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Abstract

In the general settings of supervised learning, human action recognition has been a
widely studied topic. The classifiers learned in this setting assume that the training and
test data have been sampled from the same underlying probability distribution. How-
ever, in most of the practical scenarios, this assumption is not true, resulting in a sub-
optimal performance of the classifiers. This problem, referred to as Domain Shift, has
been extensively studied, but mostly for image/object classification task. In this paper,
we investigate the problem of Domain Shift in action videos, an area that has remained
under-explored, and propose two new approaches named Action Modeling on Latent
Subspace (AMLS) and Deep Adversarial Action Adaptation (DAAA). In the AMLS ap-
proach, the action videos in the target domain are modeled as a sequence of points on
a latent subspace and adaptive kernels are successively learned between the source do-
main point and the sequence of target domain points on the manifold. In the DAAA
approach, an end-to-end adversarial learning framework is proposed to align the two do-
mains. The action adaptation experiments were conducted using various combinations
of multi-domain action datasets, including six common classes of Olympic Sports and
UCF50 datasets and all classes of KTH, MSR and our own SonyCam datasets. In this
paper, we have achieved consistent improvements over chosen baselines and obtained
some state-of-the-art results for the datasets.

1 Introduction

Today, surveillance cameras are everywhere, be it city streets, market place, buildings or
airports. These cameras operate 24× 7, generating a massive amount of video data that
needs to be processed for autonomous understanding of events and activities occurring in the
scene. Recently, deep networks have shown remarkable progress in the area of event/activity
recognition [4, 7, 10, 29, 30]. Most of these methods use a learning paradigm, where a large
set of labeled or unlabeled data is used to learn a model of the underlying process and then
use the same model to classify the unknown data. The learning paradigm works well when
the training and test data are sampled from the same statistical distribution.
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Figure 1: Concept of the proposed Action Modeling on Latent Subspace (AMLS) approach.
For all the clips in the source domain, a subspace representation, shown as point S∈RD×d on
a Grassmann manifold G(d,D), is obtained using the Principal Component Analysis (PCA)
method. Similarly, the target domain action videos are modeled as a sequence of points
(Ti ∈ RD×d) on the manifold, where each point corresponds to a collection of features from
each video as shown in the figure. In the end, adaptive kernels are learned between the
successive points, which are then used for action domain adaptation.

However, in many practical scenarios, the semantically similar data captured in different
contexts with different cameras introduces a shift in the statistical distribution. This makes
the models learned using the data captured in one context to be less effective when tested
on a data captured in another context. While this problem of Domain Shift has been an
active area of research in recent years, most applications in vision have been restricted to
recognition in images/objects [11, 12, 15, 21, 22]. One of the popular approaches for the
image Domain Adaptation (DA) is based on the subspace modeling of the source and target
domains [11, 14, 15], which works under the assumption that the two domains share a latent
subspace where the domain shift can be reduced or eliminated. In this work, we seek to
extend such ideas to events/actions for unsupervised domain adaptation in videos.

The videos, which are in general much more higher dimensional than the images, exhibit
a larger degree of subspace-based dimensionality reduction due to its temporal smoothness.
Thus, it is natural to model the video data on a subspace and perform domain adaptation in
the latent space. In this paper, we use this idea to investigate Domain Adaptation (DA) in
videos, an area that has remained under-explored. We propose two solutions to the action
adaptation problem. First, we leverage the concept of image DA methods proposed in [8, 17]
and formulate the problem as a sequence of adaptation on the latent subspace, as shown in
Fig 1. There are two main motivations behind modeling the action video as a sequence
of points on the subspace. First, it represents the temporal dynamics of the actions in a
better way and second, it reduces the overall domain discrepancy between source and target
domains, which has been empirically shown using the Symmetrized KL Divergence measure
[15]. Together, they both enable better adaptation.

The proposed action adaptation method, named Action Modeling on Latent Subspace
(AMLS) has been illustrated in Fig 1. The source and target videos are first segmented
into fixed size action clips and then feature vectors are computed using the deep learning
based 3D-CNN [29] method for each clip. The source domain feature vectors are projected
as a single point on the latent subspace and the target domain features are represented as
a sequence of points on the same subspace. Here, each point corresponding to the target
domain data represents the collection of time aligned 3D-CNN features (see Fig 1) i.e. the
ith subspace point is learned using the ith feature vectors from all the target videos. The
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sequence of subspace points are learned using the incremental subspace learning approach
[25] and a Geodesic path is constructed between the source point and sequence of target
points. Adaptive kernels (transformation matrices) are computed between the source and
sequence of target points. The kernels, in conjunction with the subspace based methods,
such as [11, 15], are used to perform domain adaptation.

