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Abstract

Semantic segmentation is a popular task in computer vision today, and deep neural
network models have emerged as the popular solution to this problem in recent times.
The typical loss function used to train neural networks for this task is the cross-entropy
loss. However, the success of the learned models is measured using Intersection-Over-
Union (IoU), which is inherently non-differentiable. This gap between performance
measure and loss function results in a fall in performance, which has also been studied
by few recent efforts. In this work, we propose a novel method to automatically learn a
surrogate loss function that approximates the IoU loss and is better suited for good IoU
performance. To the best of our knowledge, this is the first such work that attempts to
learn a loss function for this purpose. The proposed loss can be directly applied over
any network. We validated our method over different networks (FCN, SegNet, UNet)
on the PASCAL VOC and Cityscapes datasets. Our results on this work show consistent
improvement over baseline methods.

1 Introduction
Among vision tasks, semantic segmentation has recently attracted a lot of attention, where
the objective is to classify each pixel into its corresponding semantic class. It has many appli-
cations like autonomous driver navigation, object detection, and video surveillance. For the
last few years, Convolutional Neural Networks (CNN)s have shown to be very effective for
the semantic segmentation task [2, 10, 16, 20]. CNNs for semantic segmentation typically use

the cross-entropy loss for training the network, given as: LCE = − 1
N

∑
c
i=1 yilog(y

′
i), where

yi is the ground truth, y
′
i is the output class score predicted from the network for the pixel i,

c is the total number of classes, and N is the number of pixels in the image. In general, a
softmax layer is used to map class scores to class probabilities. While the vision community
use pixel-wise cross-entropy loss to train the networks, the standard performance measure
that is used for the semantic segmentation problem is the intersection-over-union (IoU). For
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Figure 1: Illustration of cross entropy loss for semantic segmentation: (a) Original image (b)
Ground truth segmentation (c) All pixels predicted as background (d) Few pixels correctly
predicted as foreground.

an object present in a given image, the IoU measure gives the overlap between the predicted
region and the ground truth region of the object. The IoU measure is popularly used for
semantic segmentation due to its ability to handle class imbalances.

Consider the example in Figure 1. For the given image, two segmentation results are
given in Figures 1 (c) and 1 (d). The segmentation result in Figure 1 (c) classifies all the
pixels as background, and the segmentation result in Figure 1 (d) correctly classifies few
object pixels and also classifies few background pixels as object pixels. These two results
have same cross-entropy loss. However, the IoU measure for the segmentation result in
Figure 1 (c) is zero, clearly indicating a gap between the loss function used in training the
network and the metric used for measuring the performance of the network.

The key limitation for using IoU directly as loss in semantic segmentation is due to its
non-differentiability [15]. This restricts its use as a loss function in deep networks. While
there have been a few recent attempts to address this issue (described in Section 2), they have
their own limitations and are handcrafted approximations. In this paper, we propose a novel
method to automatically learn a surrogate loss function that is better suited to attain good
IoU performance. To the best of our knowledge, this is the first such work that attempts to
learn a loss function for this purpose. We call the proposed loss function as the NeuroIoU
loss, which can be integrated with any deep semantic segmentation CNN. We validate our
method by integrating the NeuroIoU loss in the FCN, SegNet and UNet models, and evaluate
their performance on the PASCAL VOC and Cityscapes datasets. Our results show promise,
and a consistent increase in the performance across all class labels for all models on both
datasets.

The remainder of this paper is organized as follows. Section 2 briefly reviews earlier
related work. The proposed NeuroIoU loss, as well as the methodology to train CNNs using
the NeuroIoU loss, are presented in Section 3. Experiments and results are discussed in
Section 4, followed by concluding remarks in Section 5.

2 Related Work
Current state-of-the-art models for semantic segmentation use fully convolutional networks
[2, 10, 16, 20]. In these networks, for a given input, we obtain class scores for each pixel,
and the class scores are mapped to probabilities using a softmax layer. These probabilities
also capture the likelihood of the pixels being the foreground (object/class) or background.
In all these models, the cross-entropy loss function [8] is applied over this probability map
pixel-wise. The cross-entropy loss is closely tied to the overall classification accuracy. If the
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number of examples for foreground and background are balanced, then the cross-entropy loss
works well. However, in a typical object category segmentation, these may not be balanced,
thus raising questions on why cross-entropy loss may not the best choice for loss functions
in the object category segmentation task.

