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Abstract

Accurate facial attribute interpretation is a challenging task in real life due to large
head poses, occlusion and illumination variations. This work proposes a general-to-
specific deep convolutional network architecture for predicting multiple attributes from a
single image in the wild. First, we model the interdependencies of local facial regions by
joint learning of all the attributes. Second, task-aware learning is established to explore
the disparity regarding each attribute. Finally, an attribute-aware face cropping scheme is
proposed to extract more discriminative features from where a certain attribute naturally
shows up. The proposed general-to-specific learning strategy ensures both robustness and
performance of our model. Extensive experiments on the CelebA and LFWA datasets
demonstrate the effectiveness of our architecture and the superiority to state-of-the-art
alternatives.

1 Introduction
The problem of analyzing facial attributes (e.g., gender, hairstyle, smile) using computer vi-
sion techniques attracts extensive research interest due to its potential real-life applications
in surveillance[18], entertainment[12], medical treatment[7], etc. Accurate facial attribute
detection also benefits a number of facial analysis tasks, such as face verification[10, 16],
retrieval[9, 11] and alignment[24]. However, predicting facial attributes in real-world sce-
narios still remains challenging because faces vary dramatically under different poses, occlu-
sions, and lighting conditions. For example, eyes are hardly visible when the identity wears
glasses, which leads to the intense difficulty of eye shape analysis.

Existing method addressing attribute recognition can be generally categorized into glob-
al[13, 21] and local[1, 2, 10, 14, 23] ones. Global methods usually extract features from
the entire face and do not require localization of landmarks or object parts. They assume
that different attributes are interdependent and each face part should be equally considered.
All attributes are treated equivalently and no customized processing is conducted. On the
contrary, local methods treat each attribute independently by first detecting face parts and
applying feature descriptors to each part for training a classifier, where face alignment is
of vital importance to the final result. Local methods generally outperform the global ones
when reliable preprocessing is available as distinct spatial features associated to each at-
tribute is captured and less extra noise information is introduced. However, they may fail
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under unconstrained condition where accurate face localization and alignment are difficult
to obtain and faces are partially visible for many reasons. Considering the pros and cons of
two methods mentioned before, our work integrates both methods by extracting facial rep-
resentations from the holistic region of the aligned face and emphasizing on the functional
parts in which a certain attribute naturally shows up using different cropping schemes.

Motivated by the recent success of deep convolutional neural networks (CNNs) on fa-
cial attribute analysis [6, 13, 16, 19], we propose a CNN based approach for facial attribute
prediction under unconstrained conditions. By introducing the general-to-specific learning
strategy, we implicitly discover the correlations of all the attributes considered while specif-
ically focus on the distinctions. The key contributions of this paper are:

1. Traditionally, all attributes are disconnected and treated equally [9, 13], we overcome
this limitation by proposing a general-to-specific learning framework that extracts both in-
terconnections and disparities to improve facial attribute detection under uncontrolled con-
ditions. Through multi-task learning, our model yields higher robustness to challenging
scenarios by learning interdependencies of different attributes. Meanwhile, distinct infor-
mation are captured in separate learning using task-aware face cropping and used to ensure
exceptional performance.

2. We show superior attribute prediction performance over the state-of-the-art methods[6,
9, 13, 16, 19] on the biggest public benchmark dataset for facial attribute analysis, i.e., Cele-
bA dataset[13]. We also outperform all the other methods which do not introduce external
datasets on LFWA[5, 13] dataset.

The rest of this paper is organized as follows. The details of the proposed general-
to-specific attribute detection architecture are described in Section 2. Experiments on two
datasets are reported in Section 3. Section 4 concludes the paper.

2 Proposed Approach

Figure 1: Overview of the training procedure. The learning incorporates three steps and
features are refined step-to-step. Note that only Step 3 is required for attribute detection of a
new testing image.

Fig. 1 shows the framework of the proposed method, which consists of three continuous
parts: the joint learning in Step 1, the task-aware learning in Step 2 and the attribute-aware
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face cropping in Step 3. In Step 1, the face images are cropped and fed into the VGG-
16 network for jointly learning all attributes, and the network weights are initialized with
Model A (the pre-trained VGG-Face weight model). When Step 1 is finished, we can obtain
the Model B, which is then used for initializing the weights of 40 separate networks in Step
2 to learn each attribute by optimizing the corresponding binary classification problem. In
Step 3, the face images are distinctively cropped according to the physiological property of
each attribute. Networks are initialized with the weights (Model C) obtained in Step 2 and
trained using the cropped images. The attribute classification result of the networks in Step
3 is considered as the final output.

