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1 Supplementary Materials

1.1 Implementation details
A modified version of the Tomominer package [7] was used for processing the images.
EMAN2 was used for back projection reconstruction. Mayavi was used for plotting the iso-
surfaces. Keras and Tensorflow were used for constructing and training the 3D-WGAN. The
test is performed on a computer equipped with Intel i7 CPU, 128GB memory, and Nvidia
GTX 1080 and GTX 1080 Ti GPUs.

1.2 Generating simulated subtomograms
For our experiments on simulated subtomograms to be as reliable as possible, we simulated
subtomograms by performing the actual tomographic image reconstruction process in a sim-
ilar way as previous works [3, 5, 16, 23]. We properly included noise, and the missing
wedge effect, and electron optical factors, such as the Contrast Transfer Function (CTF) and
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Figure 1: Raw slices of simulated subtomograms constructed from Mouse L-chain ferritin
(PDB ID: 1LB3) and ribosome (PDB ID: 4V7R), with SNR of 0.03.

Modulation Transfer Function (MTF), assuming that the electron optical density of macro-
molecular complexes is proportional to the electrostatic potential. We used the PDB2VOL
program from the Situs [21] package to generate volumes of 643 voxels with a resolution and
voxel spacing of 0.6nm. The density maps of known structure were used to simulate electron
micrograph images using the tilt-angle of ±60◦. We added noise to electron micrograph im-
ages [5] to achieve the desired SNR of 0.03, which was the lowest SNR for the fast alignment
method to achieve successful alignment on all simulated subtomograms. Next, we convolved
the electron micrograph images with the CTF and MTF to simulate optical effects [6, 16].
The acquisition parameters used are typical of those found in experimental tomograms [24],
with spherical aberration of 2mm, defocus of -5µm, and voltage of 300kV. The MTF is de-
fined as sinc(πω/2) where ω is the fraction of the Nyquist frequency, which corresponds to
a realistic detector [15]. Finally, a direct Fourier inversion reconstruction algorithm (imple-
mented in the EMAN2 library [8]) is used to produce the simulated subtomogram according
to the tilt-angle. Figure 1 shows examples of such simulated subtomograms.

The templates used for template matching were constructed using a tilt-angle range of
±90 degrees and infinite SNR, and with the same acquisition parameters used to simulate the
subtomograms. The low SNR and missing wedge values make it very difficult to properly
align subtomograms, especially smaller ones such as Ornithine carbamoyltransferase (PDB
ID: 1A1S), but we found that including a Gaussian blur of 0.2nm increased the success rate
of our fast alignment method.

Citation
Citation
{Wriggers, Milligan, and McCammon} 1999

Citation
Citation
{F{ö}rster, Pruggnaller, Seybert, and Frangakis} 2008

Citation
Citation
{Frank} 2006

Citation
Citation
{Nickell, F{ö}rster, Linaroudis, Net, Beck, Hegerl, Baumeister, and Plitzko} 2005

Citation
Citation
{Zeev-Ben-Mordehai, Vasishtan, Dur{á}n, Vollmer, White, Pandurangan, Siebert, Topf, and Gr{ü}newald} 2016

Citation
Citation
{McMullan, Chen, Henderson, and Faruqi} 2009

Citation
Citation
{Galaz-Montoya, Flanagan, Schmid, and Ludtke} 2015



WANG ET AL.: STATISTICAL ASSESSMENT OF CECT TEMPLATE MATCHING 3

1.3 Table of PDB ID
We collected 15 macromolecular complexes from the Protein Databank (PDB) [4], shown in
the following table.

PDB ID Macromolecular Complex
1A1S Ornithine carbamoyltransferase
1BXR Carbamoyl phosphate synthetase
1EQR Aspartyl tRNA-synthetase
1KYI HslUV (H. influenzae)-NLVS Vinyl Sulfone Inhibitor Complex
1LB3 Mouse L-chain ferritin
1VPX Transaldolase
1VRG Propionyl-CoA carboxylase, beta subunit
1W6T Octameric enolase
1YG6 ClpP
2BYU Small heat shock protein Acr1
2GLS Glutamine synthetase
2H12 Acetobacter aceti citrate synthase
2IDB 3-octaprenyl-4-hydroxybenzoate decarboxylase
3DY4 Yeast 20S proteasome
4V7R Yeast 80S ribosome

Table 1: The experimental macromolecular complexes used in this paper. They were used
as training data for the 3D-WGAN, as complexes used to construct real templates and as
complexes for simulation of subtomograms.
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1.4 Details of the 3D-WGAN

Figure 2: This diagram shows the concept of GAN.

Our generative approach uses techniques from deep learning, specifically the convolu-
tional neural network and the GAN. Illustrated by Figure 2, the GAN involves a generator G
and a discriminator D. When given a sample of random points z. the goal of G is to output its
best attempt of sampling an image from the distribution on the manifold of training images.
The discriminator model D is trained to label generated (pseudo) images as 1 and training
(real) images as 0. During training, we optimize D to maximize its ability to classify real
and pseudo images correctly, and we optimize G to minimize the discrimination ability of
D. This cost can be described by the binary cross-entropy equation [9, 22]

min
G

max
D

Ex∼Pdata(x) log(D(x))+Ez∼Platent(z) log(1−D(G(z))). (1)

In our case, x ∼ Pdata(x) represents sampling from training data of real structures, and z ∼
Platent(z) represents sampling from the standard multidimensional Gaussian distribution in
the latent space.