As already mentioned, the IoU loss cannot be used in deep networks due to its non-
differentiability [15]. In recent years, a few approximations to the IoU measure have been
proposed for various applications. These methods [1, 11, 12, 13, 14, 18] attempt different
techniques to optimize the IoU measure in the given problem. In [11], the IoU measure is
optimized specifically for the object detection and localization problem using joint kernel
maps in a SVM context. They are only able to optimize over bounding boxes of the object,
and not over full pixel-wise segmentation. In [18], structured Markov Random Field models
are used for the same purpose. In [12], special purpose message passing algorithms are used
for the optimization. [13] provides a Bayesian framework for optimizing the IoU , where the
authors propose an approximate algorithm using parametric linear programming. In [14], the
authors provide a framework for optimizing Expected IoU (EIoU). In [1], instead of directly
optimizing the model with respect to IoU , the authors select a few candidate segmentations
for optimization. However, in contrast to the present work, all these methods do not provide
a differentiable approximation to the IoU measure, which can be used for training contem-
porary deep learning models.

The work closest to ours is [15], which provides a differentiable approximation of the
IoU measure, and hence can be used in training deep learning networks. Rahman and Wang
presented a handcrafted approximation of the IoU measure in [15]. For a given image I,
let V = {1, . . . ,m} be the set of all its pixels and X be its probability map obtained from
the network. Let Y = {0,1}V be the groundtruth of I, where 0 represents background and
1 represents foreground (object). Then, the approximated IoU measure defined in [15] is

given as IoU −Appx =
∑v Xv ∗Yv

∑v Xv +Yv−Xv ∗Yv
. The authors showed that this a differentiable

function. For the given image, the numerator in IoU −Appx is the sum of true positive
pixel probabilities. The value in the denominator can be simplified as the sum of number of
object pixels in the ground truth and false positive pixel probabilities. We can observe that
this expression approximates the IoU measure well if the probabilities of background pixels
are near zero and probabilities of object pixels are near 1, which is not always practical. In
this paper, we instead propose a method to directly learn the loss function corresponding to
good IoU performance for the given problem. The proposed loss can be integrated with any
existing deep semantic segmentation network. We now present our method.

3 Learning a Surrogate IoU Loss for Semantic
Segmentation

For a given image, the widely used IoU measure gives the similarity between the predicted
region and actual region (ground truth) of the object present in the image, and is given by:

IoU =
T P

T P+FP+FN
, where T P, FP and FN denote the counts of true positives, false

positives and false negatives respectively. If the output of the a semantic segmentation model
exactly matches with the ground truth, then its IoU becomes 1, which is desired. So, we
ideally want the IoU measure to be near to 1.Owing to the discrete nature of the counts, the
IoU measure is inherently non-differentiable [15]. Instead of replacing the non-differentiable
IoU measure with proxies such as cross-entropy or other recently proposed measures [15],
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we use a neural network as a function approximator to automatically learn the surrogate IoU
loss to train models for semantic segmentation. Note that to incorporate the IoU measure
directly as a loss function to train models, we need to minimize 1− IoU . The IoU loss can
hence be defined as:

LIoU = 1− IoU = 1− T P
T P+FP+FN

=
FP+FN

T P+FP+FN
(1)

In order to directly optimize the IoU loss in deep networks, we required the gradient of IoU
loss with respect to the outputs (or parameters) of a semantic segmentation network. How-
ever, since IoU is not differentiable, the IoU loss LIoU is also non-differentiable. We hence
cannot directly compute its gradients, which restricts us from using the IoU loss function to
train deep networks. We instead approximate the IoU loss using a surrogate neural network,
and obtain its derivative across this new network to get the required gradients (using the
backpropagation-to-image trick). We now describe our methodology to automatically learn
a differentiable approximation of the IoU loss.

3.1 Defining the Surrogate IoU-Loss Network
Neural networks have established themselves as very good function approximators over the
years [6, 7, 9, 17], especially when given sufficient amounts of input-output data pairs from
the function. In particular, neural networks can also be to approximate discontinuous and
non-differentiable functions (please see sample results of our empirical studies in Section
4.2). If we need to approximate a function f : RN → R using neural networks, we need the
input and output data for the given function. i.e. we need D = {(xi,yi) : i = 1, · · · ,n}, where
yi = f (xi) and n is the number of data points.

