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Remote sensing scene categorisation is a task to distinguish the ba-
sic level scene images in accordance with the contents of the subordinate
level feature representations. This gives rise to a significant semantic gap
between subordinate level features and the basic level scene contents. In
this work, we propose recurrent transformer networks (RTN) to mitigate
the above problem. RTN incorporates learning transformation-invariant
regions with transformer based attention mechanism, thus reducing the se-
mantic gap efficiently. It can learn the canonical appearance for the most
relevant regions based on the subordinate level contents of the remote
sensing scene images. The predictions of both transformation parameters
and classification score are derived from the bilinear CNN pooling regres-
sion. The whole network is differentiable and can be learned end-by-end
by only acquiring the basic level labels. As shown in Figure 1, our RTN
framework composes of three major parts which are recurrent warp oper-
ation, bilinear pooling operation, and intra-scale loss Lintra and inter-scale
loss Linter.

The original STN [2] includes multiple independent streams, and
each stream learns its own spatial transformation independently, which
neglects the latent relationship of each stream. To address these disadvan-
tages, we extract the relevant multi-scale region-based feature represen-
tations progressively. Specifically, our warp operation runs in a recurrent
manner, which can be denoted as

I(s) = fwarp(θ (s)τ(s), I(s−1)), (1)

where I(s) is the s-th scale image ( e.g., I(0) is the raw image), θ s is the
transformation parameters computed by the localisation function θ s =

f (s)loc(I
(s−1)), and τ(s) is the target coordinates of the regular grid in the

output image. Each warp operation fwarp has the similar progress to the
original STN. The warp operation requires applying a sampling kernel on
the input image I(s−1), to produce the value at a particular pixel in the
finer scale image I(s). With repeatedly calling the warp operation, the
network can progressively yield multi-scale discriminative regions.

We merge intra-scale loss for each stream and inter-scale loss for
neighbouring streams to optimise the network. The final loss is defined as

L =
S

∑
s=0

L(s)
intra +α

S−1

∑
s=0

L(s)
inter, (2)

where α is a hyper-parameter to adjust the total loss and learn the latent
relationship between the neighbouring scales. Suppose P(s) and P∗ as
the predicted label vector from a specific scale and the ground truth label
respectively, then the intra-scale loss L(s)

intra can be written as

L(s)
intra =−

n

∑
k=1

P∗
k logP(s)

k , (3)

where n is the number of the classification. To ensure the streams learning
in a mutual reinforcement way, we impose inter-scale loss for the adjoin-
ing scales and define it as

L(s)
inter = max(0,

n

∑
k=1

P∗
k (logP(s)

k − logP(s+1)
k )−margin)

= max(0,L(s+1)
intra −L(s)

intra −margin),

(4)

which enforces L(s+1)
intra < L(s)

intra + margin during the training phase. In
such way, each scale can refer to the adjoining scales to progressively

Figure 1: The architecture of recurrent transformer networks (RTN). Giv-
en an input image, the localisation network will learn to predict the trans-
former parameters. With recurrently applying the warp operation, the net-
work can progressively attend to the discriminative regions and produce
multi-scale relevant sub-images.

learn sub-region feature representations. With gradually attending at the
finer scale, the extracted features are able to decrease the semantic gap
by degrees and boost the performance of the proposed architecture on the
RSSC datasets.

We conduct experiments on three publicly available remote sensing
image datasets, including NWPU-RESISC45, UC Merced, and AID. As
shown in Table 1, we can obvious that CNN-based feature approaches
have a much better performance on predicting the categories for RSS-
C tasks compared with the hand-craft feature approaches. The best ac-
curacies on RSSC datasets are made by the recently proposed D-CNN
method [1], which takes the metrics learning as the regularisation term.
Compared to the state-of-the-art results of D-CNN, our RTN achieves im-
provements to the categorisation accuracies on all experiment datasets.

Table 1: Comparison results of our RTN to baselines and previous work.
We experiment the accuracy in different training ratios on three public
RSSC datasets.

Method
NWPU-RESISC45 AID UC-Merced
10% 20% 20% 80%

Handcraft
Feature

SPM+SIFT 27.83 32.96 38.43 60.02
LLC+SIFT 38.81 40.03 58.06 72.55

BoVW+SIFT 41.72 44.97 62.49 75.52

Deep
Feature

GoogLeNet+SVM 82.57 86.02 87.51 96.82
VGG16+SVM 87.15 90.36 89.33 97.14

D-CNN with GoogLeNet [1] 86.89 90.49 88.79 97.07
D-CNN with VGG16 [1] 89.22 91.89 90.82 98.93
RTN with VGG16 (ours) 89.90 92.71 92.44 98.96
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