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Abstract—This study proposes the wuse of a
combination of Weighted Fourier Linear Combiner and
Fourier Linear Combiner algorithms to estimate lower
trunk orientation angles during walking using the three
angular velocity components measured by an inertial
measurement unit. The proposed method enables the
determination in real-time of the rotations around three
local orthogonal axes defined relative to their initial
orientations (pitch, roll, and yaw). Since the method is
based on the analytical integration of a Fourier series, it
is suitable for the analysis of quasi-periodic movements
such as gait.

INERTIAL measurement units (IMUs) have gained in
popularity as a means to quantify human motion [1],
thanks to their ease-of-use, robust design, low-cost, and their
small dimensions. These advantages enable their use for
extended periods outside the confines of a laboratory. In
human walking analysis, IMUs have been frequently used to
estimate spatial [2] and temporal [3] features of gait.

An IMU normally includes accelerometers and rate
gyroscopes to measure accelerations and angular velocities,
respectively. Theoretically, the determination of the position
and orientation in space could be obtained by integrating the
above signals. Unfortunately the IMU outputs, and
especially those of the gyroscopes, are subject to drift over
time which jeopardizes the time integration of the raw
signals when estimating orientation data [4]. This problem
has been overcome by using recursive filters, such as
Kalman filters [5], [1]. The use of a Kalman filter associated
with three measured accelerations and three measured
angular velocities however, only allows accurate estimation
of the lower trunk lateral (Roll) and frontal (Pitch) bending
during walking (see Fig.1). The use of an additional sensor,
such as a magnetometer, has been proposed to estimate the
pose of IMU [6], including axial lower trunk angle (Yaw).
As an alternative, this third angle could be estimated using a
model of this missing additional information in the Kalman
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filter [7]. In this case, the modelled variable would act as an
additional non-drifting reference signal.

Fourier Linear Combiner (FLC) [8]-[9] adaptive filters
have been mainly used for detection and cancelling of quasi-
periodic signals such as hand tremor and heart motion [10]
and for applications in microsurgery [7], [11]-[12]. Recently,
they have also been proposed for the analytical integration of
inertial sensor data [4] due to their ability to remove drifts.
FLC filters are based on the Fourier’s theorem that states
that a periodic signal may be represented as a sum of sine
and cosine waves at integer multiples of the fundamental
frequency. From this, one can understand that the
determination of the fundamental frequency is a key
requirement that can limit accurate use of these filters to
periodic or quasi-periodic signals with a known fundamental
frequency. To overcome this limitation, Riviere and Thakor
[11] proposed the Weighted Fourier Linear Combiner
(WFLC) filter, which is an extension of the FLC to be used
when dealing with signals of variable frequency. Since
WFLC and FLC, are adaptive signal processing algorithms,
they exhibit transient phenomena while adapting their
parameters [13]. In these conditions, the more periodic the
signal, the better the estimation of the Fourier series
parameters, and thus their analytical integration will be.
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Fig. 1: Representation of the considered lower trunk
orientation angles expressed in the initial unit local frame.



Many observations have confirmed that human walking
frequency is subject specific but it exhibits a small variation
of 3—4% in the stride interval during walking [14]. However,
even if human walking data can be qualified as quasi-
periodic signals [15], meaning that they repeat almost
identically in every steady-state gait cycle, they cannot be
assumed to be stationary. The non-stationary nature of
human gait, i.e. the stride variability, data can be particularly
apparent in long lasting experiments or with patients
affected by gait abnormalities such as hemiplegic [16] or
elderly [17]. In addition, the gait variability is used as a
quantitative tool to categorize walking performance [16] in
clinical applications. Therefore, if the aim is to provide a
clearer picture of each individual, it is desirable to develop
algorithms that do not assume a stationary signal [11], and
thus that are able to self-adjust their parameters. For this
purpose a very popular class of adaptive filters which
minimize the least mean square (LMS) difference between
the measured signal and its estimate was proposed by
Widrow [13]. WFLC filters are based on the LMS algorithm
and use Fourier series, which are continuously updated, to
represent the measured signal. Once the Fourier series
coefficients are identified they can be analytically integrated
without drift due to the null mean value hypothesis that is
fundamental to the Fourier series. As a consequence, WFLC
seems ideal for modelling and integrating quasi-periodic
human walking signals in which neither frequency nor
amplitude are fixed.

This paper proposes the use of Fourier Linear Combiner
adaptive filters to perform drift-free lower trunk orientation
angles estimation using the three angular velocity
components measured by an IMU.

I. METHODS

In order to estimate the sensor orientation angles,
gyroscope measured angular velocities need to be integrated.
To do this, online tracking of angular velocities will be first
performed. This tracking will allow identification of the
Fourier series coefficients. The identified Fourier series
coefficients will then be analytically integrated.

