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Abstract

By considering the underlying neighbourhood structure of images, diffusion process
can better evaluate image similarity and has proven highly effective in improving im-
age retrieval. Nevertheless, diffusion process stores a large neighbourhood graph, costs
more online retrieval time, and requires special algorithms other than simple Euclidean
search. To address these issues, this paper proposes to treat diffusion process as a “black
box” and directly model it by training deep neural networks, so as to obtain better image
representation that assimilates the effect of diffusion process and works with Euclidean
search. We firstly put forward a kernel mapping interpretation to diffusion process, and
then formulate the modelling as a deep metric learning problem. The proposed approach
is unsupervised in the sense that it needs neither image labels nor external datasets, and
completely avoids online diffusion process in retrieval. More interestingly, we find that
this approach could even achieve better retrieval than the original diffusion process, in-
stead of merely approximating it. Experiments verify its effectiveness and investigate its
appealing characteristics such as the generalisation to new image insertion.

1 Introduction
Content-based image retrieval aims to retrieve from an image database the images that can
meet the requirement set by a user, and the typical scenario may be to find the images visually
similar to a query of example. As an important topic in computer vision, image retrieval has
received intensive research and gained significant progress during the past two decades [8,
25, 32]. In particular, the recent deep learning techniques greatly boost the performance of
image retrieval. With the powerful deep feature representations, a simple Euclidean distance
based search has been able to achieve excellent retrieval performance.
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Diffusion process, by exploiting the underlying neighbourhood structure of data, has
been shown as an effective mechanism to improve image retrieval [10, 33]. Through propa-
gating affinity information on this structure, diffusion process can more accurately evaluate
the similarity between images, showing robustness to background clutter, partial occlusion,
and the variation on scale or illumination. Its effectiveness has been shown not only via
traditional SIFT features [10, 30], but also with the recent deep features [13]. The latter
has exhibited the state-of-the-art performance on benchmark datasets. A particular attractive
property of diffusion process is that it improves image retrieval in an unsupervised manner.
A more detailed introduction on diffusion process can be found in Section 2.1.

Nevertheless, for image retrieval, diffusion process is more sophisticated than a Eu-
clidean search. It needs to store a large neighbourhood graph whose size increases linearly
(or even quadratically) with the size of image database. For a given query, diffusion needs to
be performed in an online manner to evaluate the similarity of the query to the images in a
database. These not only consume a large amount of memory, but also delay the response of
retrieval. In short, although diffusion process brings better image similarity, to benefit from
it has to pay the price on computational cost, real-time performance, and search complexity.

This paper aims to improve the above situation to make diffusion-based image retrieval
more efficient and practical. Above all, we interpret diffusion process as performing a kernel-
induced implicit mapping on the input feature representation of each image. It produces a
more advanced feature representation upon which the simple Euclidean distance becomes
effective in evaluating the similarity of images. This interpretation motivates us to treat dif-
fusion process as a “black box,” and instead of precisely modelling the underlying physical
process of diffusion, we explicitly learn such a mapping from the result of diffusion process.
In doing so, we will be able to avoid performing online diffusion but retain its positive effect,
and enjoy the nice properties of Euclidean search such as simplicity, low computational cost,
and the access to many data structures and algorithms.

The recent deep neural networks, characterised by the well-proven capacity in modelling
complex functional mappings, provide us the instrumental tool. To realise the above idea, we
propose to formulate the modelling of diffusion process as a deep metric learning problem.
Given an image database, we first extract feature representations for all images with a pre-
trained deep network. Diffusion process is then performed offline, once only, to evaluate the
similarities among these images. According to these similarities, image triplets are generated
to fine-tune the above deep network, making it learn the implicit kernel-induced mapping and
therefore “assimilate” the effect of diffusion process. This fine-tuned network is then used
to re-extract feature representations of all images in the database. Once a query (could be
out of the database) is given, its representation will be extracted with the same fine-tuned
network, and all retrieval in the sequel will purely be performed with Euclidean distance on
this new feature representation. Note that the proposed approach does not require any image
label information or external datasets for training, and is therefore unsupervised.