For our model, we used an improved and stabilized version of the GAN, called the Im-
proved Wasserstein GAN (WGAN), which instead optimizes the Wasserstein distance, a cost
function that is more favorable for optimization [1, 10]. Given two distributions P1 and P2,
the Wasserstein distance can be calculated as

W (Pr,Pθ ) = sup
|| f ||L≤1

Ex∼P1 [ f (x)]−Ex∼P2 [ f (x)], (2)

according to [20], where the supremum is over all the 1-Lipschitz functions f : χ → R.
The Wasserstein distance describes the “distance" between two probability distributions. A
benefit of using the Wasserstein distance is that it is continuous everywhere and almost dif-
ferentiable everywhere. This allows us to train D until convergence. As D becomes more
accurate, G can learn to generate more realistic images. G and D continue to play the mini-
max game until they converge near to an optimum state, at which point the G would produce
diverse and realistic samples from the training image distribution.

The generator G and the discriminator D are implemented as convolutional neural net-
works (CNN). The CNN is a stack of convolution layers that can extract a complex hierarchy
of image features, which has shown very successful results in computer vision applications
such as object recognition and classification for both 2D and 3D images[13, 14]. [22] was the
first attempt of using 3D CNNs with GANs and we based our network architecture around
it. Although [22] uses five convolution layers, we found that four layers were enough to cap-
ture the structure of macromolecular complexes. In our 3D-WGAN generative model, we
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also use the transposed convolution layer [22] instead of the up-sampling layers to produce
larger-size images. Each convolution layer is a collection of learned feature extractors [2].
Given N filters of size K3 and stride S, the output y is the result of “sliding" each filter in
steps of S, on top of the input and summing up the dot product at every location. Let the
input to the layer be X with D volumetric slices, the filters of the layer be W and the output
be y. Mathematically [19], the convolutional layer is represented by

ym
i, j,k =

D−1

∑
p=0

K−1

∑
a=0

K−1

∑
b=0

K−1

∑
c=0

W m
a,b,c ·X

p
a+S·i,b+S· j,c+S·k (3)

, where, ym
i, j,k is the index (i, j,k) of the mth output volumetric slice , W m

a,b,c is the index
(a,b,c) of the mth filter, and X p

a+S·i,b+S· j,c+S·k is the index (a+ S · i,b+ S · j,c+ S · k) of the
pth input volumetric slice. For example, a filter can learn to be like an edge extractor by
learning weights similar to a Sobel kernel.

The Batch Normalization layer guarantees 0 mean and unit variance for inputs to hidden
layers, which has been shown to stabilize training of deep networks [12]. Given a batch of
inputs x, the batch normalized output is

BN(x) = γ · x−E[x]√
Var[x]+ ε

+β (4)

, where γ and β are learned parameters, ε is a small constant to prevent division by 0, and
E[x] and Var[x] are the mean and variance of x respectively.

The activation functions used in our model are LeakyReLU and the hyperbolic tangent
tanh. The LeakyReLU activation with a gradient of m is described by Equation 5. The pur-
pose of the Rectified Linear Unit (ReLU) and its variants (e.g. LeakyReLU) is to introduce
non-linearity into the network, and have become widely used for its ability to speedup the
convergence of deep networks [11, 13]. The hyperbolic tangent is described by Equation 6,
and was used to bound the output of the generator within the range [-1, 1], as suggested by
[17].

LeakyReLU(x) = max(mx,x) (5) tanh(x) =
ex− e−x

ex + e−x (6)

A common problem in GANs that we also experienced was mode collapse. This col-
lapse of the generator occurs when the generator produces very uniform and non-diverse
structures. The minibatch discrimination layer was proposed by [18] to reduce the collapse
of the generator by penalizing low-entropy generators. Intuitively, this layer allows the dis-
criminator to observe many samples at once, so that it can also take entropy of a batch of
samples into account when deciding between real and pseudo images. Following the method
proposed in [18], introducing such a measure of “(low) entropy" is as follows. For a mini-
batch discrimination layer, we introduce a trainable tensor T, and let f (Xi) be some features
extracted from the sample Xi (i.e. output of some intermediate layer). For every f (Xi) s.t.
0 ≤ i < n, compute the matrix Mi = f (Xi)T . Now, for every row b of Mi, compare it with
every M j by calculating

MBb(Xi) =
n

∑
j=0

exp(−|Mi,b−M j,b|) (7)

, and MB(Xi) = [MB1(Xi),MB2(Xi), ...,MBb(Xi)]. These outputs define a measure of “(low)
entropy". We concatenate MB(X) = [MB(X1),MB(X2), ...,MB(Xn)] to the output of some
intermediate layer, so that the discriminator can take this measure of entropy into account.
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1.5 Cases of failed simulated hypothesis tests
In our simulated tests, on average, 6.67% of our tests resulted in Cond. 1 failure and 10.67%
of our tests resulted in Cond. 2 failure.

(A) (B)

Figure 3: Examples of unsuccessful results. (A) is a Cond. 1 failure likely caused by bias in
alignment due to low SNR; (B) is a Cond. 2 failure as it has a p-value above 0.01.



WANG ET AL.: STATISTICAL ASSESSMENT OF CECT TEMPLATE MATCHING 7

1.6 Supplementary Figures
1.6.1 Simulated Results

The following two pages are the remainder of the hypothesis tests on simulated subtomo-
grams. All of these are successful with the exception of 1VPX.

Figure 4: First batch of the remainder of the hypothesis tests on simulated subtomograms.
Subtomograms were simulated using default parameters discussed in Appendix 1.2; 0.03
SNR with 0.2nm smoothing.
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Figure 5: Second batch of the remainder of the hypothesis tests on simulated subtomograms.
Subtomograms were simulated using default parameters discussed in Appendix 1.2; 0.03
SNR with 0.2nm smoothing.
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