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Abstract

Most multiple object tracking algorithms relying on a single view have failed to fol-
low the trajectories of targets when they have been completely hidden by obstacles. In
this paper, we introduce a novel method of collaborative tracking in a synchronized over-
lapping cameras network. We propose an efficient target association method between
cameras based on the tracking results of each target on each view. Our framework natu-
rally handles obstacle occlusions and mutual target occlusions.

We implemented our multiple object tracking algorithm by Decision Making algo-
rithm [30] on each view. The tracking outcomes on each camera are collected and associ-
ated into targets. The feedback from the central association helps the individual cameras
in tracking hidden targets, even in the case of complete occlusion. We use the standard
MOT metric to validate our method. The experimental results on each view show that
the multiple view tracking system outperforms the single view ones. The source code
will be available publicly.

1 Introduction
Recent years have seen important improvements in single object tracking (SOT) algorithms,
effectively conforming to real time and accuracy requirements. The huge challenge in SOT
is to deal with an object whose shape and appearance might change in time. To adapt to
target and environment changes, as well as to background clutter and mutual occlusion,
almost all tracking methods developed update strategies such as model learning through the
negative/positive samples around/inside target [1, 11, 34] or discriminative learning in the
frequency domain such as correlation filters [12, 25].

Multiple Objects Tracking (MOT) is a related fundamental computer vision problem
with a variety of real world applications such as visual surveillance, traffic monitoring, hu-
man identification, and autonomous driving. The main purpose of MOT is to determine the
trajectories of a number of targets in a video. In almost all MOT applications, the objects of
interest are either pedestrians or vehicles whose movement happens in a fixed background
or a changing environment.
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Implementing a SOT algorithm to track multiple targets simultaneously must face se-
rious problems. First, MOT algorithms must handle the interaction between the targets or
track the targets in crowded scenes, and usually, the targets slightly have the same appear-
ance. These cause the single trackers to confuse their targets and their update mechanisms
mostly fail since targets overlap with each other in a single view. Second, in MOT tracking
videos, the targets are frequently occluded, partially or totally, by obstacles. Most of single
tracking algorithm cannot handle this issue since the tracking result is basically based on the
confidence score and a low score does not indicate whether it is an appearance change or an
occlusion. Third, when the target has been hidden for a long time, it is considered as having
disappeared of the scene and then reappeared. A MOT algorithm must then reconnect the
target with the previous tracking results instead of initializing a new tracker. This issue can
be considered as re-identification problem. Finally, a MOT algorithm has also to proceed to a
multiple objects management to determine when and where the tracker should be terminated.

Modern MOT algorithms, especially those targeted at pedestrians tracking, followed a
tracking-by-detection strategy. This is due to the efficiency of recent detectors which have
proved their capability in detecting people with high precision rate in any kind of complex
scenarios with several issues such as illumination changes and cluttered background. The
next step then involves associating detections from different frames in order to obtain full
objects trajectories. These association methods usually solve the problem by collecting the
entire detections in the videos, leading to offline methods formulated as global graph opti-
mization problems (multicut graph or k-bipartite graph problems).

However, offline methods do not fit the online and real-time requirements of many appli-
cations. Online matching methods generate the trajectories by using causal measures such
as previous detections or last velocities. Recently, Markov Decision Process (MDP) [30]
has been used to control the start/end or temporal appearance/disappearance of the targets.
These events are treated as states in the MDP and make tracking multiple target more effi-
cient. Notwithstanding, it still cannot handle cases in which the targets are completely hid-
den behind obstacles. Obviously, these information can not be figured out in a single view
setting and it is then natural to resort to multiple overlapping cameras in order to increase
robustness.

In this paper, we focus on dealing with complete occlusion problems and mutually oc-
cluded targets on a single view by setting up a multiple views tracking system. Our main
contributions are: first, we extend the MDP algorithm to a multiple views framework and
second, we introduce a novel targets association method across cameras. We want also to
highlight that the proposed framework could also leverage existing online MOT methods.

