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8 Supplementary Material for ''Learning a Code-Space
Predictor by Exploiting Intra-Image-Dependencies"

8.1 Differentiable Coding
8.1.1 Quantization

Before encoding symbols of the latent representation z, they are quantised into a discrete
code z,. We empoy a linear quantisation in the encoder:

zq = round(z) (14)

The motivation for this choice is that both the encoder and the decoder are highly nonlinear
and can incorporate any transformations that increase the efficiency fo quantisation. The
rounding operation’s gradient however vanishes almost everywhere, which makes gradient-
based optimization impossible. This can be dealt with by setting z, = z+n with 1 ~
U(—0.5,0.5) during training, as rounding noise can be well approximated by uniform noise.

8.1.2 Entropy Estimation

The minimization of the coding rate with respect to the parameters of the encoder requires
a differentiable rate measurement with respect to the symbols z, over which the rate is mea-
sured. Given an estimate of the code symbol probabilities P, (z¢), the arithmetic coder can
approach the cross entropy

H.: =Y P (zgx)log, (P:, (z4: 52,)) (15)

2q

between the estimate P;,, parametrised by Y, and the actual probabilities P, (z¢]x) given the
image x. In eq. 15, the probability of discrete symbols is required, which does not suit the
continuous approximation of the quantisation as described above. Replacing the actual cross
entropy with the empirical one yields

L1
"1z,

Y, logy (P, (243 ) (16)

=

JP;
so that only the derivative y‘:(zq) needs to exist. The probability of a symbol z, can be
computed as

a+h 1 1
Pfq(zq;l//z):/ , Pe(tye)dt =U{ zg = 5.2+ 5 | *pa(z ) 17
Z,

2

By the law of addition of two independent random variables, we have

which leads to P: (z4; ;) = pz,(Z4; W;). Note that while the CDF and the PDF correspond
to different distributions, they share the same parameters. At training time, P;, in eq. 16 is
replaced by pz,, which can be optimized using gradient descent and suits the rounding error
approximation. During testing, the estimates for the symbols of z, are given by eq. 17.
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By replacing eq. 15 with the expected cross entropy, eq. 2 can be reformulated as a
probabilistic loss in terms of the Rate R:

13L& i
£Pr()h = NiC ZZIOgQ (qu (ZC,i| WZ.,C)) + )‘EX [D(x7x)]

= Ex[l()gz(piq (fe(x§ 92)|WZ7C))} + }LEX[D(xvdeCe(x; 96); 9d>)] (19)

This objective is differentiable w.r.t. the parameters 8, and 6, as well as v, if a suitable
distribution is chosen and can hence be optimized by gradient descent. [5] uses a piecewise
linear function to model this distribution while [21] employs a mixture of Gaussians. Our
approach uses a mixture of Gaussians conditioned on the values of neighbouring pixels as
described in Section 3.1.

8.2 Experiments
8.2.1 Network Architecture and Training

The two variants of the network architecture are shown in Table 1. To make our work easier
to compare to other works, we chose ImageNet [10] as source of training images. Specifi-
cally, we selected those images where height and width exceed 1000px. At training time, we
resized these images with a random factor uniformly chosen between 30% and 70%. Fur-
thermore, we applied horizontal flips as data augmentation method. After this preprocessing,
we extracted patches of size 128 x 128px at random positions. We trained all networks on
mini-batches of 12 patches using the Adam-variant [12] of stochastic gradient descent. The
initial learning rate was set to 10~* and was reduced after 330.000 and 350.000 iterations
by factor 0.2. We trained for a total of 400.000 iterations. All experiments were carried out
using TensorFlow [1].

8.2.2 Conventional Codecs

We evaluate BPG with maximum compression, apply it to the YCbCr color space and do not
use any chroma subsampling (options -m 9 —-c ycbcr —f 444), which we found to be
the best performing configuration in terms of MS-SSIM. For JPEG2000 we use the Kakadu
[20] implementation as it outperforms OpenJPEG when using the MS-SSIM norm on the
datasets used.