2.1 Network Architecture
Our CNN architecture follows the design of VGG-16[17], which was successfully used in
image classification[17], face recognition[15] and so on. The network consists of 13 convo-
lutional layers, 5 pooling layers and 3 fully connected layers.All hidden layers are equipped
with the rectification (ReLU) non-linearity[8]. The final output of the network is fed to a
soft-max classifier to produce class probabilities. All the convolutional layers and the first
two fully connected layers are exactly the same as the corresponding layers in[17]. How-
ever, the last fully connected layer (fc8) has only two neurons as we aim to make a binary
judgement on the presence of a given attribute. Specifically, the network in Step 1 has 80
outputs (two for each attribute) while those in Step 2 and Step 3 have only two. The input
to the network is an RGB face image cropped and scaled to 224×224 pixels. The network
is initialized with the VGG-Face model[15] (refer to the Weight A in Fig. 1), which was
pre-trained on a large-scale face recognition dataset created by [15]. We train the network
using cross-entropy loss. Specifically, Section 3.1 provides further details of the training
procedure.

2.2 General to Specific Learning
Considering the inherent physiological structure of human face, we believe that all the at-
tributes to be detected yield shared interconnections as well as unique disparities. There-
fore, it is straightforward to utilize the potent correlations for model robustness through joint
learning and boost individual attribute detection performance via separate learning.

Multi-task Joint Learning. Multi-task learning seeks to explore the related tasks on the
same data and maximize the overall accuracy over all tasks. By joint learning, we can discov-
er the underlying interrelationship among these tasks, which is unobtainable from any single
task. When large face variations are present, the separate models for each attribute become
unreliable due to feature corruption at the corresponding face regions. On the other hand,
facial attribute are highly connected and the presence of some attributes implies the presence
or absence of others. For instance, there is a great possibility that a person with mustache is
male, whereas the presence of lipstick is hardly possible at the meantime. Therefore, joint
learning of all the attributes not only benefits feature extraction for the detection of each
attribute, but also contributes to the exploration of implicit correlations among them (either
positive or negative). Features derived from various attributes have higher robustness and
generalization in that they incorporate general information which ameliorates the detection
of each attribute.

Therefore, a loss function, which mixes all attribute predictions and performs simulta-
neous optimization, should be designed. Given N training images {xn}N

n=1 and their corre-
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sponding binary labels of T attributes {yt
n}

N,T
n=1,t=1, the objective of learning the T tasks is to

minimize the overall loss as:

LJ(W ) =
1
N

N

∑
n=1

T

∑
t=1

Lt
n(W ), (1)

where Lt
n(W ) is the cross-entropy loss of the t-th attribute on the n-th image and is param-

eterized by a weight matrix W . Here, we treat each attribute equally. The individual loss is
formulated as:

Lt
n(W ) =−yt

n log pt
n− (1− yt

n) log(1− pt
n), (2)

here pt
n denotes the probability of the presence of the t-th attribute on the n-th image.

Task-aware Learning. Despite of the high universality of the feature obtained from joint
learning, personalized learning is still required for exploring the distinction of each attribute.
In the previous section, we treat all attributes equally (refer to Eq.1). However, this is not
reasonable considering the dominance of some attributes. For instance, male influences the
presence of various gender-related attributes and should be given more emphasis. To address
this problem, it is necessary to apply task-aware learning to focus on the target attribute and
remove the adverse effect resulting from others.

In this step, individual networks for each attribute are trained using the loss given in Eq.2.
Specifically, we fine-tune the networks using the network weight obtained in Step 1 (Weight
B) for feature inheritance, and the same image data (see Fig. 2(a)) is used as input.

Attribute-aware Face Cropping. The aforementioned training procedures were all con-
ducted using the same cropping scheme (see Fig. 2(a)), which is not tailored for each at-
tribute. However, facial attributes generally originate from corresponding facial organs or
parts. Irrelevant face regions may lead to feature disturbance more or less. Hence, applying
spatial attention can wipe out the adverse impact posed by trivial face areas and encourage
the networks to extract more customized information accordingly. For example, we can eas-
ily distinguish smile from lower face and forehead is thus redundant whereas the entire face
region is demanded for gender estimation. To this end, we propose using different cropping
schemes to eliminate spatial irrelevancy and emphasize on the corresponding face regions
by changing margin M and offset O.