In the recent literature, several pieces of work have been aware of the aforementioned
issue and made efforts to resolve it. The following two are particularly relevant to our work.
The authors in [14] perform an offline low-rank spectral decomposition of the affinity matrix
in diffusion process, which helps to realise online diffusion with Euclidean and dot product
search. Another work [15] shares an even similar spirit as ours1 but has a different focus. It
utilises the change of k-nearest neighbourhoods before and after diffusion process to mine
hard training examples for deep metric learning. In contrast, we focus more explicitly on

1We would like to clarify that the work in our paper has been independently developed since 2017.
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Figure 1: The proposed framework consists of four components for offline training: 1) original fea-
tures extracted for the images in a database with a convolutional neural network (CNN); 2) constructing
the neighbourhood graph with the extracted features and performing diffusion with the graph to obtain
image similarities; 3) image triplet generation based on the rankings obtained with the image similar-
ities; and 4) training a deep metric CNN network with the generated triplets. Specifically, the three
coloured CNNs at the centre of the figure will be trained with stochastic gradient descent. The yellow
arrows connecting them mean that the weights are shared across the three CNNs. After the training
process, the features for all images in the database are re-extracted with the newly trained CNN net-
work. For online retrieval, when a query is submitted, extract the features of this query with the same
trained CNN network and simply perform a Euclidean search over the database.

modelling the diffusion process by interpreting it as a kernel mapping. Thanks to this dif-
ferent perspective, we have several interesting findings on the effectiveness of this direct
modelling (e.g., it could even achieve better performance than the original diffusion-based
retrieval), its database-specific characteristic, and its generalisation and robustness with re-
spect to the insertion of new images to a given database.

The contributions of this work are summarised as follows:
1) By taking advantage of the powerful modelling capability of deep neural networks, we

propose to model the highly nonlinear diffusion process to generate explicit, better feature
representation for image retrieval. It retains the positive effect of diffusion process but avoids
online diffusion, significantly reducing computational cost and search complexity.

2) This work indicates an interesting unsupervised learning framework to bootstrap im-
age retrieval, which exploits the underlying structure information of images in a database and
converts it to better feature representations for Euclidean search. Moreover, better retrieval
could be attained when this bootstrapping process is conducted with more iterations.

3) Experimental study shows multiple appealing properties of the proposed approach.
In particular, it could even outperform diffusion process for image retrieval, although our
original goal is merely to simulate the effect of diffusion process. This is significant and
inspiring, and better justifies the value of the proposed approach.

2 The proposed approach
As pointed out in Section 1, although diffusion process can effectively improve image re-
trieval, it also brings a number of issues. In detail, this work identifies the following ones: i)
large memory cost to store the neighbourhood graph; ii) prolonged retrieval time; iii) special
treatment to handle a query out of a given image database; iv) having to perform query-
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specific diffusion; and v) having to update the neighbourhood graph when new images are
inserted into a database. All of these issues, more or less, significantly affect image re-
trieval in practice. Our idea is to view diffusion process as performing an unknown, implicit,
highly nonlinear mapping from the input feature space to another feature space in which a
Euclidean-based measure can align well with the image similarities obtained by diffusion
process. The framework of our method is shown in Fig. 1.

2.1 A mapping view of diffusion process
Let {x1,x2, · · · ,xn} denote a set of data points (e.g., images) in a vector space X . Diffu-
sion process usually starts from computing an n×n pairwise affinity matrix A. A weighted
undirected graph is then constructed, with each node corresponding to a data point and each
edge corresponding to the pairwise affinity of two linked points. We now show that diffusion
process can be interpreted as performing an implicit, nonlinear kernel mapping.

