Citation
{Zhang, Zou, etprotect unhbox voidb@x penalty @M {}al.} 2016

Citation
Citation
{Jaderberg, Vedaldi, etprotect unhbox voidb@x penalty @M {}al.} 2014

Citation
Citation
{Zhang, Zou, etprotect unhbox voidb@x penalty @M {}al.} 2016

Citation
Citation
{He, Zhang, etprotect unhbox voidb@x penalty @M {}al.} 2016

Citation
Citation
{He, Zhang, and Others} 2017

Citation
Citation
{Liu, Anguelov, etprotect unhbox voidb@x penalty @M {}al.} 2016

Citation
Citation
{Everingham, Gool, etprotect unhbox voidb@x penalty @M {}al.} 2010

Citation
Citation
{Ren, He, etprotect unhbox voidb@x penalty @M {}al.} 2017

Citation
Citation
{He, Zhang, and Others} 2017

Citation
Citation
{Zhang, Zou, etprotect unhbox voidb@x penalty @M {}al.} 2016

Citation
Citation
{He, Zhang, and Others} 2017

Citation
Citation
{Zhang, Zou, etprotect unhbox voidb@x penalty @M {}al.} 2016

Citation
Citation
{He, Zhang, and Others} 2017

Citation
Citation
{Kim, Park, etprotect unhbox voidb@x penalty @M {}al.} 2016

10 GUO ET AL.: NETWORK DECOUPLING

Model Epochs top-5 Accuracy Speedup
Original VGG16 100 88.66 1.00

ND (auto-tuned T) 0 87.66(−1.00) 1.8×
ND(T=2)+VGG16 10 88.10(−0.56) 3.9×

ThiNet [25] 32 88.14(−0.52) 3.3×
CP+finetune [11] 10 87.66(−1.00) 4.0×

Original ResNet18 100 88.09 1.00
ND (auto-tuned T) 0 86.68(−1.41) 1.5×

ND(T=3)+ResNet18 6 88.22(+0.13) 2.0×
Table 4: Results of fine-tuning of extremely decoupled VGG16 (top part) and ResNet18 (bottom part). Digits in the
bracket show accuracy change compared with original models. “ND+" means we apply our method to aggressively
decouple the original model and fine-tune it for given epochs. On VGG16, we also list results by other two fine-
tuning based network optimization methods as comparison.

models with initial learning rate 0.0001, and decrease the learning rate 1/10 every 4 epochs.
The results are shown in Table 4.

We aggressively decouple VGG16 with T = 2, which yields a model with top-5 accuracy
19.4%. We recover the top-5 accuracy of this model to 88.1% (-0.56% to baseline) with just
10 epochs of fine-tuning, yielding 3.9× speedup (3.96G FLOPs). We aggressively decouple
ResNet18 with T = 3, which yields a model with top-5 accuracy 29.2%. We recover the
top-5 accuracy to 88.22% (+0.13% to baseline) with just 6 epochs of fine-tuning, yielding
2.1× speedup (0.89G FLOPs). Note that the number of epochs used here is less than 1/10 of
the training from scratch solutions. In comparison, the fine-tuning-free network decoupling
only provides 1.8× speedup for VGG16 with top-5 accuracy 87.66%, and 1.5× speedup for
ResNet18 with top-5 accuracy only 86.68%. It is obvious that extremely decoupling plus
fine-tuning provides not only better speedup but also much higher accuracy.

Besides, we compare our results with the state-of-the-art training-time network optimiza-
tion methods (with fine-tuning on VGG16). ThiNet [25] is a pure fine-tuning based network
optimization method, which requires 32 epochs of fine-tuning to obtain 3.3× speedup with
0.52% top-5 accuracy drop. It shows that our method achieves better speedup over ThiNet
(3.9 vs. 3.3), while with much fewer fine-tuning epochs (10 vs. 32). Channel pruning(+fine-
tuning) [11] requires 10 epochs of fine-tuning to obtain about 4× speedup with 1.0% top-5
accuracy drop. It shows that our method achieves similar speedup (3.9 vs. 4.0), while with
less accuracy drop (0.52% vs. 1.0%).

6 Conclusion

This paper analyzes the mathematical relationship between regular convolutions and depth-
wise separable convolutions, and proves that the former one can be approximated with the
latter one precisely. We name the solution network decoupling (ND), and demonstrate its
effectiveness on VGG16, ResNet as well as object detection network SSD300. We further
show that ND is complementary to existing training-free methods, and can be combined
with them for splendid acceleration. ND could be an indispensable module for deploy-time
network optimization, as well as provides theoretic supports for possible future studies.

Acknowledgement: Jianbo Guo is supported in part by the National Basic Research Pro-
gram of China Grant 2015CB358700, the NSFC Grant 61772297, 61632016, 61761146003.
Weiyao Lin is supported in part by the NSFC Grant 61471235 and the Shanghai "The Belt
and Road" Young Scholar Grant (17510740100). Jianguo Li is the corresponding author.