8.2.3 Integration

Modern conventional codecs combine a multitude of coding tools with different performance
characteristics into one codec. The goal is to create a codec with higher coding gain that can
choose from those coding tools whichever suits the data to be encoded best. This often in-
volves making binary decisions and signalling those to the decoder. If one wanted to learn
such binary decisions in a deep learning framework, one would have to resort to reinforce-
ment learning. As our goal is to demonstrate that integrating to different approaches to con-
text modelling yields even higher coding gain. For that matter, we chose a simple integration
approach where the hierarchical code serves as additional features for the spatial predictor.
Fig. 6 depicts a schematic overview of the encoding process of the spatial predictor reduced
to a single spatial dimension for simpler representation. In the same fashion, Fig. 7 illus-
trates the hierarchical approach proposed in [6]. We combine both approaches by providing
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Table 1: The network structure used for experiments reported in Section 4.2.
Filters Filters

Operation Kernel Sampling (<0.9bpp)  (>0.9bpp)
Encoder
Convolution 5x5 2x2 | 64 96
SGDN 1x1 64 96
Convolution 5x5 2x2 | 128 192
SGDN 1x1 128 192
Convolution 5x5 2x2 256 288
SGDN 1x1 256 288
Convolution 5x5 2x2 | N N
SGDN 1x1 N N
Spatial Predictor

Convolution 2x2 256 256
ReLLU

Convolution 2x2 256 256
ReLU

Convolution 4 2kN 2kN
Identity/Exponential

Decoder

Transp. Convolution 5x5 2x2 1 256 288
SIGDN 1x1 256 288
Transp. Convolution 5x5 2x2 1 128 192
SIGDN 1x1 128 192
Transp. Convolution 5x5 2x2 1 64 96
SIGDN 1x1 64 96
Transp. Convolution 5x5 2x2 1 3 3

the spatial predictor with the output of the hierarchical decoder. The receptive field of the
hierarchical component is much larger than that of the spatial predictor as subsampling is
applied in its encoder and upsampling in its decoder. Hence, the hierarchical coder can serve
the spatial predictor information about where and from which direction to predict. This is
shown in Fig. 8.

8.2.4 Further Visual Results

Figures 9 and 10 show further visual results with heatmaps of the coding cost when applying
the integrated predictor and for an independent model. For the integrated predictor, the
average rate lies at about 0.6 bits/pixel. From the heatmaps it’s clear that while regions
with complex content remain difficult to encode, the coding cost is significantly lowered for
regions which are easily predictable such as sky, skin or surfaces with little or only slowly
varying texture.



16 KLOPP, WANG, CHIEN, CHEN: CODE-SPACE PREDICTOR FOR DEEP IMAGE CODING

o 22
I
g
a
Tg NN "dﬂ]]
o
&
—_—
Channel Dimension
Image x Encoder Code z, Spatial Predictor

Figure 6: Schematic representation of the encoding process using our spatial predictor. The
prediction is carried out only in the spatial dimension. All channels at one spatial position is
prediction in parallel.
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Figure 7: The encoding process in the hierarchical codec as proposed by Balle et al. [6].
There are two codes, z, and u, where the spatial resolution of u, is [}‘, %] of the resolution
of z4. There are two encoders and two decoders necessary to realise the full codec. The

distribution that is used to encode u, with the arithmetic coder is a fixed distribution.
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Figure 8: Our simple integration of the spatial predictor and the hierarchical codec. The
hierarchical coding module is not used to estimate probability distributions of the code sym-
bols in z, directly but serves as additional feature input to the spatial predictor. It can hence
provide higher level information to the spatial predictor as to which parts of the image are
suitable for prediction and which prediction directions are the most efficient. All three parts
(the original transformation, the spatial predictor and the hierarchical codec) can be trained
jointly in an end-to-end fashion.
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Figure 9: Reconstruction (right), spatial prediction based (center) and independent (left)
coding cost spatial distribution for images 1 to 7 of the Kodak dataset.
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Figure 10: Reconstruction (right), spatial prediction based (center) and independent (left)
coding cost spatial distribution for images 8 to 14 of the Kodak dataset.




