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1 Back-propagation through an MDN module
The input-output mapping defined by Eq. 1 of the main manuscript is differentiable with
respect to both input functions, o(x), c(x), and as such lends itself to end-to-end training
with back-propagation. Given a gradient signal δ (·)= ∂L

∂m(·) that dictates how the output
layer activations should change to decrease the loss L, we obtain the update equations for c(·)
and o(·)=(ox(·),oy(·)) through the following chain rule:

∂L
∂c(x)

= ∑
x0

δx0

∂m(x0)

∂c(x)
,

∂L
∂{ox/oy}(x)

= ∑
x0

δx0

∂m(x0)

∂{ox/oy}(x)
, (1)

where the summation runs over the top-layer neurons x0 that send gradients back to neu-
ron x. Turning to the computation of the partial derivatives in equation above, the use of
displacement fields means that we no longer have a standard convolutional layer; an input
position x can potentially influence any other output position x0, as dictated by Eq. 2 of the
manuscript. For convenience we rewrite this as follows:

m(x0) = 1−∏
x

(
1−w(x,x0)c(x)

)
, where w(x,x0) = K

(
x0− [x+o(x)]

)
, (2)

indicates the amount of influence of x on x0. Using the same steps as in [2], in case of a
Gaussian kernel K we have:

∂m(x0)

∂c(x)
= w(x,x0)

1−m(x0)

1−w(x)c(x)
,

∂m(x0)

∂ox(x)
=

∂m(x0)

∂w(x,x0)
K′
(
x0−[x+o(x)]

)[
x0− [x+ox(x)]

]
where x0,x,ox(x) are the horizontal components of x0,x,o[x] respectively.

2 On additive vs noisy-or aggregation rule
The main problem with the additive aggregation schema is that we cannot simultaneously
guarantee that the input and output fields both lie in [0,1], so that they can be trained with the
cross-entropy loss, and that a confident posterior at x will confidently support its displaced
replica at x+o(x), i.e. K(0)=1.
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Method AP100 AP100
50 AP100

75 AP100
M AP100

L AR1 AR10 AR100 AR100
M AR100

L

Mask R-CNN, bb 51.5 82.5 55.0 59.4 68.5 18.2 52.2 59.8 66.9 76.3
Mask R-CNN, bb+mask 52.2 83.1 55.9 59.8 69.7 18.4 52.8 60.4 66.9 77.2
Mask R-CNN, bb+keypoints 51.6 81.4 55.3 60.1 69.7 18.3 52.4 60.0 67.4 77.0
Mask R-CNN-MDN, bb+keypoints 52.0 81.8 55.9 60.7 70.0 18.5 52.9 60.3 67.7 77.3
Mask R-CNN, bb+mask+keypoints 51.7 81.6 55.6 60.1 69.8 18.4 52.6 60.3 67.6 77.2
Mask R-CNN-MDN, bb+mask+keypoints 52.2 81.6 56.4 60.6 71.1 18.7 53.3 61.0 68.1 78.3

Table 1: Object detection performance (bounding box AP/AR) on COCO minival, person class.

The voting transformation is described in Eg. 1 of the main manuscript as follows:

m(xo) = ∑
x

Kσ (xo− [x+o(x)])c(x). (3)

If one interprets both c(·) and m(·) as fields of posterior probability values, one has:

c(x)=1, o(x)=x−xo → m(xo)=∑
x

K(x)> 1. (4)

In this case, ensuring that m(xo)≤1 would mean that we must use a normalized kernel, e.g.

K(x)= 1
2πσ2 exp(− ‖x‖

2

2σ2 ), as used in [1]. One counter-intuitive resulting property is that the
input-output mapping function defined by Eq. 1 of the manuscript can result in a decrease,
rather accumulation of evidence. Consider in particular a perfectly-localized and perfectly-
confident local evidence signal expressed in the form of a delta function centered at x:

c(x) =

{
1, x = x
0, otherwise (5)

The result of voting according to Eq. 1 of the main manuscript would then be a blurred
support map that only yields a maximal support of 1

2πσ2 to x+o(x):

m(x) =
1

2πσ2 exp
(
−‖x− (x+o(x))‖2

2σ2

)
. (6)

For a large value of σ this can result in an arbitrarily low value of m(x), which is counter-
intuitive, given the originally strong evidence at x. At the root of this problem lies the
operation of summing probabilities, which is a common operation when marginalizing over
hidden variables, but does not make sense as a method of accumulating evidence [3].

3 Additional experiments
Finally, we perform an ablation study in the multi-task setting to analyze the effect of the
introduced cross-part MDN module on the performance of other brances of Mask R-CNN,
namely bounding box regressor (Table 1) and predictor of binary masks (Table 2) for the
person class from COCO minival. In both cases, we observed consistent improvements
in performance across the whole set of evaluation metrics. However, in the presence of
the MDN module, activating the mask branch does not further improve the quality of pose
estimation as in the baseline case.
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Method AP100 AP100
50 AP100

75 AP100
M AP100

L AR1 AR10 AR100 AR100
M AR100

L

Mask R-CNN, bb+mask 44.8 79.4 45.9 50.5 64.4 16.7 47.0 53.3 59.4 70.7
Mask R-CNN, bb+mask+keypoints 45.0 78.5 47.3 51.4 65.2 16.8 47.3 53.8 60.6 71.4
Mask R-CNN-MDN, bb+mask+keypoints 45.6 78.3 48.1 52.0 66.1 17.0 48.1 54.5 61.3 72.3

Table 2: Instance segmentation performance (mask AP/AR) on COCO minival, person class.
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