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Abstract

In this paper, we propose a novel deep end-to-end co-saliency detection approach
to extract common salient objects from images group. The existing approaches rely
heavily on manually designed metrics to characterize co-saliency. However, these meth-
ods are so subjective and not flexible enough that leads to poor generalization ability.
Furthermore, most approaches separate the process of single image features and group
images features extraction, which ignore the correlation between these two features that
can promote the model performance. The proposed approach solves these two problems
by multistage representation to extract features based on high-spatial resolution CNN.
In addition, we utilize the modified CAE to explore the learnable consistency. Finally,
the intra-image contrast and the inter-images consistency are fused to generate the final
co-saliency maps automatically among group images by multistage learning. Experi-
ment results demonstrate the effectiveness and superiority of our approach beyond the
state-of-the-art methods.
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1 Introduction
Unlike traditional saliency detection approaches [15, 22, 29, 43], co-saliency can explore the
synergetic relationship from the given images group containing common attractive events
to ameliorate characterizing co-saliency regions. Human visual system can locate com-
mon targets automatically among group images with same object and similar background
[42]. Thus, co-saliency detection is an interesting research topic in computer vision commu-
nity, which mimics human visual characteristics to detect the common foreground regions.
Co-saliency detection has be applied in these fields including co-segmentation [7, 14, 33],
weakly supervised learning[31, 38], video saliency detection [12, 23, 25], common pattern
discovery [32, 37], etc. Besides, combining the depth information from RGBD images is a
new co-salient study [10, 11].

Co-saliency detection is still a challenging research topic in computer vision because
complicated background, object shelter, angle of observation and light condition changes
could increase the difficulty of object detection. In order to detect co-salient events accu-
rately, two issues should be concerned: 1) how to exact effective intra-image features and
global consistency in a given images group; 2) how to apply the intra-image salient informa-
tion and the global consistency information at group level to generate the final co-saliency
maps. For the first issue, the intra image feature should reflect the unique characteristics
of image events, and the consistency should reflect the correspondence relationship among
images in a same group. For the second issue, a certain relationship between images with
same foreground and common background should be built. This relationship can utilize the
complementary information to remove the ambiguity of objects from the saliency regions
in multiple images. Therefore, we should construct the global association between multiple
images to extract consistency information for augmenting salient regions.

For accomplishing co-saliency detection among multiple images, some approaches have
been proposed with different viewpoints in recent years [3, 27]. Among them, some of
these methods rely on manual design metrics to extrct feature [13, 21]. However, these
methods are subjective and dependent on researcher’s prior knowledge, and thus they would
loss some important information inevitably that can summarize the co-salient features better.
Apart from that, they have focused on small and simple detection datasets [2, 20] with using
low-level feature and fixed hand-disigned consistency computing mode. Therefore, these
generalization ability needs to be enhanced. Some approaches [34, 41] focused on learning
the co-saliency patterns. These methods extract high-level semantic features without detect
the synergism between semantic features and global consistency [39, 41]. The inter images
features of this method [34] is represented the integration of semantic features. However,
the association between objects in a group is complex and abstract which can improve the
results. So we proposed a new representation about the interaction relation among images in
current group.

In this paper, we proposed a deep framework to discover the salient and interaction in-
formation at group level for co-saliency detection. Our framework focuses on more effective
and robust feature representation to extract the intra-image contrast between salient objects
and background and discover the relationship between the images in the same group simulta-
neously. Firstly, in the wake of increasing depth of the neural network layer, the intra-image
contrast would be over dependent on the last layer, which would cause overfitting and poor
transfer ability. To solve this problem, our work utilize the multistage features and pixel
level detail information that be preserved at the same time. Thus, the feature representation
consists of the image global information and the local detail information, which can make
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Figure 1: The framework of the proposed deep multistage learning method for co-saliency
detection. Our method has three parts: 1) group inputs feature representation by multistage
CNN, which can keep high-spatial resolution in deeper layer; 2) discover consistency and
intra-image contrast respectively; and 3) co-saliency propagation via multistage learning to
generate salieny maps.

the network more comprehensive and robust to improve the results in the end. To explore the
inter images consistency, our work based on convolutional auto encoder (CAE) for group-
wise interaction exaction can filter redundant and irrelevant information, and concurrently
reserve the most useful features.

