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Abstract

We propose a novel approach for automatic extraction (instance segmentation) of
fibers from low resolution 3D X-ray computed tomography scans of short glass fiber
reinforced polymers. We have designed a 3D instance segmentation architecture built
upon a deep fully convolutional network for semantic segmentation with an extra output
for embedding learning. We show that the embedding learning is capable of learning a
mapping of voxels to an embedded space in which a standard clustering algorithm can be
used to distinguish between different instances of an object in a volume. In addition, we
discuss a merging post-processing method which makes it possible to process volumes
of any size. The proposed 3D instance segmentation network together with our merging
algorithm is the first known to authors knowledge procedure that produces results good
enough, that they can be used for further analysis of low resolution fiber composites CT
scans.

1 Introduction
Reliable information about fiber characteristics in short-fiber reinforced polymers (SFRP) is
much needed for process optimization during the product development phase. The influence
of fiber characteristics on the mechanical properties of SFRP composites is of particular in-
terest and significance for manufacturers [9]. The recent development of X-ray computed
tomography (CT) for nondestructive quality control enabled the possibility to scan the ma-
terials and retrieve the 3D spatial information of SFRPs. Fiber extraction is the first step
towards any further analysis of a SFRP material. However, the spatial resolution of a scan is
a limiting factor which makes fiber extraction a difficult problem.

Acquiring scans in high resolution is time consuming and costly. Therefore, in this work
we consider only scans acquired by a CT system with low (3.9 µm) resolution. The methods
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Figure 1: Sketch of the proposed method. The network is processing overlapping sub-
volumes of the input volume. For each sub-volume a semantic segmentation mask and an
embedding is produced by a deep network. A clustering method is then applied on the
segmented regions of the embedding representation producing clusters corresponding to in-
dividual fibers. Fibers are then mapped back to the spatial domain. The overlapping instance
sub-volumes are then merged into an output volume.

currently in use are usually based on hand designed features. Since fibers can be described as
long cylindrically shaped objects, the most widely used family of fully-automatic methods
is based on Hessian eigenvalues. Using a set of Hessian based filters at a number of scales,
a confidence map of fiber occurrence can be produced [8]. To extract individual fibers, a
template matching [21] [6] or a watershed splitting and skeletonisation technique [24] [26] is
then applied. However, the performance of these methods degrades severely if the resolution
is too low and fails to produce meaningful results [15]. A deep learning method has already
shown its superiority over Hessian based techniques to produce more accurate results for
semantic segmentation of fibers at low CT resolution [16].

Deep learning architectures have been successfully applied to semantic segmentation
problems for both natural 2D images and 3D CT volumes [18] [3]. Similar solutions have
been found for the problem of 2D instance segmentation. Faster R-CNN [22] and the Mask
R-CNN [11] architectures are examples of region-proposal-based techniques which are the
state-of-the-art for common scene-understanding datasets like COCO [17] or ImageNet [4].
However, it is not clear how this approach can be extended to 3D volumetric data with
densely packed objects like fibers in SFRP. This is why for our 3D problem, we have opted
for alternative deep learning methods for instance segmentation. There are numerous works
in which authors try to come up with different ideas for 2D datasets. An interesting idea
that could be extended to 3D volumes has been proposed by [1] to reformulate the problem
of instance segmentation into learning a mapping to watershed energy. Then, for the final
output, a Watershed transform is applied to get the instances. Unfortunately, this method
is not applicable to our problem, because fibers are usually too thin to find a border. An-
other promising idea proposed by [23] is to combine convolutional neural networks (CNN)
with recurrent neural networks (RNN). The recurrent structures are used to keep track of
objects that have already been found, and excludes these regions from further analysis by the
algorithm.

In this work we propose a novel deep learning architecture for automatic extraction (in-
stance segmentation) of fibers from low resolution 3D X-ray computed tomography scans of
short glass fiber reinforced polymers. The sketch of the method is presented in Fig. 1.
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(a) (b) (c) (d)
Figure 2: Visualization of the network outputs. (a) Slice of an input volume patch. (b) Corre-
sponding slice from the semantic segmentation output. (c) Corresponding slice of one (out of
many) feature map of the embedding output. The network learns to assign different, unique
values (colors) to individual fibers. In this particular feature map all fibers are well separated.
(d) The masked embedding by a semantic prediction for which a loss for embedding learning
is computed. In the prediction phase it is also the input for the clustering step.