We propose our methodology in a manner which allows us to use this framework with
any existing CNN used for semantic segmentation. In semantic segmentation, the output of
the CNN gives a probability score map, i.e. for each pixel, it gives the probability of being
part of each of the classes considered. To approximate the IoU loss using neural networks,
we need to define the input data over the continuous domain. To this end, we define the
outputs of the semantic segmentation CNN in terms of probability counts T Ppr, FPpr and
FNpr as below:

T Ppr = ∑
xi

P(xi), where xi ∈ T P, FPpr = ∑
xi

P(xi), where xi ∈ FP

FNpr = ∑
xi

P(xi), where xi ∈ FN
(2)

T Ppr, FPpr and FNpr are the sums of probabilities of pixels in T P, FP and FN respectively
(which provide us a continuous-domain equivalent of the corresponding T P, FP and FN
counts). Given a CNN model, we can calculate T Ppr, FPpr and FNpr using the available
ground truth. Our IoU loss approximator network is hence defined by the input-output data
pairs: D = {((T Ppri ,FPpri ,FNpri),LIoUi) : i = 1, · · · ,n}, where LIoUi = 1− T Pi

T Pi+FPi+FNi
is the

actual IoU loss computed from the pixel counts. We generate the dataset D to train this
IoU-loss approximator network as follows:

• For the given training data, we first train a CNN, ΘCE , using cross-entropy loss.
• After training, for each training image, we store the output probability map obtained

from ΘCE .
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• For each image, we compute its T Ppr, FPpr, FNpr using Equation 2.

We now have the dataset D to train the approximator network. We call this surrogate neural
network as NeuroIoU , and the loss as NeuroIoU loss. We use the Mean-Squared Error loss
function, as defined below, to train this network using this data:

E(w) = ∑
i
[NeuroIoU(T Ppri ,FPpri ,FNpri)−LIoUi ]

2 (3)

In semantic segmentation, it is possible that two different segmentation results may have the
same IoU score, i.e. two different sets of T P, FP and FN counts (or T Ppr, FPpr, FNpr)
may have the same IoU value. This affects the approximation performance. To make the
approximation more robust to such issues, apart from T Ppr, FPpr, FNpr, we also include T P,

FP and FN counts as inputs to the NeuroIOU network. In particular, we add
T Ppr

|T P|
,

FPpr

|FP|
and

FNpr

|FN|
as inputs to the network, where, |T P|, |FP|, |FN| are the counts of T P, FP and

FN. Our empirical studies (detailed in Section 4) showed that with more inputs, the network
was more robust in the approximation.

3.2 Training Semantic Segmentation Models with NeuroIoU Loss
In this section, we present a novel formulation for training deep semantic segmentation net-
works by minimizing the NeuroIoU loss.

The NeuroIoU loss takes T Ppr, FPpr and FNpr as inputs and approximates the corre-
sponding IoU loss. Once we train the network, we use the backprop-to-image trick [19] to
compute the derivative of the NeuroIoU loss with respect to the outputs of the original CNN.
These derivatives are computed as follows. For simplicity, we consider a single hidden layer
in the surrogate network (this can be easily extended for multiple hidden layers). If S is the
activation function used in the network, then for the given input xi = (T Ppri ,FPpri ,FNpri),
NeuroIoU(T Ppri ,FPpri ,FNpri) is computed as:

NeuroIoU(T Ppri ,FPpri ,FNpri) =
k

∑
j=1

wop
j S(xT

i wh
j) (4)

where k is the number of neurons in the hidden layer, wh ∈ Rk×3 are weights in the hidden
layer and wop ∈Rk are the weights in the output layer. The derivatives of the NeuroIoU loss
w.r.t. the CNN outputs are given as:

∂NeuroIoU

∂T Ppr
=

k

∑
j=1

wop
j wh

j1S
′
(xT wh

j),
∂NeuroIoU

∂FPpr
=

k

∑
j=1

wop
j wh

j2S
′
(xT wh

j)

∂NeuroIoU

∂FNpr
=

k

∑
j=1

wop
j wh

j3S
′
(xT wh

j)