The main contributions of this work are summarized as follows: (1) We developed a deep
co-saliency detection approach based on multi-scale semantics of single image and consis-
tency of group images, which refines the process for feature endoding and co-saliency decod-
ing. The approach incorporates the pyramidal hierarchical dialited convolution component
to retain both the global features and detail information of group input images. Moreover,
our method increases the receptive field in deeper layer and reduces the noise error during
deconvolution. (2) For optimizing the learning process of intra-image contrast and inter-
images consistency in conjunction, we set up a novel and expanded CAE formulation for
co-saliency detecion, which takes advantage of the denosing capability from CAE to learn
more robust expressions of group input and interaction relationships between group images.
(3) We proposed a general and novel scheme via integrating the group images feature rep-
resentation fine-grained refined stage-by-stage and the intrinsic relationship of intra-group
images, which can achieve fantastical co-saliency maps. (4) We validated our method on
three popular benchmarks. The experimental results show the superiority of our method to
the state-of-the-art methods.

2 Related Work

The early existing methods were developed from image pairs. Jacobs et al. firstly defined co-
saliency as the image saliency in the context of other images [18]. However, this definition
has limitations that must use the same lens to get the similar image pairs for detecting. This
limitation restricts the application of co-saliency without universality. Afterwords, Li et al.
proposed a linear combination of the single-image saliency map and the multi-image saliency
map to generate co-saliency map [20]. Furthermore, they established the first public dataset
for co-saliency. Then, Chang et al. established a unsupervised model via MRF optimization
algorithm that has an energy function [5]. To solve the problem of co-saliency detection,
Chen et al. presented sparse distribution representation without correspondence matching
to enhance the proformance [6]. To expand the co-saliency detection problem from two
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Figure 2: (a) The illustration of the multistage CNN backbone (dotted line represents only
using pool layer in the first two phases); (b) The paradigm of the conversion of group features
shape for self-adapive extract the fusion of consistency and intra-image contrast.

images to multiple images, Li et al. designed three types of visual descriptors, and used
minimum spanning tree to determine the image matching order [21]. Fu et al. proposed an
approach based cluster for generate the final co-saliency maps by three visual attention cues
[13]. These approaches need a lot of prior knowledge and rely on low-level features, such as
color, texture, edge. They were designed share a certain pixel-level consistency in bottom-
up pathway and without object-level feature representation. Consequently, It is easily falling
into local optimum rather than global optimum results.

Different from the bottom-up methods, some methods utilize multiple saliency submaps
predicted by existing methods and fuse them to integrate the co-saliency maps. Huang et al.
constructed a multiscale superpixel pyramid and utilized joint low-rank analysis to obtain
an adaptively fused saliency map [17]. Cao et al. proposed to use rank-one constraint to
combine the saliency maps [3]. They modified their model by utilizing low rank matrix
approximation and low rank matrix recovery to formulate the general consistency criterion
[4]. These methods weight these saliency submaps cues as mid-level features, which are
based on existing algorithms and fusion to discover co-saliency cues. Recently, Zhang et
al. applied CNN to extract the high-level semantic features and disigned a framework with
self-paced multiple-instance learning [40]. In addition, Zhang et al. proposed another way
which use domain adaptive CNN with transfer RBM layers [39]. Rather than estimating the
intra image information and the consistency respectively, Wei et al. inferred the co-salient
regions by a framework based FCN [34]. As can be seen from the above part, although the
existing works completed the co-saliency detection task, there still existed some debatable
parts need discussed and improved.

Furthermore, this paper proposes the approach to detect co-salient objects based on CNN
that can balance the local and global features and has well robustness via the modified CAE
and multistage learning. This approach aims at expanding spacings among classes and re-
ducing intra-class spacings. Thus, we combine different stages parameters to enhance per-
formance by the relevance among stages.