The plan of the paper is as follows. We review in Sec. 2 related works pertaining to
multiple object tracking in single and multiple view settings. Sec. 3 is dedicated to the
presentation of our multiple view tracking approach which extends the MDP framework to a
multi-view setting. The details concerning the proposed target association method allowing
to link targets across different views are also presented therein. We assess the performance
of our method by presenting experimental results on the PETS and EPFL datasets in Sec. 4
and we emphasize the significant advantage of multiple view tracking compared to the ones
based on a single view. We finally conclude the paper in Sec. 5.
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2 Related Works

2.1 Single View MOT

Following the tracking-by-detection paradigm [2, 31], graph optimization problems are for-
mulated to link the detections of targets in order to form complete trajectories. These meth-
ods have become popular because they simplified the classic issues mentioned above such
as object management, interaction, initialization and update strategy. The data association
problem is formulated as a graph whose nodes represent the detections/features and the edges
are weighted by the similarity between detections. The association methods usually collect
all detections/features over the videos, the current position of a target (a node of the graph)
being thus determined by adjacent nodes that represent the previous and next detections over
the time. The goal of data association methods is to optimize the cost made by the edges
of the graph. There are various methods such as global optimization using maximum clique
problem [31], minimum cost subgraph multicut problem [14, 27], flow network optimization
problems [32]. The problem is formulated in [2] as a k-shortest paths problem, as a subgraph
decomposition in [26], and using a conditional random field (CRF) model in [4, 18]. In or-
der to deal with the occlusion issue, most association methods proposed to introduce virtual
nodes or hypothetical tracklets that represent the positions of a target on a single view dur-
ing occlusion. However, these methods cannot fit to online application such as surveillance
system.

Online methods determine the target’s position by using the information of previous
frames up to the current frame. Online re-identification based on sparse coding is used to
match the current detections into the current tracklets [8]. Meanwhile, in [4], a CRF model
is used to match a target to the best hypothesis among all combination of hypotheses created
by new and existing targets. Despite these advances, hard occlusions in tracking still remains
a serious problem. This motivates the development of our multiple view tracking algorithms.

It is also important to highlight that there are some MOT algorithms that are designed
from a SOT perspective. We mention the CNN-based spatio-temporal attention mechanisms
for online MOT introduced in [5], and the work of [30] that considers each state of the
tracker as a state transition of a Markov Decision Process (MDP) thus allowing to deal with
the birth/death and appearance/disappearance of targets. Our algorithm is heavily inspired
from this latter framework.

2.2 Multiple Views MOT

MOT approaches based on a single view have been recently extended to multiple views.
These approaches have been proposed in an attempt to fully cover the observation of the
objects. Multi-camera tracking can solve the problem of occlusion where the interesting
targets are frequently occluded by the environment or by the other objects. First attempts in
using multiple cameras dealt with the re-identification problem, in order to track the objects
between cameras [28]. Then, many other researchers studied the problem of collaborative
tracking between the cameras. Almost all authors use the hypothesis that the exact positions
of the cameras network is known and camera calibration has been done before applying
tracking. In the tracking phase, the trackers of different views usually pool their tracking
results on a 3-D coordinate system via the projection from image plane to ground plane in
real world [17, 19, 23], so as to associate its results with the others, reconnect the missing
trajectories or make their final result more stable.
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According to the computational model used, there are two branches of multiple camera
tracking methods: centralized algorithms and distributed ones. In centralized computing,
data association is interpreted in the central node, with the purpose of connecting the incom-
plete trajectories from multiple views [16, 32, 33]. These approaches are generally suitable
for offline tracking. On the other hand, several algorithms have used a distributed computa-
tional model in an attempt to create a probability map (see e.g. [10, 20]). Both distributed
methods [7] and centralized ones [21] used a graphical model which relates the trackers on
the different views and assumes some independence conditions between appearances on dif-
ferent views to induce the global observation likelihood of target given its occurrence on
corresponding views. Similarly, [24] proposed the use of particle filters both in local and
global configuration. The likelihood is then computed from all views based on a global
appearance model. In the next section, we propose a novel framework for multiple views
multiple objects tracking.

3 Proposed Framework

3.1 Targets Association Across Cameras

In this paper, the target association problem across cameras is formalized as an optimization
problem involving an undirected weighted graph, as proposed in the paper [31]. We use
the notation G = (V,E,w), where V , E and w respectively denote the set of nodes, set of
edges and weights of the edges. In our formulation, the “alive” targets (i.e. targets that are
visible and in a “tracked” state in MDP) are considered as the set V of nodes. Let Ck be
a cluster of tracking targets in the view k and vk

m denote the mth target within the view k.
Therefore, Ck = {vk

1, ...,v
k
M}. The edges of the graph are defined as E = {(vk

m,v
l
n)|k 6= l}

with the condition k 6= l indicating that two nodes in same camera cannot be connected. This
also means that in each view, all targets are tracked separately. A node vk