As surveyed in [10], although many variants of diffusion process have been developed in
the literature, they can be well categorised and summarised according to three factors, i.e.,
the initialisation matrix W0, the transition matrix T, and the update scheme. The update
scheme in [30] gives the best image retrieval performance, and it is expressed as

Wt+1 = TWtT>, (1)

where > denotes matrix transpose. Note that most of the methods surveyed in [10] set the
initialisation W0 as the affinity matrix A. In this case, it is not difficult to obtain that

Wt+1 = Tt+1W0(Tt+1)> = Tt+1A(Tt+1)>, (2)

where the superscript of T denotes the order of power. A common way to compute the entries
of A uses a Gaussian RBF kernel, making A positive definite (PD). Immediately, this makes
Wt+1 a PD matrix and satisfy the Mercer’s condition [6]. So, we can interpret Wt+1 as a
kernel matrix. In particular, the kernel function between points xi and x j can be written as

κ(xi,x j|A), Wt+1(i, j) = Tt+1(i, :)A(Tt+1( j, :))>, (3)

where Tt+1(i, :) denotes the ith row of the matrix Tt+1. As seen, this is a “context-aware”
kernel and its value depends on the whole matrix A due to the diffusion process. This well
shows the characteristic of diffusion process. Therefore, since i) the output of diffusion pro-
cess, Wt+1, can be interpreted as a kernel matrix obtained via the kernel κ and ii) each kernel
induces an implicit nonlinear mapping from an input space to another feature space, we can
indeed interpret diffusion process as performing an implicit, nonlinear kernel mapping.

Meanwhile, it is worth noting that we use this mapping view to primarily illustrate the
idea behind our method, that is, showing what the deep neural network is essentially mod-
elling. In practice, our method requires neither the positive definiteness of Wt+1 nor the
existence of a kernel function like κ(xi,x j|A). What we need will just be the ranking in-
formation of images, from which we can generate image triplets to train the network. This
requirement allows our method to readily work with any diffusion process employed in the
literature of image retrieval.

2.2 A deep metric learning approach
The challenge of learning the aforementioned implicit nonlinear mapping via deep neural
networks lies at how to train the deep neural networks. We can certainly train the network to
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produce feature representations such that their inner products best approximate the obtained
affinity values in Wt+1. Nevertheless, considering that we are dealing with image retrieval
and many diffusion processes used in the literature output ranking scores instead of affinity
values, we formulate our idea as a common deep metric learning problem, that is, a deep
neural network is trained with a set of triplets of the images chosen from a database. Each
triplet is composed of one anchor image, one closer image and one farther image.2 Being
closer or farther from an anchor image is defined according to the ranking scores produced
by diffusion process. During training, we enforce that for a given query, its distance to the
closer image should be smaller than the distance to the farther one by a margin. In the
following part, three key issues on training the deep triplet network are elaborated, including
1) network structure, 2) triplet generation, and 3) triplet loss function.

Network structure. As illustrated in Fig. 1, the deep triplet network consists of three
CNNs, with all layers shared. They accept the anchor, closer, and farther images as the
input, respectively. We adopt the residual network architectures [12] for the CNN due to its
outstanding performance demonstrated in the recent literature. The triplet loss function is
applied to the features output by the three CNNs. The weights of these three CNNs will be
learned with the stochastic gradient descent technique.

Triplets generation. The training of deep triplet network relies on the generation of
high quality image triplets. Generating triplets by randomly sampling from the images in
a database can hardly provide useful information to benefit the training. In this work, we
take a locally constrained triplet generation method. Specifically, given an anchor image Ia,
its k-nearest neighbouring images are identified based on the ranking scores obtained by the
diffusion process, and they are collectively denoted by a set Nk(Ia). Two images are then
randomly sampled from the set Nk(Iq). According to their ranking positions with respect to
Ia, we regard them as the closer image Ic and the farther image I f , respectively, to form a
triple (Ia, Ic, I f ). We denote all the generated triplets collectively by a set S.