3 Methodology
Our co-saliency detection method can be summarized as a high-level overview by Figure 1.
This scheme is an end to end deep neural network based on saliency block and CAE. As
part in saliency block, the dilated convolutional layers are skip connected with each one to
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observe features. These features can describe the images with various-level representation to
be reused in the next process. The modified CAE part is utilized to discover the inter-images
features or consistency. Modeling these features, the final classifier predicts the more precise
co-saliency maps group.

Specially, we develop the following modifications to the original structure. On the one
side, instead of the traditional techniques like Fully Convolutional Networks (FCN), our
approach has five stages that observe multiple semantic feature around dilated block in every
saliency block. We combine not only different stage features, but also loss function from
each stage. On the other side, we are the first to discover the coordination relation between
images by designing this special modified CAE. We describe the detailed improvements of
our network.

3.1 Features Representation via High-spatial Resolution CNN
We propose a deep multistage CNN that can retain the high spatial resolution in deeper layers
to extract salient object feature for each image. We were inspired by DenseNet proposed by
Huang et al. due to its high efficiency [16]. By highly reusing features, we can achieve better
convergence while reducing the amount of parameters and calculations.
Intra-image Contrast

In co-saliency detection task, due to objects have variant scales, designing an effective
and robust CNN that can adapt different objects scales is a great challenge. In order to solve
this problem, we apply saliency blocks to extract single image features. Although recent
feature pyramid networks [26] can work on multiple scales, due to it relys on downsampling
layer or stride to expand the receptive field for detecting the large targets at the expense of
spatial resolution. In particular, different from the traditional feature pyramid algorithm, we
maintain not only the high resolution feature maps, but also large receptive field by employ-
ing a dilated encoder-decoder structure for images representation. As shown in Figure 2(a),
a saliency block has two branches. We only use the pooling layer in the first two stages
to change the feature map scale, which means the final feature map can better balance the
image global information and local details. At each stage, the current stage concatenates the
previous stages feature maps, which can maintain both semantics and details. Finally, the
output of stage5 is regarded as the intra-image contrast.

3.2 Channel-wise Interaction Representation
We propose a channel-wise expanded CAE to accelerate co-saliency detection effect simul-
taneously with avoiding the error caused by small batch size. The channel-wise expanded
CAE can use convolutional operation to calculate the sum of nonlinear superposition of sig-
nals. In the encoding and decoding processing, a group images feature can be remodeled and
minimum the signal reconfiguration error. Unlike the previous CAE, we did some extensions
and improvements for learning the consistency of group images. As shown in Figure 3, we
proposed a new fusion strategy about group images consistency, which can convey well col-
laboration or synergistic feature and common attributes between images in a group input.
By building this modified structure, the parameters of the method can be better optimized
without being affected by limited data.
Inter-images Consistency

we first describe a general formulation of the inter-images feature representation, and
then present our approach improvements in this formulation. Generally speaking, the con-
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Figure 3: The modified CAE for exploring the joint aggregation.

sistency can be defined as in learning method:

xco = fcosal(X ,θcae) (1)

where xco is the consistency which represent the interaction relationships of inter-images in
the current group and the X is the feature maps group represented by Sect. 3.1. fcosal is
the modified CAE process in Figure 3. This bottleneck structure is able to keep the most
kernel and joint information from images group, which filter out the redundant and noise
information.
Channel-wise Representation

A group image features are constructed to represent the consistency by our redisigned
CAE structure. As show in Figure 2(b), we have some conversion on group features di-
mension to enable the intra-group consistency to be learned. Specifically, the group features
input tensor is in (G,H,W,1) order, then we reshape it to (1,H,W,G) order for constructing
the intra-group consistency by CAE, where G is the input group images number, H and W
are the images height and width, the feature channel is 1. More importantly, we present
normalization in this tensor order. It can be preformed as the formula next:

x̂co i =
xcoi−µi√
σ2

i + ε

(2)

where xco i is the intra-group consistency at index i, µ and σ are the mean and variance along
the (1,H,W ) axes within each image. This modified structure can increase the robustness
and generalization ability and avoid overfitting.