(5)

where S
′

is the derivative of the activation function S.
We now have the gradients of NeuroIoU with respect to T Ppri ,FPpri and FNpri , and can

retrain the initial CNN, ΘCE , using these gradients. The training procedure is summarized
in Algorithm 1. We consider the semantic segmentation network ΘCE initially trained us-
ing cross-entropy loss. We then finetune this network using NeuroIoU loss, by using the
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Algorithm 1 Training a Semantic Segmentation Network using NeuroIoU Loss
Input: (i) Set of training images I and their ground truth labels G; (ii) NeuroIoU loss for
each training image (obtained from the surrogate-IoU neural network); (iii) Initial trained
CNN model ΘCE trained on standard cross entropy loss
Output: Updated semantic segmentation CNN model Θ

′

Let Θ
′
= ΘCE

Repeat until convergence
for x ∈ I do

(1). Compute Θ
′
(x), the probability score map for x

(2). Compute the T Ppr, FPpr and FNpr for x using Equations 2

(3). Using Equations 5, compute
∂NeuroIoU

∂T Ppr
,

∂NeuroIoU
∂FPpr

and
∂NeuroIoU

∂FNpr

(4). Using the gradients obtained from step (3), backpropagate through the Θ
′

network
and update the network weights

end for

gradients of the NeuroIoU loss w.r.t. the outputs of ΘCE in Equations 5. To this end, we re-
move the softmax layer from the ΘCE network. For a given training image x, we compute its
probability score map ΘCE(x) from the network. We then update the network weights using
backpropagation, by using the gradients of NeuroIoU loss with respect to probability score
maps. These steps are continued till convergence. In each iteration, the NeuroIoU loss in-
creases the pixel probabilities for true positive and false negative pixels, as well as decreases
the pixel probabilities for false positive pixels. This increases the true positive count and
reduces the false positive and false negative counts for each image, thus increasing overall
IoU performance.

3.3 Approximation using Prediction Loss
Instead of approximating the IoU loss using probability counts as discussed in Section 3.1,
we can also approximate using the loss values obtained for each pixel during the prediction
obtained from the original model. We use hinge loss, and these values are obtained from
the classification layer. Hinge loss values have been previously used for approximating the
IoU loss [3]. In this new setting, input to the NeuroIoU loss are T PH , FPH and FNH ,
which are computed as T PH = ∑xi h(xi), where xi ∈ T P, FPH = ∑xi h(xi), where xi ∈ FP
and FNH = ∑xi h(xi), where xi ∈ FN. h(xi) is the hinge loss for the pixel xi.

4 Experiments
In this section, we validate the performance of the proposed NeuroIoU loss to train state-of-
the-art deep semantic segmentation models for object category segmentation.

4.1 Datasets and Experimental Settings
We conducted all our experiments on two popular datasets for semantic segmentation, PAS-
CAL VOC 2011 [5] and Cityscapes [4]. For both datasets, we train the network on the pro-
vided benchmark training set and test on the respective validation set, because the ground-
truth for the test set is not publicly available and our focus is on comparison to the baseline
method.
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                           (a)                            (b)           

Figure 2: Approximation of a function (non-differentiable at x = 1) and its derivatives using
neural networks: (a) Approximation of the function; (b) Approximation of its derivatives.

For the PASCAL VOC dataset, we resized the training images to 375×500, and for Cityscapes,
we resized the images to 512×1024. For all our experiments, we used a fixed learning rate of
10−5, momentum of 0.99 and weight decay parameter of 0.0005. We integrated the proposed
NeuroIoU loss into 3 contemporary semantic segmentation networks, FCN [10], Segnet [2]
and UNet [16]. We take the original FCN, Segnet and UNet with cross-entropy loss as the
baseline for studying the performance our proposed NeuroIoU loss, as well as compare our
results to [15] on models that were validated in their work (FCN). In the experiments, we
refer to the proposed method as NeuroIoU , the approximation in [15] as IoU −Appx and
the deep networks trained with standard cross-entropy loss as CE. In our surrogate neural
network used to approximate the IoU , we use 4 hidden layers and 100 nodes in each layer.