Triplet loss function. We use the following triplet loss which has a soft margin

L = ∑
(Ia,Ic,I f )∈S

[
d(Ia, Ic)−d(Ia, I f )+

|r f − rc|
k

m0

]
+

, (4)

where rc and r f denote the ranking positions of Ic and I f with respect to Ia, [x]+ denotes
max(x,0), and d(I,J) is the Euclidean distance between images I and J based on the features
output by the three CNNs. k is the size of neighbourhood used in the triplet generation step
and m0 is a constant as the basic margin. The coefficient |r f−rc|

k is our slight modification of
the commonly used triplet loss function. In doing so, the magnitude of this soft margin can
therefore adapt to the ranking difference between the closer and farther samples, and we find
that this is helpful for the network to learn.

2.3 A bootstrapping framework for image retrieval
Built upon the above deep metric learning approach to modelling the diffusion process, we
propose an unsupervised bootstrapping framework for image retrieval as follows. It could
iterate between performing diffusion process and learning better feature representations to
maximise the improvement on retrieval performance.

2Note that different from existing deep metric learning methods, we do not access any labelled data. Therefore,
we use “closer” and “farther” (instead of positive and negative) to be more precise.
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1. Given an image database, extract feature representations of (part or all of) the images,
denoted by {x1,x2, · · · ,xn}, in the database with a pre-trained deep neural network;

2. Construct the affinity matrix A with the extracted features. Perform diffusion process
with A (or any of its variants) to obtain the scores on image similarity;

3. With the scores, identify the k-nearest neighbourhoodNk(Ia) by viewing each of these
images as an anchor image Ia. Generate image triplets based on Nk(Ia);

4. Train the deep triplet network with the triplets. Re-extract features for all the images
in the database with the newly trained network; Go to step 2 if the maximum number
of iterations is yet reached, and go to step 5 otherwise;

5. When a query image (could be out of the database) is given, extract its features with
the latest trained network, and perform retrieval with a simple Euclidean distance.

3 Experimental Result

3.1 Experimental setup

Dataset. The proposed approach is tested on the benchmark datasets of Oxford5k [19],
Pairs6k [20], Instre [29], Sculpture [1], Oxford105k, and Pairs106k. The last two are ob-
tained by adding 100k distractor images collected from Flicker. For each dataset, there is no
overlapping between the images in the database and query images. To ensure an objective
evaluation, we only use the images in the database to do diffusion and train the network, and
reserve the query images exclusively to test retrieval performance. This is consistent with the
protocol commonly adopted in the literature. In addition, we evaluate INSTRE by following
the recent work [13] and use standard evaluation protocol for all the other datasets. Mean
average precision (mAP) is used to measure retrieval performance in all experiments.

Network training. The CNN of ResNet101 pre-trained with ImageNet [12] is referred
to as “ResNet101-ImageNet” and used in Tasks 1 and 2 defined in the last paragraph of
Section 3.1. During training, all images are resized with the longer side having 600 pixels.
Stochastic gradient descent technique is used. The learning rate is initialised as 0.01 and
gradually attenuates during the training process. The coefficients for weight decay and the
momentum are 0.0001 and 0.9. The batch size is 40, and the training process usually takes
1000 epochs to converge. The margin m0 in Eq.(4) is empirically set as 0.1, and the number
of nearest neighbours, k, to generate triplets is set as 300. Note that to clearly show the
basic performance of the proposed method, we only train the deep metric network with the
diffusion process once in all experiments, except the part particularly investigating the case
of multiple iterations.