3.3 Co-saliency Propagation via Multistage Learning
By sharing representation among group images, we can generalize a better solution upon
co-saliency detection task. Typically, we pay attention to a certain benchmark for train-
ing model and fine tuning network. Multistage learning is viewed as a form of interactive
transfer, which introduces an interactive relation to increase model. Furthermore, the single
stage can’t utilize correlation and attributes between different stages to improve precision. In
the processing of training, the final results too rely on the last layer parameters, which could
leads to overfitting. In contrast to single stage learning, we optimize more than one loss func-
tion. By sharing hidden layers parameters, our method increases performance effectively due
to implicit data argumentation and concentrating on key features. In addition, although the
batch data flow back-propagation incorporate the similarity of intra-group images and the
discrepancy of inter-group images, the network also could gain by further enhance. In this
section, we develop an end-to-end framework to detect co-salient objects within groups,
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Figure 4: Visual comparsion of co-saliency detection from different groups on three bench-
mark. The pink block, blue block, and the green block are from the Cosal2015 dataset, the
iCoseg dataset, and the MSRC dataset. Apparently, our approach has a well performance.

where the single features and the joint feature from the current group are refined with mul-
tistage learning. Specifically, we first minimize a fusion lost function to optimize the deep
neural network. Let X = xm,m = 1, ...,M and G = gm,m = 1, ...,M denote the training im-
ages group and saliency maps group. The function is defined as:

L f inal(ϑ
(n),θinter,θcosal) =

M

∑
m=1

N

∑
n=1

l f use(gm|xm;ϑ
(n),θinter,θcosal) (3)

where ϑ (n) is the parameters of the nth intra-image feature extraction stage and l f use de-
notes the sum of the pixl-level mean absolute errors loss, the weighted cross-entropy loss [30]
and the dice loss [27]. The θinter and θcosal are the parameters of the consistency structure
and layers which flexibly merge the intra-image features and the inter-images consistency.
By utilizing the relevance among each stage, our method can enlarge the inter-class distances
and decrease intra-class distances.

4 Experiments and Results

4.1 Experiment Setup

Datasets
We evaluate the performance of our method on three popular benchmark datasets that are

publicly avaiable: iCoseg [2], MSRC [35] and Cosal2015 [41]. The iCoseg dataset contains
38 image groups of totally 643 images and it is a challenging dataset to evaluate co-saliency
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Figure 5: Comparsion results on the three benchmark datasets. From left to right, the PR
curve of iCoseg, MSRC, and Cosal2015.

detection techniques or methods because the images collected by this dataset contain com-
plex backgrounds and multiple co-salient objects. MSRC is another dataset which is widely
used to evaluate the co-saliency detection approaches. The MSRC consists of 8 groups of
totally 240 images and it contains bicycle and other objects which are difficult to detection
and segmentation. We did’t use the grass images because of these images have no co-salient
objects. A newly published and highly cluttered dataset Cosal2015 has 50 groups and totally
2015 images which are collected from ILSVRC2014 detection benchmark and the YouTube
video set. These datasets all have pixel-wise ground-truth labels and hand annotations. Com-
pared to the previous datasets, the Cosal2015 is bigger and more challenging for evaluating
co-saliency detection algorithm.
Evaluation Metrics

We evaluate the performance of existing methods and our method in the experiments via
comparing ground-truth (G) with the co-saliency map (C). We utilize five criterias for qual-
itative and quantitative experiments, including the Precision score, Recall score, Precision-
Recall (PR) curve, F-measure, and average precision (AP) score. In the field of co-saliency
detection, researchers always first segment co-saliency maps via 256 thresholds from 0 to
255 [24, 34, 41]. The Precision and Recall (PR) curve is drawn by using the precision rate
and the recall rate at 256 thresholds, the higher the better. Moreover, the average precision
(AP) score is the area under the PR curve. Specifically, the precision and the recall are
defined as:

Precision =
sum(C,G)

sum(C)
, Recall =

sum(C,G)

sum(G)
(4)

where sum(C,G) is the sum of corresponding pixels multiply, sum(C) is the sum of the
co-saliency map all pixels values, sum(G) is the sum of the ground-truth all pixels values.