Further, we propose an end-to-end deep learning framework, named Deep Adversarial
Action Adaptation (DAAA), that extend the idea of action modeling on the latent subspace,
discussed above, to learn a domain invariant feature embedding for the action videos. This
is achieved by training the network with mini-batch of target video clips corresponding to
the sequence of points on the latent subspace, in the same temporal order. The sequence of
clips in each action video are used together to ensure the learned embeddings are closed to
each other in the latent space. Empirically, we show that the temporally ordered training
with time-indexed samples results in improved adaptation performance.

2 Related Work

In a recent survey paper [5], domain adaptation and transfer learning techniques have been
comprehensively discussed with a specific view on visual applications. It covers the histori-
cal shallow methods, homogeneous and heterogeneous domain adaptation methods and the
deep domain adaptation methods that integrate the adaptation within the deep architecture.
There are both semi-supervised and unsupervised domain adaptation methods. However, we
mainly focus on the more challenging unsupervised domain adaptation approaches.

In the unsupervised domain adaptation approaches [2, 3, 11, 14, 28] etc., the main idea
is to learn a domain invariant representation for both source and target domain in such a way
that their distribution becomes as similar as possible. This is achieved by either a data sample
re-weighting/selection based approach [2, 14] or subspace based approach [11, 16]. In the
former, a linear combination of the source data samples is used to modify their distribution
and bring it closer to the target distribution. In the subspace based approach [11, 16], a linear
transformation is learned to align the source and target distribution.

Recently, deep domain adaptation methods [12, 20, 21, 22, 26] have shown significant
performance gains over the prior shallow transfer learning methods. Many of these methods
learn a feature representation in a latent space shared by the source and target domains. A
popular approach among them is to minimize Maximum Mean Discrepancy (MMD) or its
variant to effectively align the two distributions. In Deep Adaptation Network (DAN) [20],
Multi-Kernel MMD is used to improve the transferability of the features from source to target
domain. In Residual Transfer Network (RTN) [21], the assumption of shared classifier be-
tween source and target domain is relaxed. It combines MK-MMD with an adaptive classifier
to further improve the performance. The classifier is adapted by learning a residual function
with reference to the target classifier. In joint adaptation networks (JAN) [22], Joint-MMD
(JMMD) is used to align the joint distributions of multiple domain-specific layers across two
domains.

All the DA techniques found in the literature address the image/object classification prob-
lem. In fact, we could hardly find any work on the video-to-video domain adaptation prob-
lem. There are few studies [6, 19, 31] on cross-view action recognition and a few on hetero-
geneous domain adaptation [8, 9]. In that sense, to the best of our knowledge, this paper is
one of the first few papers for the video-video domain adaptation.
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3 Our Proposed Approach for Action DA

In this paper, we propose two solutions to the action adaptation problem. In our first ap-
proach, we extend the subspace based image/object DA methods (e.g. Subspace Alignment
(SA) [11] and Geodesic Flow Kernel (GFK) [15]) for action space DA. We do this in con-
junction with deep learning features (3D-CNN) [29]. This solution has been inspired by the
image DA work in [8, 17]. In our second solution, we propose an end-to-end deep learning
framework, in which target clips of each action videos are aligned together with the source
domain video clips. This ensures that the feature embedding is close to each other on the la-
tent subspace, enabling better adaptation. In both the approaches, we evaluate the segmented
K-frame clips of source and target domain action videos. The details are given below.

In the AMLS approach, there are two main steps. First, we compute a subspace repre-
sentation for the source and target data and then use the existing image adaptation methods
such as SA or GFK to perform sequence of adaptations for the video clips. Since, there
may not be sufficient data points available at every time instance (see Fig 1), the subspace
representation is obtained using the incremental subspace learning method [25].

3.1 Action Modelling on Latent Subspace

Let us assume that the source domain consists of NS labelled actions videos DS = {xi
S}

NS
i=1,

where each action video is segmented into Li clips of size K-frame. These clips are then
mapped to D-dimensional feature vectors using the 3D-CNN model [29]. The features are
then stacked together to form a matrix VS ∈ RD×N , where N(= ∑

NS
i=1 Li) is the total number

of video clips in source domain. A d-dimensional subspace representation, shown as point S
in Fig 1, is learned using the PCA of the matrix VS , where d << D and the subspace point
is an orthogonal matrix S ∈ RD×d .