Retrieval setting and baseline. R-MAC [28] feature representation is used to describe
each image. The LCDP [30] update scheme (in Eq. (1)) is adopted to perform diffusion.
We compare our method with the following two baselines: 1) R-MAC+E and 2) R-MAC+D,
where “E” and “D” mean that Euclidean distance search and diffusion process are used for
retrieval, respectively. By the comparison, we want to verify whether our approach can
effectively achieve or even improve over the retrieval performance obtained via diffusion
process. To ensure fair comparison, we implement the baselines and our methods under the
same experimental setting.
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Method (mAP) Oxford5k Paris6k Oxford105k Paris106k INSTRE Sculpture

R-MAC+E (global) 58.5 73.3 57.3 67.4 37.7 51.0
R-MAC+D (global) 63.1 83.5 62.0 77.0 53.0 61.6

Proposed (global) 63.2 89.6 62.4 82.6 54.5 75.5

Table 1: Comparison with two baseline methods under a global image representation, where “E”
denotes the Euclidean distance based search while “D” denotes diffusion process. The “ResNet101-
ImageNet” network is used in this experiment.

Experimental tasks. There are five tasks: 1) Compare the proposed method with R-
MAC+E and R-MAC+D, where each image is represented by a global representation (i.e.,
R-MAC); 2) Compare it with the state-of-the-art retrieval methods where each image is rep-
resented by a set of regional representations; 3) Compare it with various recent image re-
trieval methods to give a whole picture; 4) Compare it with diffusion-based image retrieval
in terms of time and memory cost in online retrieval; and 5) Investigating important proper-
ties of the proposed method, such as its generalisation and robustness to image insertion and
the help of multiple iteration training. The results are reported in order in the next section.

3.2 Result and discussion
Task 1. Table 1 compares our method with R-MAC+E and R-MAC+D under the global
image representation. As shown, by conducting diffusion process, R-MAC+D consistently
achieves higher retrieval performance (5 to 16 percentage points) than R-MAC+E that uses
Euclidean distance based search. By assimilating the effect of diffusion process via deep
metric learning, our method, still using Euclidean search, not only achieves comparable
performance as R-MAC+D on Oxford5k, Oxford105k, and INSTRE, but also outperforms it
on Paris6k, Paris106k, and Sculpture. In particular, our method brings up to 14 percentage
points of mAP increase on Sculpture (75.5 (ours) vs 61.6). This result is significant. It
shows that our method is indeed effective in assimilating the effect of diffusion process and
converting it to enhanced feature representation. Furthermore, it is surprising to observe
these large improvements on three datasets. We attribute such improvement to the wholly
manner of our method in approximating diffusion process. That is, our deep metric learning
is performed upon a large number of image triplets generated from the whole database. This
provides the network with a “global” view about the similarity of these images, and therefore
may help the network to produce overall better feature representations. As for R-MAC+D, a
specific diffusion process is performed for a given query, and this process is initialised by or
dependent on this query. Such a “local” view may limit its overall retrieval accuracy. This
interesting issue will be further explored in our future work.

Task 2. Region-based image retrieval methods have recently shown excellent perfor-
mance by representing an image as a set of regional features. The image similarity is usually
evaluated by summarising the similarity across image regions. In this case, diffusion process
is performed on the graph constructed upon these regional deep features. In this task, we
focus on Paris6k to compare with two state-of-the-art methods of this kind: the cross-region
matching method [23] and the regional diffusion method [13] (re-implemented by us with
the network “ResNet101-ImageNet”). They obtain the mAP of 84.4 and 91.8, respectively.
The better performance of the regional diffusion method is due to its use of diffusion process
to evaluate the similarity of image regions. Our method achieves an mAP of 93.8, which fur-
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ther improves the regional diffusion method by two percentage points. This again indicates
the effectiveness and advantage of our method in approximating diffusion process.