4.2 Function Approximation using Neural Networks

In order to understand the usefulness of the Surrogate-IoU network for approximating the
IoU measure, we conducted simple experiments on the capability of neural networks to ap-

proximate a discontinuous function and its derivatives. Consider f (x) =

{
2− x if x < 1
x+0.1 if x≥ 1

and its derivative f
′
(x) =

{
−1 if x < 1
1 if x > 1

. We can check that f (x) is not continuous and

hence not differentiable at x = 1. Results for this approximation using a simple one hidden-
layer neural network are given in Figure 2. Figure 2 (a) show the approximation of the
function and Figure 2 (b) shows the approximation of its derivatives. We can observe that
the approximations obtained almost exactly matches the original function. At x = 1, there is
a sudden change in the derivative due to the discontinuity, but the neural network is able to
approximate this sudden peak with a smooth curve. Since f (x) is not differentiable at x = 1,
we did not plot its derivative value at x = 1. The approximation of the derivative at x = 1 lies
between -1 and 1.

4.3 Results on Object Category Segmentation

The results for FCN, Segnet and UNet on PASCAL VOC are shown in Figure 3. It shows
the comparison of the proposed NeuroIoU loss and the baseline cross-entropy loss. We can
observe that the proposed NeuroIoU loss consistently outperforms the cross-entropy loss in
all the categories, with a performance gain for all the 3 networks. This corroborates our claim
that this approach can be integrated into any existing deep learning network for improving its
performance in semantic segmentation. From the figure, we also notice that the performance
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(a)             (b)               (c) 

       (a)              (b)                  (c) 

Figure 3: Results on PASCAL VOC: (a) FCN (b) SegNet (c) UNet. Here, CE is the net-
work trained using cross-entropy loss, and NeuroIoU is the network trained using proposed
NeuroIoU loss.

(a)             (b)               (c) 

       (a)              (b)                  (c) 

Figure 4: Results on CityScapes: (a) FCN (b) SegNet (c) UNet. Here, CE is the net-
work trained using cross-entropy loss, and NeuroIoU is the network trained using proposed
NeuroIoU loss.

improvements are more significant for some classes, where the foreground to background
pixel ratio is very small.

Similar results for FCN, SegNet and UNet on the Cityscapes dataset are presented in Fig-
ure 4. Once again, we observe that the proposed NeuroIoU loss outperformed cross-entropy
loss over all the classes for all the 3 networks. Note again that the maximum performance
improvement is obtained for the classes where the ratio of foreground to background pixels
is very small. We also tested our method against using weighted cross-entropy loss on a
subset of classes with this foreground-background imbalance from the Cityscapes dataset.
One could argue that weighting cross-entropy loss suitably can account for class imbalance
in the training set. Using weighted cross-entropy, we obtained an IoU of 58.4, whereas
NeuroIoU gave an IoU of 60.2 for the same subset. The proposed NeuroIoU method does
not need such explicit reweighting, since it implicitly learns what is necessary for overall
IoU performance.

We also show some qualitative results in Figure 5. From the figure, we can observe that,
in comparison to the cross entropy loss, the proposed NeuroIoU loss tends to fill the gaps
in the segmentation. It means it tends to recover some of the false negative errors made by
the cross entropy loss. In the 4th image (Row-4), we can observe that NeuroIoU is able to
localize small objects (pole), which the cross entropy-trained model could not. In the 5th

image (Row-5), we show a failure case for the NeuroIoU loss. Here, NeuroIoU is not able



NAGENDAR, DIGVIJAY, VINEETH, JAWAHAR: NEUROIOU 9

(a) Image (b) Ground truth        (c) Cross Entropy       (d) Neuro IoU

Figure 5: Few qualitative results. (a) Original image (b) Ground truth segmentation (c)
Segmentation obtained from cross entropy loss (d) Segmentation obtained using NeuroIoU .

to find the small traffic signals present in the image. Note, however that, these objects are
also not detected by the model trained using cross-entropy loss.

52

54

56

58

60

62

64

66

68

70

Io
U

Iterations

Cross Entropy

NeuroIoU- 3

NeuroIoU- 6

Figure 6: Comparison of performance of NeuroIoU with
3 inputs vs NeuroIoU with 6 inputs using FCN on
PASCAL VOC. While both performed better than CE,
NeuroIoU-6 was more consistent.