In the experiments, the F-measure based on the precision and recall is defined as:

F-measure =
(1+β 2) ·Precision ·Recall

β 2 ·Precision+Recall
(5)

where β 2 is always set to 0.3 suggested by [34, 40, 41] and using an adaptive threshold was
proposed in [19].
Implementation Details

In the experiment, our co-saliency approach is implemented by using TensorFlow tool-
box. Our network is initialized by a pretrained version that use the single image to predict
saliency map. In addition, we transfer the model for exploring inter-images interaction rela-
tion and enhancing the performance by fine-tuning. Moreover, our training dataset includes
MSRA 10k [9], THUR-15K [8], and DUT-OMRON [36]. We resized all the images to
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Figure 6: Quantitative comparisons (AP score, Precision, Recall and F-measure) between the
proposed method and the state-of-the-art methods on three benchmark datasets. From left to
right, the metric from iCoseg, MSRC, and Cosal2015. Notice that the method GDCD [34]
has no open source codes or map results, we have to quote their AP score (only providing
the MSRC dataset score). Obviously, our method achieves the best performence.

256x256 pixels and used stochastic gradient descent with momentum parameter 0.9, the
learning rate is set to 0.000002, and the weight decay is 0.0001. We need about 80 epochs
for training.

4.2 Comparsion with State-of-the-Art Methods
In this section, we compared the developed method with four state-of-art methods, i.e.
CSDW [41], CSHS [28], CBCS [13], CBCS_S [13]. In order to evaluate each method sub-
jectively, some examples in each dataset and method are shown in Figure 4. The co-saliency
maps are genereted by the above methods and ours. As shown by the examples from iCoseg
dataset, i.e., the images groups of panda and elephant. Some of these images have more
than one co-saliency events or shelter, which raises issue or bar about co-salient detection.
The images groups of apple and butterfly from Cosal2015 dataset have noise background
or object to increase detection difficulty. These examples indicate the robustness of algo-
rithms. It can be concluded from these maps that performance gain of our method, which
is much better than the others. Besides, we show the different metrics results for quantita-
tive comparison. The PR curves is shown in Figure 5. The AP scores and Precision, Recall
F-measure using adaptive threshold are shown in Figure 6. Note that the AP score of our
method (0.8781) is higher than CSDW (0.8766) with signficant difference (p-value<0.05
in F-test). As can be seen these figures, our method can reach or exceed the previous best
method, i.e., CSDW. Consequently, the proposed method validity and accuracy are proved.

4.3 Model Analysis
In this section, we chose different experiments manners to analyse the structures influence
in the developed framework. The results can be shown in Figure 7, which indicates that
the single saliency network (OURS_S) is easy to interfere by all kinds of noise. Because
precision is more important than recall in co-saliency task [1], the method merged different
features but without special normalization (OURS_NN) is better than the OURS_S. How-
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Figure 7: (a) Evaluation of the Precision, Recall, and F-measure of three structures in three
datasets. (b) Some examples to show that our approach efficiency and comprehensiveness.

ever, OURS can still enhance the preformance. The reason is that our method considers not
only exploring the interaction by multistage learning, but also improving stability by spe-
cial normalization. Compared with the OURS_S and OURS_NN, the proposed method can
improve resistance to interaction and detection rate efficiently.

5 Conclusion
In this paper, we have proposed a novel end-to-end deep co-saliency detection method which
self-adaptively learns the correspondence constraint based on the image group as supple-
mentary information to solve the co-salient problem. In addition, by extracting feature from
image, we proposed a multistage CNN with high-spatial resolution in deep layers to learn
and transfer the feature representation. By using the modified CAE with special normaliza-
tion to explore the interaction relation between images in the current group. Compared with
the state-of-the-arts, comprehensive experments results indicate our method effectiveness.
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