Task 3. To give a whole picture about the performance of the proposed method, Table 2
compares it with the image retrieval methods developed in the recent literature. To be con-
sistent with the state-of-the-art methods, we use the CNN structure provided in [11], which
fine-tunes ResNet101 with an additional landmark dataset (called “ResNet101-Landmarks”
in this work), for our deep metric learning approach. We categorise all the retrieval meth-
ods in comparison into two groups: 1) the methods only applying Euclidean distance based
search with a global feature representation, as shown in the upper part of the table; and 2)
the methods applying diffusion process or post-processing steps (such as query expansion,
matching, and verification), which appear in the lower part of the table. The first group
of methods enjoys higher computational efficiency in retrieval, while the second group of
methods generally achieves higher retrieval performance. For our method, which only con-
ducts Euclidean search to retrieve images, it can well outperform most of the methods in
the first group and achieve quite competitive performance to those in the second group that
has more sophisticated online retrieval mechanisms. This result shows that by assimilating
the effect of diffusion process with new features, our method can enjoy both high compu-
tational efficiency and high retrieval accuracy for online retrieval. In addition, it is worth
noting that the results in Tables 1 and 2 are not directly comparable. The proposed method
in Table 1 is implemented based on the “ResNet101-ImageNet” network, while in Table 2
it is implemented based on the network “ResNet101-Landmarks” to be consistent with the
state-of-the-art methods.

Task 4. To show computational efficiency, we compare the time and memory cost of
the proposed method with diffusion-based image retrieval in performing online retrieval on
three datasets. The experiment is conducted with Matlab2017a on a desktop computer of
Intel@core i7-4720 2.60GHz CPU and the result is reported in Table 3 for retrieval with the
global and regional representations, respectively. As expected, our method is consistently
faster and can shorten online retrieval up to 10 times for a single query. Furthermore, due to
the use of Euclidean distance, our method can readily be sped up by utilising off-the-shelf
data structure and algorithms. Also, because it does not need to store the neighbourhood
graph, it incurs no extra memory usage in this aspect.

Task 5. 1) Image insertion. One drawback of diffusion-based image retrieval lies at that
it needs to update its neighbourhood graph when new images are inserted into a database.
This experiment investigates the robustness and the generalisation capability of the proposed
method in this situation. Now we only use part of the images (n0) in a database to build
the graph, conduct diffusion, and generate triplets for training. However, when a query is
submitted, the retrieval will be performed on the whole database. This simulates the case that
all the remaining images (i.e., other than these n0 ones) are newly inserted after the proposed
method is trained. As previous, the proposed method uses the learned feature representa-
tions, respectively, to perform retrieval. The result is plotted in Fig. 2. The horizontal axis is
the ratio of images taken from a database used for performing diffusion and training the pro-
posed method, while the vertical axis shows the mAP value. The three dotted lines indicate
the baseline performance for Oxford105k, Paris6k, and INSTRE, respectively, when diffu-
sion process is not used. The three solid lines show the corresponding performance of the
proposed method. As seen, its performance steadily improves with the increasing ratio and
quickly approach the level when all images (i.e., ratio = 1.0) in a database are used for diffu-
sion process and training the proposed method. For Paris6k, improvement over the baseline
can be observed even when the ratio is as low as 0.1. As for Oxford105k and INSTRE,
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Method Dim. Oxford5k Paris6k Oxford105k Paris106k INSTRE
Global image representation with Euclidean search