Similarly, let us assume that the target domain has NT unlabelled action videos, DT =
{xi

T }
NT
i=1 and each action video xi

T is temporally segmented into Mi clips of K-frame, which
are then converted into a sequence of feature vectors using the 3D-CNN model. The target
features are stacked together according to their time index, giving a sequence of matrices
VT = {v1,v2, ...,vM}, where vi ∈ RD×Pi , Pi is the total number of the 3D-CNN features at
ith time index (e.g. P = {3,3,3,1} in Fig 1) and M = max(Mi), i ∈ [1,NT ] is the maximum
number of clips across all the target videos. Since, the number of clips in vm may be very
small in some cases (e.g. only one clip for point T4 in Fig 1), direct computation using
the PCA technique is not possible in such cases. We use the incremental subspace learning
approach [25] to compute the sequence of target points on the subspace. Once, the source
and target domain points are obtained, we align the source domain with the sequence of
target domains, by minimizing the Frobenius norm of the difference between the projected
data from the source and target domains [11], which is defined as:

min
WS,m,WT ,m

J(WS,m,WT ,m) = ‖SWS,m−TmWT ,m‖F , (1)

where, WS,m and WT ,m are the transformation matrices for the source and target points.
Formally, the sequence of target points Tm are obtained by minimizing the re-projection

error of the feature vector, defined as,

E(vm,Tm) =
∥∥vm−TmT′mvm

∥∥
F (2)
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It has been mentioned in [15] that two domains adapt well if they are close to each other
on the subspace. In order to ensure this, a regularizer term r(Tm−1,Tm) is added to Eq (2)
above. So, the overall cost function to be minimized is as follows:

min
T′mTm=I,WS,m,WT ,m

r(Tm−1,Tm)+E(vm,Tm)+ J(WS,m,WT ,m) (3)

The cost function in Eq (3) is non-convex and it can be solved in two steps. In the first
step, for given transformation matrices, WS,m−1 and WT ,m−1, the cost function is minimized
for Tm and in the second step, for a given Tm, Eq (3) is solved for WS,m and WT ,m. The two
steps are detailed below.

Step 1: When WS,m−1 and WT ,m−1 are fixed, the cost function would be minimum for
Tm = Tm−1. In this case, J(WS,m,WT ,m) acts as a regularization term and ensures that the
neighbouring subspace points Tm−1 and Tm are close to each other. It also means that one
can combine the first and third term, in Eq (3), into single regularizer of Tm and solve the
resulting cost function as:

min
Tm

r(Tm−1,Tm)+E(vm,Tm)

s.t T′mTm =I
(4)

Depending on the choice of the regularizer function, the cost function has two possible
solutions, which are as follows:

• If the regularizer r is constant, the solution for the subspace point Tm would be the
d largest singular vector of vm, which can be easily computed by taking the SVD,
if there are sufficient number of data points. In our case, as we want to capture the
temporal dynamics of the videos, there would not be enough data at all time instance
(see Fig 1) to compute the subspace points directly. Nonetheless, if all the action clips
are considered together without bothering about the temporal dynamics, the problem
reduces to the standard image DA formulation. We consider this as one of the baseline
for our study, in which all the target domain clips are represented as a single point on
the subspace and then GFK or SA methods are applied for adaptation.

• If the regularizer r varies with time, which is our case, the solution is obtained using
the incremental subspace learning approach [25], which in turn is based on the R-SVD
[13] method. In this work, we use a variant of the efficient sequential Karhunen-Loeve
algorithm [18] to obtain the sequence of subspace points. The details are available in
[25].

Step 2: In the second step, when Tm is fixed, the minimization does not depend on the
first and second term of Eq (3). So, we are left with J(WS,m,WT ,m), which can be easily
solved using the SA or GFK methods, resulting into our two AMLS variants i.e. AMLS_SA
and AMLS_GFK. The pseudo code has been given in the supplementary material.