m is associated
with its trajectory xk

m = {xk,1
m ...,xk,F

m } which is the last appearance of a target in the previous
frame, where the location records are the 2-dimensional coordinates (x,y) on the ground
plane z = 0. The vector Φk

m denotes the patch surrounding the target m on the view k. The
weight of an edge between two nodes is defined by the following equation:

w(vk
m,v

l
n) = α emedBF(Φ

k
m,Φ

l
n)+ fdist(xk

m,x
l
n) (1)

where emedBF is the Forward-Backward error defined in [13] to evaluate the similarity be-
tween a target in different views. In detail, by implementing similar ideas as in [30] through
views, first we use the Lucas-Kanade (LK) tracker to find the correspondence points both be-
tween the target template Φk

m in the view k and Φl
n in the view l and between target template

Φl
n in the view l and Φk

m in the view k. Then we calculate the Forward-Backward error from
these two correspondences. In addition, the distance function fdist is defined as the average
distortion of the trajectories between two targets at the previous frame:

fdist(xk
m,x

l
n) =

1
L

L−1

∑
i=0

∥∥∥xk,F−i
m − xl,F−i

n

∥∥∥ , (2)

where L = min
(
min

(
|xk|, |xl

n|
)
,30

)
. Moreover, the coefficient α allows us to regularize the

contributions between Forward-Backward error and distance function.
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Figure 1: Finding the corresponding targets. For visualisation purpose, we draw only a
subset of the edges within the subgraph indicating target across views, the others edges are
ignored. In this example, there are three subgraphs indicating three people in the tracking
process.

As mentioned in [31], the process of matching a target in different views requires iden-
tifying correspondences of the target in all different views. Hence, the solution of the prob-
lem can be described as a subgraph of G in which each node (target) is selected from only
one cluster (view). Therefore, the subgraph for a particular tracked person can be denoted
by Gs = (Vs,Es,ws). The set of nodes Vs has a general form Vs = {vk

m|k ∈ {1, ...,K}},
Es = {E(p,q)|p,q ∈ Vs} and ws = {w(p,q)|p,q ∈ Vs}. Fig. 1 shows an illustration of sub-
graph problem for associating the targets through views. To construct this subgraph, we
search for nodes that are connected in different views by edges whose weight is not higher
than a fixed threshold.

Let’s chose a fixed threshold M ∈ R, the optimal solution can be formulated as follows:

Gs =
{

Vs,Es,ws|∀(vp,vq) ∈ Es,w(vp,vq)≤M ∈ R
}
. (3)

The authors of [31] use the Generalized Minimum Clique Graph (GMCP) for matching
association in time. Notwithstanding, GMCP does not fit to our problem because targets
do not necessarily appear in all views, as opposed to the assumption done in [31]. In this
paper, we do not focus on finding the optimal solution. Instead, we propose a novel fast
algorithm to find an approximate solution. The details of this new algorithm are given in the
next Section.

3.2 Proposed Algorithm
We propose a fast algorithm for finding the subgraphs satisfying the condition mentioned
above. Instead of comparing all nodes, we fix a node v0 in graph G and we include in the
subgraph Gs all other nodes that are adjacent with v0 and whose weight is under a fixed
threshold. Obviously, our solution is sub-optimal, but the evaluation in terms of tracking
performance done in Sec. 4 reveals that it is sufficient. The comparison between our ap-
proximate solution and the optimal one has been illustrated in the Fig. 2. The detail of the
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(a) (b)
Figure 2: Comparison between the optimal solution (a) and our approximate solution (b).
Note that node v6

1 is included in the optimal solution, but not in the approximate one, because
v6

1 is not adjacent to the fixed node v5
2.

proposed algorithm is described in Algorithm 1. In order to implement our targets associa-
tion algorithm into a MOT algorithm, we introduce a MOT multiple views framework based
on the MDP method [30]. The target association through views helps the system to recover
targets on each view even in case of total or partial occlusion.

Partial occlusion cases. In the original method, the association step in the case of track-
ing failure will try to associate the target to a nearby detection. But it usually fails when
target started being occluded, even if the detector still works well. We propose an extra step
by adding the detection to the trajectory of target. The positions of all targets (nodes) in dif-
ferent views (subgraph) will be projected into the current image view and then the detection
nearest to these positions will be assigned to the target in the current view, if the projected
positions are not farther from the detected box than a fixed threshold.