We explore and discuss the performance of the presented method achieved by training
on a low resolution SFRP CT scan and compare it to a standard watershed splitting and
skeletonisation technique. We test the importance of the semantic segmentation branch by
replacing it with a ground truth semantic segmentation. To the best of our knowledge, this is
the first attempt of using deep embedding learning for the task of instance segmentation on
a 3D volumetric data. The proposed method is also the first to successfully retrieve single-
fiber segmentation from a low resolution SFRP CT scan, while the outcome of the standard
methods is producing unacceptable results. We base our method on an embedding learning
approach [25] [2]. The idea is to use a special embedding layer which is placed at the
end of a given deep network. The network is then trained by using a special loss function
on the final embedding layer which encourages special structure in the embedding space:
pixels belonging to the same class should be close, whereas pixels belonging to different
classes should be far apart (in the Euclidean metric of the embedding space). The method
as a learnable loss function has been first mentioned by [25], and was then used with some
modifications in the deep learning architecture of [2] and [7]. These methods achieved
competitive performance on 2D datasets compared with the R-CNN based state-of-the-art.

In the problem of fiber segmentation, the network will learn a mapping of each voxel and
its surrounding from the input to an embedding space in which voxels belonging to one fiber
are separated from voxels belonging to another. Unfortunately, there is one drawback to this
method. Such a network is capable of processing only one small sub-volume of a volume
at a time because of memory limitation. Each time the network processes a sub-volume it
assigns an arbitrary index to a fiber region. Because of that, we can not do a simple merge
as it is usually done for a semantic segmentation problem, where the output is a probability
of being an object of a certain class. For a semantic segmentation mask one can take a
simple average over overlapping regions in order to merge sub-volumes into a full volume.
Therefore, in order to produce an instance segmentation for a full CT scan, we propose a
post-processing algorithm, which merges the overlapping predictions of small blocks into a
consistent prediction for the entire CT scan during the prediction phase.

2 Method
Similar to the work of [2], we have extended the Fully Convolutional Network (FCN) archi-
tecture [18] designed for semantic segmentation tasks to produce embeddings by using an
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Figure 3: Detailed architecture of our network. ch is the number of channels of the sub-
volume, s is the size of the sub-volume (here s = 32 means a sub-volume is of size 32×32×
32), i is the number of input channels, whereas o is the number of output channels from a
convolutional layer or residual block. Both residual blocks and convolutional layers use 3D
kernels. The kernel size is set to 3 for residual blocks and 1 for the final convolutional layer.
Training is performed only on the deep learning phase. During prediction, the output from
the embedding branch is masked by the output of the semantic segmentation branch and is
processed by the DBSCAN algorithm producing the instance segmentation. The cross sign
indicates the masking operation.

extra output. The extra output could be attached at the very end of the backbone of the se-
mantic segmentation network as in [20], but in our setup we decided to use two sub-networks.
One is responsible for computing the semantic segmentation mask, and the other for com-
puting the embedding of voxels. The network can be trained separately for embedding and
semantic segmentation using corresponding outputs or trained together for both tasks at the
same time. We will refer to the two sub-networks as semantic segmentation branch and em-
bedding learning branch. The semantic segmentation branch outputs a confidence map that
a given voxel belongs to any fiber or not. The embedding learning branch outputs voxels
coded in the embedding space. During the training phase, the architecture is trained only
based on outputs from the semantic segmentation branch and the embedding learning branch
using specified loss functions.

During the prediction phase a clustering step generates clusters corresponding to indi-
vidual fibers. The clustering method is applied to the embedded voxels which have a high
confidence of being a fiber based on the output from the semantic segmentation branch. The
outputs from the two branches and the region on which the clustering is computed are pre-
sented in Fig 2. The clusters are then mapped back to the spatial domain creating a label
volume, where each voxel is assigned an integer label corresponding to the fiber instance it
is a part of. To make it possible to use on volumes of any size, we have proposed a greedy
merging algorithm. The network produces outputs for overlapping sub-volumes of the input
volume, which are then merged to a full volume. The detailed architecture of the network is
presented in Fig. 3. In the following sections we will describe the above steps in more detail.