Given the detected rectangle face region {X ,Y,W,H} after alignment using MTCNN[22],
where (X ,Y ) is the coordinate of the top left corner and W , H denote the weight and height
of the face. Suppose that H is greater than W , the personalized cropped face determined by
M and O can be formulated as:

{X− (M+1)×H−W
2

,Y+
(2×O−M)×H

2
,(1+M)×H,(1+M)×H}. (3)

By varying M and O, we can obtain face regions with specified emphasis. In this work,
altogether 8 types of cropping schemes are selected as shown in Fig. 2.

Similar to Step 2, each attibute in Step 3 is leared by fine-tuning the network with weight
obtained in the previous step (Weight Ci, i = 1,2, ...,40). Once Step 3 is done, the entire
learning process finishes and we can obtain the final network weights that can be used for
classifying attributes of new face images.
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Figure 2: Examples of all the task-aware face cropping schemes used. M and O for each
scheme are: (a) 0, 0, (b) 0, 0.1, (c) 0.1, 0, (d) 0.1, -0.1, (e) 0.1, 0.5, (f) -0.1, 0, (g) -0.1, -0.1,
(h) -0.1, 0.1.

3 Experiments

We evaluate our proposed approach on two datasets (i.e., CelebA and LFWA) and compare
with state-of-the-art architectures. A workstation with Intel i7-7700K 4.2G, 32G memory
and NVIDIA GTX1080 Ti is used for the experiments.

CelebA. As the largest facial attribute dataset available, the CelebA dataset consists of
over 200k images from approximately 10k celebrities. Following the standard evaluation
protocol, the first 160k images are used for training, 20k images for validation and the re-
maining 20k for testing. Each image is annotated with binary labels of 40 face attributes, as
well as 5 key points (both eyes, the mouth corners and the nose tip). In addition to the orig-
inal images, CelebA provides a set of pre-cropped images with alignment. The raw images
are used for our experiments.

LFWA. LFWA is created based on the LFW face dataset[5]. It contains a total of 13,143
images of 5,749 identities with training and testing splits which divide the dataset into two
roughly equal partitions. Each image is labeled with the same 40 attributes as in CelebA.

3.1 Implementation Details

The publicly available face detector MTCNN[22] is used for face detection and landmark
localization. Face images are first rotated according to the eye coordinates. When the detec-
tion fails, we discard the image if it is in training or validation set, but use the provided face
regions and landmarks if it is a testing image. Facial ROI is then obtained by attribute-aware
face cropping and scaled to 240×240. A 224×224 random patch as well as its horizontal
reflection is extracted for network training. The 224×224 image is directly used for testing
without argumentation, which fastens the running time considerably at the cost of classifica-
tion accuracy compared with [8] and [17]. Note that only Step 3 is required during testing.
In opposition to [16] that uses aligned images provided by CelebA, we directly use the raw
face images, which are much more challenging and meaningful.

The Caffe deep learning toolbox [23] is used for the implementation of our network. We
employ the stochastic gradient descent to train the networks with a batch size of 128, mo-
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mentum of 0.9, and weight decay of 0.0005. The base learning rate is 0.0001 and decreased
by inverse decay with γ = 0.0001 and power = 0.5. According to [20], bottom layers con-
tain more generic features and more feature transition should be made by top layers when
fine-tuning. Hence, we set lr_mult as 1 on all convolutional layers while we set it as 3, 5 and
8 on the last three fully connected layers. We run the trainings for a total of 120k and 40k
iterations in Step 1 and Step 2, 3 respectively.

3.2 Effectiveness of the Proposed Framework

We evaluate the effectiveness of the proposed general-to-specific learning strategy shown in
Fig. 1 by combining different learning steps, and the results of all of possible combinations
are reported in Table 1. The last row represents the proposed learning strategy which in-
volves all three steps. It can be observed that the proposed learning scheme works well on
both datasets. Joint learning (Step 1) alone achieves decent performance by learning corre-
lations which apply to each attribute. Taking advantage of explicit and implicit relationships
among attributes allows for better feature representation that can contribute to final attribute
classification. Step 2 and 3 can further enhance feature representation ability by extract-
ing distinctive information. If we combine either two steps, the model performance can be
promoted. Applying the complete learning process yields the highest attribute prediction ac-
curacies. It is notable that our method demonstrates higher performance improvement while
lower average accuracy on LFWA than on CelebA. This is likely due to the lack of train-
ing data in LFWA and thus overfitting may happen when the model is trained on a single
task. Hence, our method is particularly suitable for small-scale dataset. Comparing different
learning methods, we can conclude that either stage is indispensable for effective attribute
prediction.