Comparison to previous work:
Rahman and Wang proposed a
approximation to the IoU mea-
sure in [15] (as stated in Sec-
tion 2). The results of comparing
the proposed method to this ap-
proximation are given in Table 1,
where CE represents networks
trained using cross-entropy loss.
The results are given for FCN
over PASCAL VOC dataset (as
in [15]). The results for [15] are
obtained from our implementa-
tion of their work. The results
given for training the model us-
ing cross entropy loss (CE) are
obtained for a fixed learning rate. Note that these performance numbers can be improved
by experimenting with different learning rates, weight decay and other parameters. Our ob-
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Aeroplane Cycle Bird Boat Bottle Bus Car Cat Chair Cow
CE 70.58 59.71 67.71 64.84 63.48 75.17 72.05 70.40 53.81 64.37
IoU-Appx [15] 72.72 61.78 68.61 67.29 64.31 76.57 73.03 70.82 54.18 64.06
NeuroIoU 73.68 61.84 69.80 67.83 64.49 77.73 73.57 71.28 54.82 65.38
NeuroIoUNo−Int 73.65 61.80 69.80 67.82 64.38 77.73 73.57 71.27 54.77 65.37
NeuroIoUHinge 75.14 63.35 70.71 69.75 65.84 79.80 74.97 73.03 55.47 66.16

D.Table Dog Horse M.Bike Person P.Plant Sheep Sofa Train TV Mean
CE 64.12 65.71 58.64 70.61 77.28 62.27 66.85 56.73 72.27 64.79 66.06
IoU-Appx [15] 65.63 64.17 58.70 71.20 77.39 64.14 67.72 58.38 72.20 66.07 66.94
NeuroIoU 65.98 65.82 60.37 72.10 78.04 66.62 69.02 59.52 73.06 67.18 67.90
NeuroIoUNo−Int 65.97 65.82 60.37 72.04 78.03 66.62 68.98 59.52 73.03 67.18 67.87
NeuroIoUHinge 67.60 66.74 62.73 73.68 79.89 68.03 71.62 60.85 74.72 69.27 69.46

Table 1: Comparison of NeuroIoU with cross-entropy loss and [15] on PASCAL VOC.

jective is to show the relative performance gain for different methods over CE loss under
the same training conditions. The relative improvement in performance of [15] over cross
entropy loss (CE) is what we intend to show, rather than the absolute IoU value. Here, the
NeuroIoU loss is used to retrain the network obtained from training using the CE loss. It
is evident that the NeuroIoU loss outperforms this surrogate loss [15] over all the classes.
Compared to the cross-entropy loss, the surrogate loss in [15] is under performing for some
classes. However, the NeuroIoU loss consistently outperforms cross-entropy loss over all
the classes.

We compare 2 other variants of NeuroIoU called NeuroIoUNo−Int and NeuroIoUHinge
with NeuroIoU in Table 1. In NeuroIoUNo−Int , we train the network without any initializa-
tion, i.e., the model trained using cross-entropy loss is not used to initialize the network. In
NeuroIoUHinge, IoU is approximated using hinge loss values instead of probabilities from
the final layer (as in Section 3.3). From Table 1, we can observe that the network trained
without initialization from a pre-trained model (NeuroIoUNo−Int ) is able to obtain similar
performance as the network trained using the initialization (NeuroIoU) obtained using cross-
entropy loss. We can also observe that NeuroIoUHinge outperformed all other methods.

We also studied the performance of the Surrogate-IoU neural network over different in-
puts in Figure 6. In NeuroIoU−6, the neural network is trained over 6 inputs T Ppr,FPpr,FNpr,
T Ppr

|T P|
,

FPpr

|FP|
and

FNpr

|FN|
, while the neural network is trained only on 3 inputs T Ppr,FPpr,FNpr

in NeuroIoU−3. The results are given for 15000 iterations. From the figure, we notice that
NeuroIoU − 6 is better than NeuroIoU − 3 (we observed the same trend for other datasets
too), while both outperform cross-entropy loss.

5 Conclusions
In this work, we have demonstrated a new approach for learning the loss function for seman-
tic segmentation using deep neural network models. Our experimental results demonstrate
that the proposed loss function can be flexibly applied to any network. We demonstrated the
effectiveness of the proposed method on state-of-the-art deep semantic segmentation net-
work models on two popular datasets, and the results showed consistent improvement on all
datasets across the models. Qualitatively, we obtained improved segmentation quality, in par-
ticular on small objects. While validated on semantic segmentation, the proposed approach
can be used for other tasks that are evaluated using non-differentiable measures.
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