[16] 128 43.3 - 35.3 - -
[5] 128 55.7 - 52.3 - -
[31] 128 59.3 59.0 - - -
[4] 256 53.1 - 50.1 - -
[28] 512 66.9 83.0 61.6 75.7 -
[17] 512 68.2 79.7 63.3 71 -
[13]∗ 512 77.7 84.1 70.1 76.8 47.7
[15] 512 78.2 85.1 72.6 78.0 57.7
[22] 512 79.7 83.8 73.9 76.4 -
[16] 1024 56.0 - 50.2 - -
[28] 2048 69.4 85.2 63.7 77.8 -
[11] 2048 86.1 94.5 82.8 90.6 -
[13]? 2048 83.9 93.8 80.8 89.9 62.6
[2] 4096 71.6 79.7 - - -
Global image representation + diffusion / query expansion / matching / verification
[17] - 72.2 85.5 67.8 79.7 -
[24] - 75.2 74.1 72.9 - -
[21] - 81.4 80.3 76.7 - -
[7] - 82.7 80.5 76.7 71.0 -
[9] - 84.3 83.4 80.2 - -
[18] - 84.9 82.4 79.5 77.3 -
[27] - 86.9 85.1 85.3 - -
[26] - 89.4 82.8 84.0 - -
[28] 512 77.3 86.5 73.2 79.8 -
[3] 512 79.0 85.1 - - -
[22] 512 84.5 86.4 80.4 79.7 -
[13]∗ 512 85.4 88.4 79.7 83.5 57.3
[28] 2048 78.9 89.7 75.5 85.3 -
[13] 2048 87.1 96.5 87.4 95.4 80.5
[11] 2048 90.6 96.0 89.4 93.2 -
[13]? 2048 89.6 95.3 88.3 92.7 70.5
[14] 2048 87.5 96.4 87.9 95.3 80.5

Our global image representation (by modelling diffusion process) + Euclidean search
Proposed 2048 85.4 96.3 85.1 94.7 71.7

Table 2: Comparison with the state-of-the-art image retrieval methods. The result shows that the
proposed method effectively assimilates the effect of diffusion process to generate better feature rep-
resentations, upon which it achieves very competitive retrieval performance with simple Euclidean
distance. [13]∗ and [13]? are the results reported by [13] as the re-implementation of [22] and [11]
with ResNet101 fine-tuned on an external landmark dataset. Top three values per column are in bold.

clear improvement can be obtained once the ratio exceeds 0.3. These results show that our
method generalises well with respect to the insertion of new images. 2) Iterative training
by re-applying diffusion. Our bootstrapping framework for image retrieval supports iterative
training. We can alternate between learning new feature representation and performing dif-
fusion process with this learned representation. Tested on INSTRE, our method does obtain
better retrieval by extra one or two iterations, and the mAP result is 71.7 at the first iteration,
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Global feature representation Regional feature representation
Dataset Oxford5k INSTRE Oxford105k Oxford5k INSTRE Oxford105k

Diff. based 0.020/0.01 0.100/0.03 2.90/0.11 0.6/0.1 2.9/0.6 13.0/2.1
Proposed 0.002/N.A. 0.011/N.A. 0.03/N.A. 0.1/N.A. 0.4/N.A. 1.43/N.A.

Table 3: Comparison of average time / memory usage (Second / GB) in online retrieval. The dimen-
sions of image feature representation are 2048. Time cost is averaged over all of the queries.

Different ratio of images are used for diffusion and training
0.2 0.4 0.6 0.8 1

m
A
P

50

60

70

80

90

Paris6k

Paris6k-Nodiff

INSTRE

INSTRE-Nodiff

Oxford105k

Oxford105k-Nodiff

Figure 2: Retrieval performance of the proposed method when different ratio of images are taken from
a database for conducting diffusion process and training the proposed method. This experiment investi-
gates its generalisation capability with respect to new image insertions. The three dotted lines indicate
the baselines when diffusion process is not used. The solid lines show the corresponding performance
of the proposed method. The “ResNet101-Landmarks” network is used in this experiment.

74.2 at the second, and 74.5 at the third, all higher than the baseline of 70.8. This result
initially shows the effectiveness of the proposed bootstrapping framework and its potential
will be further explored in the future work.

4 Conclusion

Utilising the modelling capability of deep neural networks, this work assimilates the effect
of diffusion process into new feature representation, achieving similar or better retrieval
with simple Euclidean search. Also, it gives an unsupervised framework to bootstrap image
retrieval by exploiting the manifold structure of the images in a database. It effectively
improves retrieval without the aid of additional labels or external datasets. Experimental
study on benchmark datasets demonstrates its effectiveness and advantages.