3.2 Deep Adversarial Action Adaptation
The proposed AMLS formulation cannot be directly extended to an end-to-end deep learning
framework because of two reasons. First, the cost function in Eq (3) is not differentiable and
second, obtaining a constraint in a sub-space based criterion would require analysis of the
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Figure 2: Architecture of the proposed Deep Adversarial Action Adaptation network.
G f (.;θ f ) is the feature mapping function, Gy(.;θy) is the class discriminator function and
Gd(.;θd) is the domain discriminator function. Ly and Ld are the label and domain prediction
losses. GRL is gradient reversal layer. All the M clips in an action video is simultaneously
fed to the network and losses are accordingly computed. Best viewed in color.

whole dataset in each iteration. Hence, we adopt the next feasible approach to align the two
domains using adversarial learning.

In this paper, we propose a new learning framework in which the target video clips are
aligned with the source data as per their temporal ordering. Our network architecture named
Deep Adversarial Action Adaptation (DAAA) has been shown in Fig 2 and it includes few
layers of 3D-CNN for feature mapping, few discriminative layers for classification and ad-
versarial layer for domain adaptation. In the network, the feature mapping layers share
weight between source and target domains. In the DAAA method, an adversarial game is
played between a domain discriminator Gd(.;θd), which is trained to distinguish the source
and target domain samples, and the feature extractor G f (.;θ f ), which is fine-tuned simulta-
neously to confuse the domain discriminator.

In the adversarial training, the parameters θ f are learned by maximizing the domain
discriminator loss Ld and the parameters θd are learned by minimizing the domain loss. In
addition, the label prediction loss Ly is also minimized. The overall loss function for the
DAAA is:

L(θ f ,θy,θd) =
1
Ns

∑
xi∈DS

M

∑
j=1

Ly(Gy(G f (x
j
i )),y

j
i )

− λ

NS +NT
∑

xi∈DS∪DT

M

∑
j=1

Ld(Gd(G f (x
j
i )),d

j
i ),

(5)

where x j
i is the jth clip of ith video and λ is a trade-off parameter between the two

objectives that shape the features during learning. At the end of the training, the parameters
θ̂ f , θ̂y, θ̂d will give the saddle point of the loss function (5): (θ̂ f , θ̂y) = minθ f ,θy L(θ f ,θy,θd)

and (θ̂d) = maxθd L(θ f ,θy,θd).



ARSHAD, VINAY, DIPTI, VENKATESH: DEEP DOMAIN ADAPTATION IN ACTION SPACE 7

Table 1: Symmetrized KL Divergence for the UO and KMS datasets. The first two columns
are for UO datasets and the last four columns are for the KMS datasets. Lower SKLD is
better for the adaptation. In the first two cols, the subscript U,O depicts the base 3D-CNN
model with U for UCF50 subset net and O for Olympic Sports subset net.

Methods (U→O)U (O→ U)O K→M K→ S M→ S M→K
GFK/SA 0.901 0.207 0.159 0.061 0.089 0.1289
AMLS 0.262 0.064 0.092 0.05 0.07 0.066

3.3 Domain Discrepancy Measure
One of the motivation behind modeling the action videos as a sequence of points is to re-
duce the overall domain discrepancy. It has been shown in [11, 15] that two domains lend
themselves well for the adaptation task if the domain discrepancy between them is lower. In
[15], Symmetrized KL Divergence (SKLD) was proposed to measure the adaptability of two
domains. Here, we use this measure to evaluate the effect of action modeling using sequence
of points on a subspace.

Let VS , VT be the features for the source and target datasets and S, T be the basis
of the two subspaces. We can define the SKLD between the source and target domain as
1

d∗ ∑
d∗
i θi {KL(Si||Ti)+KL(Ti||Si)}, where d∗ is the optimal dimensionality of the subspace

and θi is the ith principal angle. In order to obtain a closed form solution for the SKLD
measure, we approximate Si and Ti as two one-dimensional Gaussian distribution of V′Ssi
and V′T ti respectively with mean zero and variances σ2

iS and σ2
iT . The principle angles θi

between two subspaces are efficiently computed using the SVD of matrix S′T = UΓV′ and
they are θi = arccos(γi), where γi is the ith singular value in the diagonal matrix Γ. The
principle vectors si = (SU).,i and ti = (TV).,i are the ith basis vector of the source and target
points on the subspace.

The SKLD measure for the approximate domain distribution is.

SKLD(S,T ) = 1
d∗

d∗

∑
i

θi

{
1
2

σ2
iS

σ2
iT

+
1
2

σ2
iT

σ2
iS
−1

}
(6)

Further details have been given in the supplementary material.

4 Experiments
We evaluate the two proposed approaches against five baselines, including Baseline-S, Base-
line-T, 3D-CNN, GFK_Action and SA_Action. The last two baselines are the extension of
image adaptation methods for action space. In Baseline-S (T), we project the source and
target data points on the subspace defined by the PCA of the source (target) data. The
experimental setup, implementation details and results have been described below.