2.1 Semantic Segmentation

The semantic segmentation branch is a standard FCN for semantic segmentation. We have
used an architecture that has been designed for the task of semantic fiber segmentation [16].
The output of the branch is penalized by the standard voxel-wise binary cross entropy loss
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Figure 4: The input volume is represented by a number of embedded volumes at the em-
bedding branch output. Here, slices of the first 12 embedding volumes corresponding to the
input sub-volume slice are visualized. Note, that a good embedding will assign different set
of colors in each embedding volume so that the clustering in the embedding space will be
easy.

LCE , as is common for semantic segmentation tasks. It is defined as:

LCE =−[y · log(ŷ)+(1− y) · log(1− ŷ)] (1)

where y are the true binary labels, and ŷ are the predicted labels. During the prediction phase,
the output is thresholded at value 0.5 in order to produce binary masks. An example slice of
an output of the branch is shown in Fig 2 (b).

2.2 Embedding Learning Loss

The output of the embedding branch is a representation of the sub-volume in an embedding
space. The architecture of the branch is identical to the semantic segmentation branch. The
only difference is the number of output channels in the final convolutional layer and the
loss function. In the semantic segmentation task, the output is producing a volume with
two channels, where one is reasoning on the foreground and the other on the background.
In the embedding learning, the output has as many channels as the dimensionality of the
embedding space (a hyperparameter in the algorithm). An example visualizing feature maps
of the embeddings is shown in Fig. 4.

The loss function penalizes voxels of different instances that are too close to each other
in the embedding space and encourages voxels of the same instance to be close. As a result,
the network maps the voxels into the embedding space, such that voxels that belong to the
same fiber should be placed next to each other and form easily separable clusters.

We find that the loss function introduced by [2] inspired by work of [25] and extended
to 3D by us works best for our problem. Even though we have extended the problem to
3D, and have used data that contains a high number of objects compared to common scene-
understanding problems, the method does not seem to be affected by that. The loss consists
of three terms: Lv keeps voxels belonging to the same object close to each other, Ld which
forces a minimal distance between clusters of different objects, and Lr which regularizes the
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(a) (b) (c) (d)

Figure 5: 1. Visualization of the clustering steps of the method. (a) Masked embeddings
form clusters in a multi-dimensional embedding space (visualized by t-SNE). (b) DBSCAN
clusters the embedding representation and assign a different index (color) to each fiber (clus-
ter) with black crosses for outliers. (c) Clusters are then mapped back to the spatial domain.
Here a corresponding example slice of the mapping with red pixels for outliers. (d) The
watershed algorithm is then applied as a post-processing step to fill the outliers.

cluster centers to be close to the origin. The terms are defined as:

Lv =
1
C

C

∑
c=1

1
Nc

Nc

∑
i=1

[||µc− xi||−δv]
2
+ (2)

Ld =
1

C(C−1)

C

∑
cA=1

C

∑
cB=1,cA 6=cB

[δd−||µcA −µcB ||]
2
+ (3)

Lr =
1
C

C

∑
c=1
||µc|| (4)

where C is the number of objects in the ground truth patch (clusters), Nc is the number of
voxels that corresponds to the object c, xi is the embedding in the final embedding layer, µc
is the mean of the embedding of object c, || · || is the L2 norm, and [x]+ = max(0,x). The
parameters δv and δd are used to control the desired positions of the clusters. The final loss
for the embedding learning Lembd is a sum of the previous components.

Lembd = αLv +βLd + γLr (5)

where α,β and γ control the strength of the corresponding term. An example slice of an
output of the branch is visualized in Fig 2 (c). Note, that the loss is computed only based on
the voxels that belong to the foreground fibers. It is the task of the semantic segmentation
branch to find the correct position of the fibers.