Citation
Citation
{Luo, Wu, etprotect unhbox voidb@x penalty @M {}al.} 2017

Citation
Citation
{He, Zhang, and Others} 2017

Citation
Citation
{Luo, Wu, etprotect unhbox voidb@x penalty @M {}al.} 2017

Citation
Citation
{He, Zhang, and Others} 2017

GUO ET AL.: NETWORK DECOUPLING 11

References
[1] Wenlin Chen, James Wilson, et al. Compressing neural networks with the hashing trick. In ICML,

2015.

[2] François Chollet. Xception: Deep learning with depthwise separable convolutions. arXiv preprint
arXiv:1610.02357, 2016.

[3] M. Courbariaux and Y. Bengio. Binarynet: Training deep neural networks with weights and
activations constrained to +1 or -1. In ICLR, 2016.

[4] J. Deng, W. Dong, et al. ImageNet: A Large-Scale Hierarchical Image Database. In CVPR, 2009.

[5] Emily Denton, Zaremba, et al. Exploiting linear structure within convolutional networks for
efficient evaluation. In NIPS, 2014.

[6] Mark Everingham, Luc Van Gool, et al. The pascal visual object classes (voc) challenge. IJCV,
88(2), 2010.

[7] Ross Girshick, Jeff Donahue, et al. Rich feature hierarchies for accurate object detection and
semantic segmentation. In CVPR, 2014.

[8] Song Han, Jeff Pool, et al. Learning both weights and connections for efficient neural network.
In NIPS, 2015.

[9] Song Han, Huizi Mao, and Bill Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. In NIPS, 2016.

[10] K. He, X. Zhang, et al. Deep residual learning for image recognition. In CVPR, 2016.

[11] Y. He, X. Zhang, and Others. Channel pruning for accelerating very deep neural networks. In
ICCV, 2017.

[12] G. Hinton, O. Vinyals, et al. Distilling the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

[13] Andrew G Howard, Menglong Zhu, et al. Mobilenets: Efficient convolutional neural networks
for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

[14] M. Jaderberg, A. Vedaldi, et al. Speeding up convolutional neural networks with low rank expan-
sions. In BMVC, 2014.

[15] Yangqing Jia, Evan Shelhamer, et al. Caffe: Convolutional architecture for fast feature embed-
ding. In ACM Multimedia, 2014.

[16] B. Kim and N. Wong. A constructive arbitrary-degree kronecker product decomposition of ten-
sors. Numerical Linear Algebra with Applications, 24(5), 2017.

[17] Y. Kim, E. Park, et al. Compression of deep convolutional neural networks for fast and low power
mobile applications. In ICLR, 2016.

[18] A. Krizhevsky and G. Hinton. Imagenet classification with deep convolutional neural networks.
In NIPS, 2012.

[19] Hao Li, Asim Kadav, et al. Pruning filters for efficient convnets. arXiv preprint
arXiv:1608.08710, 2016.

12 GUO ET AL.: NETWORK DECOUPLING

[20] C. Liu, B. Zoph, et al. Progressive neural architecture search. arXiv preprint arXiv:1712.00559,
2017.

[21] Wei Liu, Dragomir Anguelov, et al. Ssd: Single shot multibox detector. In ECCV, 2016.

[22] Zhuang Liu, Jianguo Li, et al. Learning efficient convolutional networks through network slim-
ming. arxiv preprint, 1708, 2017.

[23] CF Van Loan. The ubiquitous kronecker product. Journal of computational and applied mathe-
matics, 123, 2000.

[24] Jonathan Long, Evan Shelhamer, et al. Fully convolutional networks for semantic segmentation.
In CVPR, 2015.

[25] J. Luo, J. Wu, et al. Thinet: A filter level pruning method for deep neural network compression.
In ICCV, 2017.

[26] M. Rastegari, V. Ordonez, et al. Xnor-net: Imagenet classification using binary convolutional
neural networks. In ECCV, 2016.

[27] S. Ren, K. He, et al. Faster r-cnn: Towards real-time object detection with region proposal
networks. IEEE TPAMI, 39(6), 2017.

[28] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In ICLR, 2015.

[29] W. Wen, C. Wu, et al. Learning structured sparsity in deep neural networks. In NIPS, 2016.

[30] T. Zhang, G. Qi, et al. Interleaved group convolutions. In ICCV, 2017.

[31] X. Zhang, J. Zou, et al. Accelerating very deep convolutional networks for classification and
detection. IEEE TPAMI, 38(10), 2016.

[32] X. Zhang, X. Zhou, et al. Shufflenet: An extremely efficient convolutional neural network for
mobile devices. arXiv preprint arXiv:1707.01083, 2017.

[33] B. Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