4.1 Setup
The DA experiments require multiple distinct action datasets having the same action cat-
egories. Unfortunately, there are hardly any benchmark action datasets available for this
experiment. We specifically created three multi-domain datasets and evaluated the proposed
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Table 2: Action Classification Accuracy (%) for the UO and KSM datasets. The best results
are shown in bold. All the methods, except 3D-CNN and DAAA, use 4096-dimensional fc7
features given by the fine-tuned 3D-CNN model and the classification is done using SVM.
In DAAA method, end-to-end training is done, with softmax classifier. The subscript U,O
depicts the base 3D CNN model i.e. UCF50 subset or Olympic Sports subset.

Methods (U→O)U (O→ U)O K→M K→ S M→ S M→K
Baseline-S 80.72 83.1 57.89 63.01 72.13 70.11
Baseline-T 80.76 83.02 54.49 62.86 72.06 71.22

3D-CNN [29] 82.13 83.16 49.8 61.11 70.22 71.89
GFK_Action 84.04 86.21 61.16 63.71 73.27 72.9

AMLS_GFK (ours) 84.65 86.44 66.63 64.46 74.96 74.61
SA_Action 84.10 85.67 62.13 64.71 76.7 74.5

AMLS_SA (ours) 83.92 86.07 64.15 67.26 76.21 73.27
DAAA (ours) 91.6 89.96 73.2 70.44 77.33 86.85

approaches with them. Two of the datasets are discussed below and the third is included in
the supplementary material.

UCF50 and Olympic Sports Datasets: In the first series of experiments, we use a subset
of six common classes from UCF50 [24] and Olympic Sports [23] datasets (denoted by U
for UCF50 subset and O for Olympic Sports subset). The classes are Basketball, Clean
and Jerk, Diving, Pole Vault, Tennis and Discus Throw. For the UCF50 dataset, we use 70%-
30% train-test split suggested in [27], which results into 432−168 train/test action videos for
training and testing. Similarly, for Olympic Sports dataset, the number of videos in training
and testing set are 260 and 55 respectively. We fine-tune the publicly available Sport 1M
3D-CNN model using the two datasets independently. This gives us two different models,
which are used in the two DA problems ((U→ O)U and (O→ U)O). For the end-to-end
training, we start with the fine-tuned model and train it for the alignment of two domains.

KTH, MSR Action II and Sonycam Datasets: In the second series of experiments, a
combination of three datasets has been used, which is referred to as KMS dataset collection.
It consists of two benchmark datasets i.e. KTH [1] and MSR Action II [1] (denoted by K
and M respectively) along with our own six class SonyCam dataset (denoted by S) captured
using a hand-held Sony camera. In KTH and SonyCam datasets, there are six classes,
namely, Boxing, Handclapping, Handwaving, Joging, Running and Walking. In the MSR
Action II dataset, only the first three classes from the KTH dataset are available. For the
KMS dataset collection, there are four adaptation problems (K→M, K→ S, M→ S and M
→ K). The SonyCam dataset is only used as target domain owing to its small size (180 clips
across 6 action classes). In case of KTH dataset, we use training data partition of 1530 clips
spread almost equally across six classes for source domains and testing data partition of 760
clips for target domain. In the MSR dataset, there are 202 clips for three classes (Boxing-80,
Handclapping-51 and Handwaving-71).

Implementation Details: For the feature embedding, we used the architecture given in
[29]. All the subspace based domain adaptation experiments have been conducted using
the 4096-dimensional fc7 features computed for 16-frame clips, obtained by segmenting the
action videos. The sequence of points on the subspace are obtained using the clip level
deep features computed with the fine-tuned model. All the source domain video features
are stacked together to form a matrix of dimension N× 4096, where N is the total number
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Figure 3: Action Adaptation Empirical Analysis: (a) Accuracy vs. Iterations; (b) U → O:
Accuracy vs Class; (c) K→ S: Accuracy vs Class. Best viewed in color.

of video clips in the source domain. The subspace embedding for the source domain is
computed using the PCA of the matrix. For the target dataset, a sequence of points is obtained
on the same subspace by two operations: (i) the features across all the videos are collected
as per their time index; and (ii) the incremental subspace learning method [25] is used to
find the sequence of subspace points. These target domain points on the subspace are then
successively aligned to the source domain point using either GFK or SA method [11, 15],
resulting into our two approaches i.e. AMLS_GFK and AMLS_SA. The final classification
is performed using the SVM method, which predicts labels for each 16-frame clips.