Recovery after hard occlusion. The association strategy in the original MDP method
cannot recover the tracking state of target when it has been hidden for a long time. We
propose a recovery step to reconnect the newborn target to the lost target. The new detection
will be compared with the targets’ positions in different views. If its position on ground
plane is near enough to the targets in all views, then the newborn detection will be added
into the closest target. The detail of the method can be seen in Algorithm 2.

4 Experimental Results

This section presents the experimental result verifying the efficiency of our multiple views
tracking method. To evaluate MOT performance, the benchmark MotChallenge [15] has
been released with 2 datasets (MOT15 and MOT16), which contain a number of single
view video sequences recorded by static or dynamic cameras, and the evaluation metrics of
CLEAR MOT [3] and ID measures for MOT [22]. Additionally, the MotChallenge also pro-
vides a Multi-Target Multi-Camera Tracking benchmark [22] with mostly non-overlapping
cameras. Unfortunately, these datasets do not fit to our problem, so for our benchmark we
still used the same metric on MotChallenge, but replaced the dataset by the dataset PETS.

Implementation. We keep the same parameters for MDPs as the original paper [30],
the others parameters in our approach are detailed in the above algorithms. For target asso-
ciation algorithm, we chose the view 1 as the dominant view k0. Our proposed method is
implemented in MATLAB on two cores CPU i7-6700HQ with 16GB RAM. Our algorithm
processes approximately 0.5 fps for each view on average.
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Input : Set of tracked/lost (MDP states) targets T k = {tk
i }M

i=1 in all views, a
dominant view k0

Output: Central C = set of subgraphs Gs indicating the tracked targets across views

1 Associated trackers U contain K empty sets corresponding to K views;
2 C contains M subgraphs Gs corresponding to M targets in view k0;
3 foreach Tracked/lost target tk0

i in view k0 do
4 foreach each view j 6= k0 do
5 Register← /0;
6 foreach Tracked/lost target t j

i′ in view j and t j
i′ /∈ U

j do
7 Weight of the edge connecting two targets tk0

i and t j
i′ (by eq. 1);

8 Save the edge (tk0
i , t j

i′) and its weight to register;
9 end

10 Optimal cost← min(register);
11 if Optimal cost < 6 & fdist(t

k0
i ,t j

i′)< 1.5 then
12 Subgraph Ci←{Ci, t j

i′};
13 Associated trackers in view j : U j←{U j, t j

i′};
14 end
15 end
16 end

Algorithm 1: Across views target association algorithm

Dataset. We used the well-known dataset PETS2009 [9] and the EPFL dataset (Multi-
camera Pedestrian Videos) [2]. Among all sequences of PETS2009, the most relevant
and suitable for our multiple views tracking system is "PETS09-S2L1" with 7 views from
7 synchronized and calibrated cameras. For our experiment, we only used 1 main view
(from the camera 1) and 4 close-up views (from the cameras 5, 6, 7 and 8). Meanwhile,
the EPFL dataset provided a multiple of video sequences recording the pedestrians indoor
and outdoor by 4 cameras. Because of the similarity of sequence scenarios, we just se-
lected the sequence "Terrace1" for our dataset. Fig. 3 shows that the observable zone on
each view contains about 15-20% the common overlapping zone covered by all cameras.
The ground truth and detection data on all views will be published on our project page
(github.com/quoccuongLE/MDP_MTMC_tracking).

Detection. In all tracking-by-detection approaches, the detector plays an important role
for tracking performance. As the same public detector used in MotChallenge [15], we
applied the Aggregate Channel Features (ACF) pedestrian detector [6] on all views of the
sequences "PETS09-S2L1" and "Terrace1" using the pre-trained Caltech model [29].

Evaluation metric. To validate the efficiency of our multiple views multiple object
tracking method, we adopt the popular metrics used including CLEAR MOT metric [3] and
ID measures [22]. The metrics are the scores MOTA (multiple object tracking accuracy),
MOTP (multiple object tracking precision), IDs (identity switches), IDF1, IDP (ID preci-
sion), IDR (ID Recall), False Positive (FP) and False Negative (FN). (For further details on
the metric, we recommend the website https://motchallenge.net)

Performance analysis. We compare the MDP original method with our proposed MDP
multi-view one. The overall tracking results on PETS sequence can be seen in the table
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Input : Set of videos sequences from K views v1, . . . ,vK , object detection
Dk = {dk

m}N
m=1 for vk, binary classifier (wk,bk) for data association

Output: Trajectories of targets T k = {tk
i }M

i=1 in the videos vk

1 Initialization for all views: T k← /0
2 Initialize the central association node C
3 // main loop
4 foreach frame number l in videos do
5 foreach each view j do
6 // process targets in tracked states