This work takes a database-specific approach by assuming the access to a database in
advance. How to generalise it to unseen databases will be an interesting issue to explore in
the future work. It is believed that training it with a sufficiently large and generic database
will enhance its generalisation capability to some extent. Also, due to its database-specific
characteristic, the feature representation learned by the proposed approach on one database
may not be effectively applied to another database of a significantly different nature. This
issue will also be addressed in the future work. Integrating the proposed approach with
domain adaptation and transfer learning techniques could be a potential solution.
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[1] Relja Arandjelović and Andrew Zisserman. Smooth object retrieval using a bag of

boundaries. In Proc. ICCV, pages 375–382, 2011.

[2] Relja Arandjelovic, Petr Gronat, Akihiko Torii, Tomas Pajdla, and Josef Sivic. Netvlad:
CNN architecture for weakly supervised place recognition. In Proc. CVPR, pages
5297–5307, 2016.

[3] Hossein Azizpour, Ali Sharif Razavian, Josephine Sullivan, Atsuto Maki, and Stefan
Carlsson. Factors of transferability for a generic convnet representation. IEEE PAMI,
38(9):1790–1802, 2016.

[4] Artem Babenko and Victor Lempitsky. Aggregating local deep features for image re-
trieval. In Proc. ICCV, pages 1269–1277, 2015.

[5] Artem Babenko, Anton Slesarev, Alexandr Chigorin, and Victor Lempitsky. Neural
codes for image retrieval. In Proc. ECCV, pages 584–599, 2014.

[6] Christopher J. C. Burges. A tutorial on support vector machines for pattern recognition.
Data Min. Knowl. Discov., 2(2):121–167, June 1998. ISSN 1384-5810.

[7] Ondrej Chum, Andrej Mikulík, Michal Perdoch, and Jiri Matas. Total recall II: Query
expansion revisited. In Proc. CVPR, pages 889–896, 2011.

[8] Ritendra Datta, Dhiraj Joshi, Jia Li, and James Ze Wang. Image retrieval: Ideas, influ-
ences, and trends of the new age. ACM Comput. Surv., 40(2):5:1–5:60, 2008.

[9] Cheng Deng, Rongrong Ji, Wei Liu, Dacheng Tao, and Xinbo Gao. Visual reranking
through weakly supervised multi-graph learning. In Proc. ICCV, pages 2600–2607,
2013.

[10] Michael Donoser and Horst Bischof. Diffusion processes for retrieval revisited. In
Proc. CVPR, pages 1320–1327, 2013.

[11] Albert Gordo, Jon Almazan, Jerome Revaud, and Diane Larlus. End-to-end learning of
deep visual representations for image retrieval. IJCV, 124(2):237–254, 2017.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proc. CVPR, pages 770–778, 2016.

[13] Ahmet Iscen, Giorgos Tolias, Yannis S Avrithis, Teddy Furon, and Ondrej Chum. Ef-
ficient diffusion on region manifolds: Recovering small objects with compact CNN
representations. In Proc. CVPR, pages 926–935, 2017.

[14] Ahmet Iscen, Yannis S Avrithis, Giorgos Tolias, Teddy Furon, and Ondrej Chum. Fast
spectral ranking for similarity search. In Proc. CVPR, 2018.

[15] Ahmet Iscen, Giorgos Tolias, Yannis S Avrithis, and Ondrej Chum. Mining on mani-
folds: Metric learning without labels. In Proc. CVPR, 2018.

[16] Hervé Jégou and Andrew Zisserman. Triangulation embedding and democratic aggre-
gation for image search. In Proc. CVPR, pages 3310–3317, 2014.



12 ZHAO ET AL.: MODELLING DIFFUSION PROCESS VIA DNN FOR IMAGE RETRIEVAL

[17] Yannis Kalantidis, Clayton Mellina, and Simon Osindero. Cross-dimensional weight-
ing for aggregated deep convolutional features. In Proc. ECCV, pages 685–701, 2016.
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