In the case of deep adversarial action adaptation, we first obtain a base 3D-CNN model
by fine-tuning the publicly available Sports 1M model using the source domain data. The
domain adaptation layers are added to the feature mapping layers of the 3D-CNN. During
the adaptation, the inputs to the network are provided according to the sequence of target
points on the latent subspace. The training stops after several epochs are completed. The
classification is done using the softmax layer. We fine-tune all the convolutional and pooling
layers and train the classifier layer via back propagation. Since the classifier is trained from
scratch, we set its learning rate to be 10 times that of the lower layers. We employ the
mini-batch stochastic gradient descent (SGD) with momentum of 0.9 and the learning rate
strategy implemented in RevGrad [12].

4.2 Results and Discussions
In this section, we first present the results for the Symmetrized KL Divergence (SKLD)
and then discuss the performance of the AMLS algorithms and the deep action adaptation
method.

Symmetrized KL Divergence (SKLD) Measure: We computed the SKLD values for
both the datasets and found that the AMLS approach has consistently lower values when
compared with the baseline adaptation method. In Table 1, the SKLD values have been
given for the UO and KMS datasets. The results show that the action modeling on latent
subspace reduces the domain discrepancy and hence gives better adaptation performance.

Domain Adaptation in Action Spaces: In this paper, we have evaluated our action do-
main adaptation approaches for UO, KMS and HU (results given in supplementary material)
datasets. In majority of the cases, improvements have been observed over all the baselines.
The two subspace based domain adaptation methods (GFK_Action and SA_Action) have
been found to be generally better than the 3D-CNN method and other two baselines and the
proposed AMLS approaches are better than all the five baselines. However, the deep action
adaptation method outperforms all the other methods. For example, in the first four columns
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of Table 2, it can be seen that the GFK_Action and SA_Action methods give better result
than the top three rows, the AMLS method further improves the performance and the DAAA
method is the best.

In the last four columns of Table 2, results for the KMS dataset has been given. In
this case also, we observed that the subspace based adaptation methods were better than
the three baselines shown in top three rows, which was further improved by the two AMLS
methods. However, in all the cases, the DAAA approach was significantly better than all the
other methods. These results show that the subspace based image adaptation methods also
work for action adaptation and the proposed explicit modeling on a latent subspace further
improves the results. The results also confirm the earlier finding [12] that the end-to-end
adversarial learning do help in bridging the gap between source and target domains.

The upper bound for the adaptation algorithms are obtained by testing the classifiers
trained on the same dataset. The accuracy obtained for UCF50 subset, Olympic Sports sub-
set, KTH and MSR are 92.76%, 92.54%, 97.5% & 89.83% respectively. It can be observed
in Table 2 that the performance of the deep adaptation method is close to the upper bound
for the UO datasets. However, for the KTH and MSR datasets, there is still significant scope
of improvement.

Analysis of Deep Adversarial Learning: The improvement in the accuracy of the
DAAA over the course of training is shown in Fig 3(a). It includes results for four adap-
tation problems, two for each datasets. The training starts with a fine-tuned model and stops
after 10000 iterations. The significant improvement in the accuracy is evident in the three of
four cases shown in the figure. For O→U DA problem, the accuracy does not significantly
change during the course of training. In Fig 3(b)&(c), we show the class wise classifica-
tion performance of four methods for U → O and K→ S adaptation problems. The figures
show consistent improvement by the adaptation methods across all classes. The results of
AMLS_GFK and AMLS_SA are better than the No Adaptation baseline but the DAAA
method gives substantial improvement over the other methods.

5 Conclusions

In this paper, we formulated the problem of domain adaptation for human action recogni-
tion as a sequence of points on a smoothly varying latent subspace, capturing the temporal
dynamics of the action videos. We proposed two solutions to the problem, including an
end-to-end adversarial learning framework. In our experiments, we obtained consistent and
significant performance improvements over various baselines. Particularly, the deep action
adaptation method substantially outperformed all the other methods. Our experiments also
validate that by embedding the domain-adaptation modules into 3D-CNN architecture, more
transferable features can be learned. In future, we would like to study the concept of contin-
uous domain adaptation on the streaming action videos. In addition, we would like to study
other deep learning frameworks for action domain adaptation.
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