Supplementary Material

Serim Ryou sryou@caltech.edu Pietro Perona perona@caltech.edu Computational Vision Lab California Institute of Technology Pasadena, CA, USA

1 Person Decoder Architecture

Here we explain the detailed architecture of the person decoder.

Figure 1: **Person decoder.** We visualized the first time step of person decoder (a). To explain the details, we also showed the components of the bottleneck, which connects the part localizer to the person decoder.

Name	Input	Туре	Spec	Output Size
BottleNeck1	C_1			64×64×128
.conv1		conv	$1 \times 1 \times 256 \times 64$	
.conv2		conv	$3 \times 3 \times 64 \times 64$	
.conv3		conv	$1 \times 1 \times 64 \times 128$	
.conv4		conv	$1 \times 1 \times 256 \times 128$	
BottleNeck2	C_2			32×32×256
.conv1		conv	$1 \times 1 \times 512 \times 128$	
.conv2		conv	$3 \times 3 \times 128 \times 128$	
.conv3		conv	$1 \times 1 \times 128 \times 256$	
.conv4		conv	$1 \times 1 \times 512 \times 256$	
BottleNeck3	C_3			16×16×512
.conv1		conv	$1 \times 1 \times 1024 \times 256$	
.conv2		conv	$3 \times 3 \times 256 \times 256$	
.conv3		conv	$1 \times 1 \times 256 \times 512$	
.conv4		conv	$1 \times 1 \times 1024 \times 512$	

Table 1: BottleNeck specification

Name	Input	Туре	Spec	Output Size
Recurrent1	C_4	-	-	8×8×512
.convLSTM1		convLSTM	$3 \times 3 \times 2048 \times 512$	
.convLSTM2		convLSTM	$3 \times 3 \times 512 \times 512$	
Upsampling1	Recurrent1	upsampling	-	16×16×512
Concat1	Upsampling1, BottleNeck3	concat	-	16×16×1024
Recurrent2	Concat1	-	-	16×16×256
.convLSTM1		convLSTM	$3 \times 3 \times 1024 \times 256$	
.convLSTM2		convLSTM	$3 \times 3 \times 256 \times 256$	
Upsampling2	Recurrent2	upsampling	-	32×32×256
Concat2	Upsampling2, BottleNeck2	concat	-	32×32×512
Recurrent3	Concat2	-	-	32×32×128
.convLSTM1		convLSTM	$3 \times 3 \times 512 \times 128$	
.convLSTM2		convLSTM	$3 \times 3 \times 128 \times 128$	
Upsampling3	Recurrent3	upsampling	-	64×64×128
Concat3	Upsampling3, BottleNeck1	concat	-	64×64×256
Recurrent4	Concat3	-	-	64×64×64
.convLSTM1		convLSTM	$3 \times 3 \times 256 \times 64$	
.convLSTM2		convLSTM	$3 \times 3 \times 64 \times 64$	
Upsampling4	Recurrent3	upsampling	-	128×128×64
Output	Upsampling4	-	-	$128 \times 128 \times K$
.conv1		conv	$3 \times 3 \times 64 \times 64$	
.ReLU		ReLU	-	
.conv2		conv	$3 \times 3 \times 64 \times K$	
.ReLU		ReLU	-	
.conv3		conv	$1 \times 1 \times K \times K$	
.sigmoid		sigmoid	-	

Table 2: Person decoder specification

2 Qualitative Results

Here we show the qualitative results compared to the results of Mask-RCNN, and also provide some failure cases. As in Figure 2, Mask-RCNN frequently merges two instance into a single one when people are highly overlapped. Our method is robust at predicting distinct instance skeletons in crowd scenes.

Furthermore, we have collected a set of failure cases. Typical failure scenarios were 1) *Images with more than 5 people, 2*) *Assigning missing keypoints to a wrong person, 3*) *Cluttered scenes.* In order to show how the recurrent architecture influences the performance of the images with many people (more than 5), we show the step-by-step inference result that our network produces in Figure 3. Also, we visualize other failure cases in Figure 4.

Figure 2: **Qualitative results compared to Mask-RCNN.** The images are ordered by input, result of Mask-RCNN, and ours, for each set of three images. Our method faithfully produces distinct keypoint skeletons in crowd scenes.

Figure 3: **Failure cases on images with more than 5 people.** Due to the recurrent architecture of our method, the network fails to predict the following sequences after it makes a mistake. 1-7, 1-8, 2-4, and 2-5 are the failure examples.

(a) Assigning missing keypoints to a wrong person

(b) Cluttered scenes

Figure 4: **Failure cases.** When the keypoint is occluded or missing, the network predicts part locations of other person (a). In cluttered scenes, it fails to assign correct joint identity to each individual or produces wrong detections.