7 foreach tracked target tk
i in T k do

8 Follow the policy, move the MDP of tk
j to the next state;

9 end
10 // process targets in lost states

11 foreach tracked target tk
i in T k do

12 Recover tracked state if found any similar detection covering the target;
13 Add the nearest detection into target if reaching the agreement from other

views;
14 end
15 Data association for the lost targets;
16 foreach lost target ti in T k do
17 Follow the assignment, move the MDP of tk

i to the next state;
18 end
19 Initialize the new targets from detection dk

m not covered by any tracked target
in T k;

20 Connect the newborn tracklets tk
i′ to the lost target tk

i ;
21 end
22 C ← targets association between views by Algorithm 1;
23 end

Algorithm 2: Multi-camera Collaborative Tracking based on MDP tracking

1. Primarily, our proposed method focuses on tracking targets in the hard occlusion case.
It leads to an important reduction of identity switches and a significant improvement in ID
measures. In detail, with only 15-20% overlapping zone, our approach on PETS sequence
increased 17.5% in IDF1, 17.2% in IDP, 18,1% in IDR and reduced 31.8% ID switches.
In terms of CLEAR MOT scores, our approach slightly improves both MOTA and MOTP
scores. This can be explained by the fact that tracker’s identification ability is not captured
by the CLEAR MOT metric [22]. We also provide the tracking result on the main view
(view 1) in the table 2 with the same consequences. On EPFL sequence, our method also
remarkably improved the ID measure scores in the table 3. In contrast, the MOT scores
slightly decreased, but these changes are not notable. The test on these two datasets has
verified the robustness of our multi-view approach dealing with failure of re-identification
and long-time occlusion. The visual effectiveness of our approach compared to the single
view tracking system is shown in the Fig. 4. All the detail of the metric scores and the
visualization of our entire experiment are provided in the complementary material.
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Cam 1 Cam 7

Cam 6

Cam 5

Cam 8

cam0

cam2
cam3

cam1

(a) (b)
Figure 3: Observation zones of the cameras in PETS09-S2L1 sequence (a) and terrace1
sequence (b). The common overlapping zone has red contours. The element rectangle has a
dimension of 5×5 meters in the real world

Figure 4: Tracking result at frame # 65 on view 1 of sequence "PETS09-S2L1". (Left)
tracking result of MDP original method and (right) our tracking result.

Method IDF1↑ IDP ↑ IDR↑ FP↓ FN↓ IDs↓ MOTA↑ MOTP↑
MDP standard 56.5 61.1 52.5 1255 3517 352 68.0 68.8

MDP multi-view 66.4 71.6 62.0 1223 3379 240 69.8 68.9
Table 1: Overall score of MOT metric on MDP standard method comparing with our MDP
multi-view method on "PETS09-S2L1" sequence. Note that ↑ indicates better higher and ↓
better lower.

Method IDF1↑ IDP ↑ IDR↑ FP↓ FN↓ IDs↓ MOTA↑ MOTP↑
MDP standard 57.8 59.6 56.1 371 635 95 75.4 72.2

MDP multi-view 64.8 66.4 63.2 372 592 68 76.9 72.3
Table 2: MOT metric scores on view 1 of MDP standard method and our MDP multi-view
method on "PETS09-S2L1" sequence

5 Conclusion
In this paper, we presented a new robust online multi-view multi-object tracking method
that naturally handles with the hard occlusion in tracking. Our framework is developed
under the assumption that the multi-camera system is calibrated and synchronized. We ex-
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Method IDF1↑ IDP ↑ IDR↑ FP↓ FN↓ IDs↓ MOTA↑ MOTP↑
MDP standard 9.9 16.4 7.1 727 14136 674 34.2 72.7

MDP multi-view 12.3 20.6 8.8 741 14278 689 33.5 72.6
Table 3: Overall score of MOT metric on MDP standard method comparing with our MDP
multi-view method on "Terrace1" sequence

tended the MDP tracking on multiple views framework and introduced a novel targets asso-
ciation method across views in order to track a multiple of targets collaboratively. We also
showed the effectiveness of our method on the well-known sequences PETS2009 and the
EPFL Multi-view Pedestrian Videos as well.
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