Table 1: Comparison of different training stages on average attribute prediction accuracy.
Method CelebA(%) LFWA(%)

Step 1 90.6 84.9
Step 2 90.9 83.2
Step 3 91.2 85.3

Step 1,2 91.1 85.2
Step 1,3 91.4 86.6
Step 2,3 91.2 86.3

Step 1,2,3 91.6 87.1

3.3 Comparison with Benchmark Methods

Competitors. In this section, we compare our method with state-of-the-art attribute predic-
tion ones in terms of classification accuracy on the abovementioned two datasets. FaceTrace-
r[9] extracts hand-crafted features (HOG and color histogram) of different functional face re-
gions to train an SVM classifier for attribute classification. LNets+ANet[13] cascades two
localization networks (LNets) and an attribute prediction network (ANet) to automatically
detect the face region and learn the facial attributes from the detected part accordingly. PAN-
DA [23] leverages CNNs to extract attribute features related to body pose. LNets+ANet [12]
uses a total of three networks to automatically detect the face region and learn the facial
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attributes from the detected part accordingly. Moon[16] applies a mixed objective optimiza-
tion network to learn all attributes. Walk-and-Learn[19] collects an egocentric video dataset
with weather and location context to facilitate attribute learning. AFFACT[4] proposes an
alignment-free data augmentation technique using an ensemble of three ResNets for attribute
classification. Kalayeh et al. [6] employ semantic segmentation to improve facial attribute
prediction and achieve the state-of-the-art performance on both datasets.

Table 2: Performance comparison of attribute detection with state-of-the-art methods on
CelebA.

FaceTracer[9] LNets+ANet[13] Moon[16] Walk-and-
Learn[19]

AFFACT[4] Kalayeh
et al. [6]

Ours

5ClockShadow 85 91 94 84 94.8 94.5 94.7
Arch. Eyebrows 76 79 82.3 87 83.9 83.1 83.6

Attractive 78 81 81.7 84 82.9 82.3 83.2
Bags Under Eyes 76 79 84.9 87 85.2 85.4 85.5

Bald 89 98 98.8 92 99.1 98.8 99.0
Bangs 88 95 95.8 96 96.1 95.5 96.2

Big Lips 64 68 71.5 78 72.5 71.7 71.5
Big Nose 74 78 84 91 84.4 84.5 85.0

Black Hair 70 88 89.4 84 90.5 90.1 90.2
Blond Hair 80 95 95.9 92 96.2 95.8 96.1

Blurry 81 84 95.7 91 96.0 95.7 96.4
Brown Hair 60 80 89.4 81 88.5 89.2 89.0

Bushy Eyebrows 80 90 92.6 93 92.3 92.4 93.0
Chubby 86 91 95.4 89 95.7 95.6 95.9

Double Chin 88 92 96.3 93 96.4 96.3 96.4
Eyeglasses 98 99 99.5 97 99.6 99.3 99.7

Goatee 93 95 97 92 97.5 97.3 97.6
Gray Hair 90 97 98.1 95 98.3 98.2 98.2

Heavy Makeup 85 90 91 96 92.0 90.8 91.8
High Cheekbones 84 87 87 95 87.6 87.1 88.1

Male 91 98 98.1 96 98.2 97.7 98.8
Mouth S. O. 87 92 93.5 97 93.8 92.2 94.1

Mustache 91 95 96.8 90 97.0 97.0 96.9
Narrow Eyes 82 81 86.5 79 87.6 86.7 87.7

No Beard 90 95 95.6 90 96.2 95.7 96.2
Oval Face 64 66 75.7 79 76.6 77.8 74.8
Pale Skin 83 91 97 85 97.1 97.1 97.1

Pointy Nose 68 72 76.5 77 77.1 76.5 77.8
Receding Hairline 76 89 93.6 84 93.7 93.3 93.9

Rosy Cheeks 84 90 94.8 96 95.2 94.8 95.1
Sideburns 94 96 97.6 92 97.8 97.7 98.0
Smiling 89 92 92.6 98 92.8 91.9 93.3

Straight Hair 63 73 82.3 75 85.0 83.6 83.8
Wavy Hair 73 80 82.5 85 85.7 84.8 84.3

Wearing Earrings 73 82 89.6 91 91.0 90 90.5
Wearing Hat 89 99 99 96 99.1 98.8 99.2

Wearing Lipstick 89 93 93.9 92 93.7 93.6 94.3
Wearing Necklace 68 71 87 77 88.3 88.7 89.3
Wearing Necktie 86 93 96.6 84 96.9 97.1 97.3