2.3 Clustering
As discussed in the previous section, the semantic segmentation output creates a confidence
map that a given voxel belongs to any fiber or not. A clustering is then applied to the em-
bedded voxels with a high confidence of being fibers. An example input slice of one of the
feature maps of the embedding is shown in Fig 2 (d). In this work, we found DBSCAN [5]
to work best on the SFRP dataset. In contrast to Mean Shift used in [2], DBSCAN does not
make assumptions about the shape of the clusters. We apply clustering only in the prediction
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phase because the instance segmentation loss function does not require the instance segmen-
tation map. Note, that DBSCAN does not necessarily assign a label to all voxels. Voxels
that were not assigned to any label are assigned as outliers. The clusters are then mapped
back to the spatial domain creating an instance segmentation map. Outliers are extrapolated
based on their neighborhood in the spatial domain by use of the watershed algorithm, using
the clustering labels as seeds. An example visualization of the described steps with help of
the t-SNE [19] is shown in Fig 5.

2.4 Merging

Finally, the inference is produced on small overlapping sub-volumes of the entire volume.
Each sub-volume contains different label IDs for fibers, making it not clear which fiber is
which. To overcome this problem we have designed a merging algorithm, which joins label
IDs among the sub-volumes based on a spatial distance of fibers in the overlapped regions.
The algorithm is applied at each sub-volume and processes recursively one fiber at a time,
looking at neighboring sub-volumes with overlapping regions with objects being close to the
fiber of interest. The merging procedure is described in more details in algorithm 1.

Algorithm 1 Merging algorithm
1: procedure MERGE( f , p) . for a fiber f in a sub-volume p
2: N← neighbour sub-volume of p . N is a set of sub-volumes neighbouring with p
3: for sub-volume n in N do
4: G← fibers in n . G is a set of fibers in a patch n
5: for fiber g in G do
6: d← D( f ,g) . Spatial distance between f and g
7: if d > α then
8: gid ← fid
9: MERGE(g,n)

3 Experiments

3.1 Data

We have evaluated the proposed setup on two hand-annotated regions of low resolution CT
scans of SFRP composites acquired by a Nikon MCT225 X-ray CT system from [15]. Scans
exhibit typical artifacts and have low, but isotropic resolution. The parts from which the
scans were acquired were manufactured by micro injection molding using PBT-10% GF,
a commercial polybutylene terephthalate PBT (BASF, Ultradur B4300 G2) reinforced with
short glass fibers (10% in weight). The volumes have been hand annotated with center lines
and processed by a watershed algorithm to create the instance segmentation ground truth.
Both volumes are cubes of dimension 62 × 260 × 260 with approx. 6,500 fibers each.
Fibers have a diameter of 10-14 µm (2-3 voxels) and are approx. 1.1 mm long. One scan is
used for training, while the other is only used for testing.
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Raw volume Ground truth CC Our method

Figure 6: Visualization of the testing volume and corresponding results. First row shows a
3D rendering of a volume. Second row shows one example slice of the same volume. First
column is the input test volume (with a certain threshold to remove the epoxy background in
the 3D rendering). Second column is the corresponding ground truth. Third column is the
output of a standard connected component (CC) analysis. Fourth column is the output of our
method. Fibers are colored semi-randomly based on the fiber ID.

3.2 Training details

The volumes have been normalized to have unit variance and zero mean. Additionally, most
of the air voxels surrounding the specimen have been removed by a simple thresholding
method. We have trained and evaluated the network on sub-volumes of 32× 32× 32 from
the training volume. The sub-volumes are randomly flipped and rotated (by 90, 180 or 270
degrees) during the training phase. As mentioned in the introduction, and shown in Figure
3, for backbones of both the semantic segmentation and embedding learning branch we have
used the architecture proposed in [16] designed for semantic fiber segmentation. It is a 3D
FCN with standard residual units [10] and batch normalization [13] but with no max-pooling
to keep the resolution of the already very thin fibers.

The embedding learning is not stable, when trained from noise. Therefore, first we have
trained the semantic segmentation branch for 20,000 iterations and saved the weights. Then,
we have used the weights as an initialization for the embedding learning branch and trained
it for another 20,000 iterations. The loss used for training the embedding learning uses the
semantic ground truth masks.

