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1 Overview of Supplementary Material

In the main text, both the proposed approaches have been described in detail. The meth-
ods have been extensively evaluated using three sets of multi-domain action datasets. In the
main text, due to space constraint, only the results for UO (UCF50 and Olympic Sports)
and KMS (KTH, MSR Action II and Sonycam) datasets were presented and discussed and
the additional results have been included in the supplementary material. We start with the
algorithmic details of Action Modeling on Latent Space (AMLS) approach. In the next sec-
tion, we describe the Symmetrized KL Divergence measure and then discuss the KMS and
UO datasets with few example images. In Section 5, we describe our third dataset collec-
tion (HU) comprising five common classes of HMDB51 and UCF50 and present its domain
adaptation results. In the next section, we discuss the qualitative analysis of the results for
the HU dataset and present some of the negative examples observed in our experiments.
Finally, in Section 7, we discuss the hyper-parameters and compare some of the results for
their different choices.

2 AMLS Algorithm

There are two main steps in the proposed algorithm: (i) use incremental subspace learning
method [6] to find the subspace representation for the sequence of target domain points.
(ii) use Geodesic Flow Kernel or Subspace Alignment method to perform a sequence of
adaptation and classify each action clip using SVM. In the paper, we have used Sequential
Karhunen-Loeve Method (SKLM) [5] for the subspace learning. The pseudo code of the
approach is given in Algorithm 1.
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Algorithm 1: Psudo Code for Action Modeling on Latent Subspace (AMLS) for Un-
supervised Domain Adaptation.

input: Subspace dimension d
Data: Source features VS ∈ RN×D, source labels yS ∈ [1,C] and target data

VT = {v1,v2, ...,vM}, where vi ∈ RMi×D, Mi is the number of C3D features
corresponding to the ith clip across all target videos and M is the maximum
number of clips.

Result: Predicted target clip labels yT
S←PCA(VS , d)
T0← S
for m← 1 to M do

Tm←SKLM(Tm−1,vm);
Gm← GFK or SA(S,yS,Tm−1,Tm,d);
ym← kNN or SVM(Gm,VS ,vm);

end
yT←{y1,y2, ...,yM}

3 Symmetrized KL Divergence (SKLD)

Let VS ∈ RD×NS , VT ∈ RD×NT be the features for the source and target datasets and S,
T ∈ RD×d be the basis of the two subspaces learned from them. The SKLD between the
source and target domain, as introduced in [3], is defined as:

SKLD(S,T ) = 1
d∗

d∗

∑
i

θi {KL(Si||Ti)+KL(Ti||Si)} (1)

where d∗ is the optimal dimensionality of the subspace and θi is the ith principal angle.
Si and Ti are two one-dimensional distributions of V′Ssi and V′T ti respectively. si and ti are
the ith basis vector of the source and target points on the subspace.

The principle angles θi between two subspaces are efficiently computed using the SVD
of matrix S′T = UΓV′ and they are θi = arccos(γi), where γi is the ith singular value in the
diagonal matrix Γ. The principle vectors si = (SU).,i and ti = (TV).,i are ith columns of the
product matrix.

The Symmetrized KL Divergence, as defined in Eq (1), represents the dissimilarity be-
tween the distribution of the two domains and it is computed by approximating the domain
distribution with one dimensional Gaussians. If we normalize the features to have zero mean,
we only need to compute the variances of the two distributions, which is defined as,
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In this case of approximate Gaussian distribution, the SKLD is computed in close-form
as,
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Figure 1: Examples images from action videos of six classes from KMS dataset. The first
two rows have images from the SonyCam dataset and the last two rows have images from all
three datasets.

4 Example Images from the Datasets
In Fig 1, few example images of the action videos of six classes in the KMS dataset have
been shown. In this multi-domain dataset collection, the KTH has only grayscale images
making the adaptation to color images extremely challenging. The 3D-CNN is fine-tuned
using the Training set of the KTH data. Similarly, in Fig 2, few example images from the six
common classes of the UCF50 and Olympic Sports dataset has been given.

Figure 2: Examples images from action videos of six common classes from UO dataset.