Young 80 87 88.1 86 88.9 87.8 88.9
Average 81.1 87.3 90.9 88.7 91.5 91.2 91.6

Evaluation on CelebA. As shown in Table 2, our method attains the highest average
accuracy of 91.6% on CelebA, significantly improving on FaceTracer[9] by 13%. Despite
the various challenges caused by unconstrained conditions, we still obtain remarkable perfor-
mance and accurately classify over 99% of the images on some attributes, i.e., eyeglasses and
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wearing hats. All compared methods except the method in [16] disconnect face attributes and
learn each one independently, which leads to the loss of beneficial interrelatedness. Moon
[16]incorporates multi-task learning, however, the further task-aware learning is ignored. As
for the LFWA dataset, our approach outperforms all compared ones that do not rely on exter-
nal datasets. It should be noted that the method in [6] uses a semantic dataset for extracting
prior information, while we still outperform them on 33 attributes and yield higher average
accuracies.

Table 3: Performance comparison of attribute detection with state-of-the-art methods on
LFWA.

FaceTracer[9] PANDA[23] LNets+ANet[13] Walk-and-
Learn[19]

Kalayeh et
al. [6]

Ours

5ClockShadow 70 84 84 76 83.7 78.4
Arch. Eyebrows 67 79 82 82 80.9 83.9

Attractive 71 81 83 82 85.1 80.4
Bags Under Eyes 65 80 83 91 92.8 84.9

Bald 77 84 88 82 91.8 92.5
Bangs 72 84 88 93 80.2 91.5

Big Lips 68 73 75 75 84.7 80.6
Big Nose 73 79 81 92 92.8 84.9

Black Hair 76 87 90 93 97.7 91.9
Blond Hair 88 94 97 97 87.5 97.5

Blurry 73 74 74 86 82.7 87.3
Brown Hair 62 74 77 83 85.8 80.9

Bushy Eyebrows 67 79 82 78 77.7 87
Chubby 67 69 73 79 81.9 76.6

Double Chin 70 75 78 81 92.8 83.3
Eyeglasses 90 89 95 94 84.1 92.6

Goatee 69 75 78 80 89.2 84.5
Gray Hair 78 81 84 91 95.9 88.8

Heavy Makeup 88 93 95 96 89.5 96.2
High Cheekbones 77 86 88 96 94.4 89.7

Male 84 92 94 93 94.4 96.1
Mouth S. O. 77 78 82 94 84.3 83.7

Mustache 83 87 92 83 94 94.3
Narrow Eyes 73 73 81 79 84.7 85.1

No Beard 69 75 79 75 83.6 82
Oval Face 66 72 74 84 77.9 79.5
Pale Skin 70 84 84 87 91.1 89.1

Pointy Nose 74 76 80 93 85 85.4
Receding Hairline 63 84 85 86 86.6 86.7

Rosy Cheeks 70 73 78 81 86.3 85.9
Sideburns 71 76 77 77 83.2 83.8
Smiling 78 89 91 97 92.5 92.5

Straight Hair 67 73 76 76 81.6 81.9
Wavy Hair 62 75 76 89 81.2 81.6

Wearing Earrings 88 92 94 96 95.2 95.1
Wearing Hat 75 82 88 86 91.1 90.6

Wearing Lipstick 87 93 95 97 95.2 95.4
Wearing Necklace 81 86 88 95 90.1 90.2
Wearing Necktie 71 79 79 80 83.9 83.3

Young 80 82 86 89 86.9 86.7
Average 73.9 81 83.9 86.6 87.1 87.1

Evaluation on LFWA. Table 3 shows the results for the LFWA dataset. We can see
that our method achieves comparable average accuracy of 87.1% to Kalayeh et al. [6] and
outperforms all compared ones that do not rely on external datasets. Considering that LFWA
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is a small-scale dataset, the effect of introducing external datasets for prior information be-
comes more obvious. Hence, our method is much more practical and efficient in real-life
applications as it does not require any additional data or processing. The effectiveness of the
proposed general-to-specific learning is fully verified again by comparing to previous works.
As mentioned before, all methods present inferior performance on LFWA than on CelebA,
which is partly due to the model overfitting.

4 CONCLUSION
This paper proposed a deep learning based framework for robust facial attribute prediction
in the wild. We present a general-to-specific learning strategy composed of three stages to
obtain step-to-step optimization. Different from previous approaches, our method leverages
attribute correlations to retain high robustness and generalizability via multi-task joint lean-
ing. Besides, the proposed task-aware learning ensures the distinction of each attribute and
attribute-aware cropping scheme minimizes adverse information from irrelevant face parts.
We evaluate our approach on CelebA and LFWA datasets and achieve state-of-the-art perfor-
mance. For future work we plan to introduce attention model [3] for automatically localizing
discriminative regions.
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