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1 Influence of the Number of Frames
In the present work, the data matrix, as in Eq. (1), depends on the number of frames F of
the sequence of RGB-D images, since X ∈ R3F×N . In the general case where the optimiza-
tion program (2) must be solved, each frame induces three constraints that must be satisfied.
Thus, it is natural to assume that the complexity and processing time of the algorithm in-
crease with the number of frames to be considered.

However, experimentally that was not observed, as shown in Fig. 3 and Table 3, where
the number of frames considered was 2F (i.e. double the original number of frames F , which
corresponds to watching the sequence forward and then backward). As illustrated in Fig. 3,
the proposed method’s time required to process a sequence of F or 2F frames is identical.
The average processing time per point is also similar, as presented in Table 3 (e.g. for F
frames the average processing time per point is 1.32 msec, whereas for 2F frames it is 1.37
msec).

The reason for this is related to which method is used to solve the sparse subspace opti-
mization problem (2). Since the problem is convex, one could use any generic convex solver.
However, as suggested in [1], an Alternating Direction Method of Multipliers (ADMM) was
adopted for an efficient implementation of the proposed problem. In the present work, since
we assume complete point trajectories (i.e. without the E term, since we are not considering
outliers), Eq. (2) becomes

min‖C‖1 +
λz

2
‖Z‖2

F

s. t. X = XC+Z, C>1 = 1, diag(C) = 0.
(9)

By introducing auxiliary variables and Lagrange multipliers into the optimization program,
we can obtain the following associated Lagrangian function of Eq. (9) (please refer to [1]
for more details):

L(C,A,δ ,∆) = ‖C‖1 +
λz

2
‖X−XA‖2

F +
ρ

2
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ρ
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F

+δ
>(A>1−1)+ tr(∆>(A−C+diag(C))), (10)
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Figure 3: Quantitative results concerning the influence of the number of frames (i.e. 2F frames) on
processing time. These results were obtained by varying the number of initial randomly sub-sampled
points across one hundred trials per number. The mean is represented by the solid line and the standard
deviation is represented by the surrounding shaded area.

Donkey Lamp Pipe 1/2 Pipe 3/4 Spray Average
Time per point
(msec) 1.14 1.03 1.00 1.32 2.36 1.37

Table 3: Summary of average processing time per point obtained.

where A∈RN×N is an auxiliary matrix, ρ > 0 is a penalty parameter, δ ∈RN and ∆∈RN×N

are a vector and matrix of Lagrange multipliers, respectively, tr(·) denotes the trace operator
of a matrix and we abuse the notation of diag(C) throughout this section to denote a vector
containing the diagonal elements of matrix C, as well as a diagonal matrix whose elements
correspond to the entries of the diagonal of C. This function can be iteratively solved via an
ADMM approach, until convergence or the number of iterations reaches a certain number:

• Update A(k+1) as

(λzX̂+ρI+ρ11>)A(k+1) = λzX̂+ρ(11>+C(k))−1δ
(k)>−∆

(k), (11)

where X̂ = X>X ∈ RN×N and I ∈ RN×N denotes the identity matrix;

• Update C(k+1) as

C(k+1) = J−diag(J), J = T 1
ρ

(A(k+1)+
∆
(k)

ρ
), (12)

where Tη(v) = (|v|−η)+sgn(v) and (·)+ returns its argument if it is non-negative
or zero otherwise;

• Update δ
(k+1) as

δ
(k+1) = δ

(k)+ρ(A(k+1)>1−1); (13)

• Update ∆
(k+1) as

∆
(k+1) = ∆

(k)+ρ(A(k+1)−C(k+1)). (14)

We can now verify that every matrix involved in the optimization procedure is of size
N ×N, thus not depending on the number of frames. Moreover, the auxiliary matrix X̂,
which is the product of two matrices that depend on the number of frames, can be computed
once before the actual iterative computation. In other words, the performance of the method
is only limited by one initial matrix multiplication that depends on the number of frames
considered, which in practice is negligible, since we may assume N > F . Therefore, the
number of frames does not influence significantly the performance of the algorithm in terms
of processing time, as corroborated experimentally.
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