5 Experiments with UCF50 and HMDB51 Datasets
In the third series of experiments, we use five common classes of UCF50 and HMDB51
datasets (denoted by U for UCF50 subset and H for HMDB51 subset). The classes are -
GolfSwing, Basketball, Biking, HorseRiding and PullUps. For the UCF50 subset, we use
70%-30% train-test split suggested in [7], which results into 360− 140 train/test action
videos for training and testing. For the HMDB51 subset, we use the splits described in [4],
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Figure 3: Few negative examples for which all methods failed to correctly predict the class
of action video. First frame from each 16-frame clip in the action video has been shown.

Table 1: Action Classification Accuracy (%) using the 3D-CNN features for the five common
classes of the HU dataset (H:HMDB51 and U:UCF50). The pre-trained network was fine-
tuned independently using subsets of HMDB51 and UCF50 datasets, resulting in two fine-
tuned networks. The first two cols indicate results for the network that was fine-tuned using
HMDB51 dataset and the last two cols are for the network fine-tuned using UCF50 dataset.
The 4096-dim, fc7 features have been used for the experiment. Our approaches outperform
the baseline methods in three out of four cases.

Methods UU→HU HU→ UU UH→HH HH→ UH Avg Accuracy
3D-CNN [8] 85.21 97.37 91.03 94.29 91.97

Baseline-S 86.82 97.76 92.23 92.74 92.39

Baseline-T 86.77 97.75 93.22 93.69 92.86

GFK_Action 89.33 96.76 93.72 94.46 93.57

AMLS_GFK (ours) 89.53 96.66 95.9 95.36 94.36
SA_Action 87.43 97.1 92.87 94.33 92.93

AMLS_SA (ours) 90.25 96.79 94.5 94.4 93.99

which results into a 350-150 video split for training and testing. For HU dataset collection,
we solve four adaptation problems i.e. UU→HU, HU→UU, UH→HH and HH→UH. The
subscript U and H denotes the two networks trained using UCF50 and HMDB51 datasets.

As we did in two other experiments, we compare our approaches with five baseline meth-
ods, which are: 3D-CNN [8], Baseline-S, Baseline-T, Geodesic Flow Kernel (GFK) [3]
and Subspace Alignment (SA) [1] methods. We use the one-vs-all SVM classifier to eval-
uate these methods. We start with the deep learning model trained for Sports 1M and then
separately fine-tune it using the five common classes of the two datasets, resulting into two
3D-CNN models.

The results are shown in Table 1. The first two columns are for the network fine-tuned
with UCF50 subset and the last two columns are for HMDB51 subset. It is evident that the
two subspace based methods outperform the other baselines and our proposed approach fur-
ther improves the results of these methods. Here, the results are for the subspace dimension
of 100 (refer Section 7 for details).
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6 Qualitative Analysis of the Results
In our experiments, we found that for few action videos, all the methods failed to correctly
predict its class. Some of these examples from the HU datasets are shown in Fig 3. The
findings were quite surprising as the performance for the HU dataset was generally very
good. However, on seeing these videos, the reason of the failure was quite evident. In all
these examples, the action is either not adequately visible or in 16-frame clip duration, there
is no action being performed at all.

7 Discussion on Hyper Parameters
There are two important hyper-parameters, which can affect the performance of the algo-
rithms. One of them is related to the SVM classifier, which are selected using the standard
k-fold cross-validation technique. In all our experiments, we used k = 6. The other parame-
ter is the dimension of the latent subspace. We experimented with the subspace dimensions
in the range of 5− 500 and empirically found that the subspace dimension does affect the
classification accuracy. In most of the cases, the accuracy initially improved with increase in
the dimension and then it went down beyond certain dimensions. In all three experiments,
we use the subspace dimension for which the average accuracy across all the adaptation
problem is maximum. We report the results of the GFK and SA methods for this subspace
dimension.

In the case of DAAA method, learning rate is one of the important hyper-parameter,
which effect the training outcome. In this work, the learning rate was varied between
0.01− 0.00001 with the multiplication factor of 1/

√
10. In the experiment, we found that

the learning rate of 0.0001 worked well for the UO adaptation problems. So, we used the
same learning rate for all the cases. In addition, domain confusion loss weight is another
parameter, which could be varied. However, as suggested in [2], we used 0.1 for all the
cases.
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