It would also have been an option to share the embeddings and weights for both tasks.
Such setup is reported to slightly increase the performance of both semantic and instance seg-
mentation [20]. However, in our setup, we have found the above two-stage training to work
better. We use 16 feature embedding maps and set α and β to 1 and γ to 0.001. Optimization
has been done by using the Adam optimizer [14] with an initial learning rate set to 0.001.
During the prediction phase, the algorithm processes overlapping 32×32×32 sub-volumes
of the test volume with an overlap of 16 in each direction. The post-processing merging
algorithm merges the overlapping sub-volumes and produces the final instance segmentation
volume.
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Setup Mean ARI Merged ARI
Embedding Learning 0.9048 0.6529

Embedding Learning + true semantic 0.9129 0.7817
Connected Components 0.3537 0.2112

Connected Components + true semantic 0.3614 0.2534

Table 1: Comparison of our method with traditional connected components with and with-
out provided ground truth semantic segmentation mask. Mean ARI are mean values over
overlapping sub-volumes of the validation volume, while Merged ARI is the score computed
over the entire volume after the post-processing merging step. The Dice score of the semantic
segmentation mask from the semantic segmentation branch is 0.9784.

For a metric we have use the Adjusted Rand Index [12] to measure the performance of
instance segmentation. We find it more informative in the context of SFRP data over the
mAP. Defining the ground truth labels as clusters C = {C1, ...,Ck} and the corresponding
predicted labels as clusters Ĉ = {Ĉ1, ...,Ĉl}, the Adjusted Rand Index Ra is:

Ra(C,Ĉ) =
∑

k
i=1 ∑

l
j=1

(mi j
2

)
− t3

1
2 (t1 + t2)− t3

(6)

where mi j = |Ci∩Ĉ j|, t1 = ∑
k
i=1

(|Ci|
2

)
, t2 = ∑

l
j=1

(|Ĉ j |
2

)
, t3 =

2t1t2
n(n−1) , and n is the number

of voxels in the volume. The Rand Index varies from 0 to 1, where 1 means a perfect match
between the algorithm output and the ground truth mask.

3.3 Results

We have compared our method to a standard skeletonization followed by connected com-
ponent analysis and the Watershed method [26]. In the method, a binary erosion is first
applied on the semantic mask, which serves as seeds after connected component analysis
for a watershed segmentation algorithm. See Fig. 6 for a visual comparison. We have also
evaluated the importance of a good semantic segmentation mask. We provide results for
both our method and connected components given the semantic segmentation computed by
the semantic segmentation branch as well as using the ground truth semantic segmentation.

Therefore we compare four different setups. Our Embedding Learning method using the
final instance segmentation produced given the semantic segmentation mask from the se-
mantic segmentation branch. Embedding Learning + true semantic which is our method but
using ground truth semantic segmentation mask instead of the one produced by the meth-
ods branch (which is not ideal). Connected Components and Connected Components + true
semantic is the connected component method used either on the output of the semantic seg-
mentation branch or the ground truth semantic mask.

We provide two results in Table 1 for each setup. In the first column, the mean ARI is the
mean ARI of all the sub-volumes in the test volume without the merging step. In the second
column one can see the score computed over the entire volume after the post-processing
merging step which we call a merged ARI. We report the ARI score only for the voxels that
belong to the ground truth instance segmentation mask. Including the background voxels
would artificially increase the score.
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While the standard method clearly fails even when using the true semantic segmentation
mask, the proposed method produces meaningful results in all cases. When reasoning on
small overlapping patches the proposed method achieves 0.9048 average ARI score. The
merging algorithm has trouble with ambiguity of two neighboring outputs and favors merg-
ing over splitting. This results in merging two fibers into one, when they are too close to
each other. After the merging post-processing step the ARI score decreases to 0.6529.

4 Conclusions
In this work, we proposed a deep 3D fully convolutional architecture together with a set of
post-processing steps for a problem of single fiber segmentation from CT scans of SFRP. We
extend a less common approach of embedding learning for the task of 3D instance segmen-
tation. We explain in detail the steps of the method together with a post-processing and a
merging procedure. We show that we are better than the traditional skeletonization - water-
shed method. We expect our findings to be applicable to a wide variety of volumetric data
and not only to fiber composites.
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