A. Tracking of angular velocities

The WFLC is an adaptive signal processing algorithm that,
at each sample of time, compares the phase of a measured
signal with its estimate, and modifies the frequency weight
woe [11] to reduce the difference between these two
quantities. Due to its adaptive capabilities, the WFLC can be
used to model a quasi-periodic signal when both amplitude
and frequency are unknown and slightly time-varying. The
WELC input vector X = [Xy, ... Xzp, ]" is [11]:

sin(r Xf-owo,) 1<r<M

Xy, = la
Tk cos((r—M)Zé‘zowot),M+1SrS2M (12)
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where M is the number of harmonics and k is the number of
measured samples.

The instantaneous frequency weight wy, can be estimated by
updating every sample using the equations:

&k = Sk — ngk - ka (lb)
Wores = Woy + 210k Dret T (Wr Xy sy — WigsrXy) (1b)
W1 = Wi + 20Xy € (1d)

where the amplitude and phase of the input signal s, are
estimated by the so-called adaptive vector wj =
[wy,, ...WZMk]T, €, is the instantaneous difference between
the output of the WFLC algorithm and s;. In general, pre-
filtering is used in WFLC, to separate the low frequency
component/drift from the analysed signal. Pre-filtering
inherently introduces phase lag. In order to avoid the use of
pre-filtering, a bias weight w;,, with adaptive gain has been
proposed [13], [19]:
Whypr = Wpy T 21p & (le)
Three adaptation gains are used in the current
implementation of the WFLC algorithm: the frequency (uy),
the amplitude (u), and the bias (). It has to be noted that it
is not possible to define a theoretical time constant for the
algorithm [11], [8], and that the algorithm gains must be
chosen as a trade-off between convergence time and
algorithm stability [13]. High values of the gains can
improve tracking of the input signal but can cause the
algorithm to diverge

To allow the use of high gains values, the WFLC filter has
been used in conjunction with a FLC filter, which receives
as input the estimate of the instantaneous frequency wyy
provided by the WFLC (Fig. 2) together with a different set
of amplitude adaptive gains (ug;c). The tracking can then be
seen as a two step process: the first step, based on the
WFLC, performs the frequency weight identification with a
high y, value and a small u value; the second step identifies
the amplitude weights with a high pg; ¢ value.
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Fig. 2: Block diagram of the proposed approach.



B. Calculation of orientations from gyroscopes data

a)
The estimates of orientation require an integration of
gyroscopes data. Tan and his colleagues [4] recently
illustrated how the identified Fourier series can be
analytically integrated at each sample time using the
following equations:

Wirk = {

where w; is the vector containing the Fourier series
integrated amplitude coefficients, and f; is the sample
frequency.

The instantaneous estimate s; of the integral of the
measured angular velocity can then be obtained as follows:

Integration of gyroscope data

—wy, /(rwo, f5), 1<r<M

wy, /((r — M)wo, fs), M+1<7<2M )

Sij = Wi X (3
b)
The importance of a correct estimate of the frequency
weight wy, to avoid indeterminate values of W is evident
from (2). Estimating values of wy, that are close to zero, such
as in the case of reduced oscillations, (obtained for example
when a subject stops walking), would lead the WFLC
algorithm to diverge. To overcome this problem, the
duration during which the WFLC algorithms can properly be
run must be detected. A windowed algorithm based on a
priori determined threshold 7, is proposed. The threshold is
determined using the mean value and standard deviation of
the first 20 samples of a given signal:

Automatic start-stop detection

T = 81,20 + 25D (51..20) 4)
The mean value of the signal calculated over a moving
window of 20 samples is compared to 7, at each sample of
time, and used to start or stop the WFLC and FLC
algorithms. If the algorithms are stopped then the last values
of wy and w are held in order to avoid the WFLC divergence.

c)
IMU motion occurs in three-dimensions, thus the three
unit local axis (X, y, z) fixed to the device move relative to
the global frame. Consequently, the estimated integrals
(Sixyr Siyy Sizy,) of the angular velocities around each axis
need to be expressed in the unit local frame (ULF), i.e. the
initial local frame defined at the first sample time (Fig. 3).
Instantaneous lower trunk orientations angles (Y, Py, Ry) in
the ULF can be obtained through rigid transformation. This
assumption is justified by the fact that the angles are
relatively small and that the motion is quasi-periodic and
thus do not lead to singularities in the rotation matrices.

Lower trunk orientation angles
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C. Human walking data collection

Ten healthy subjects (5 males, 5 females, age range 24-64
years, stature range 1.60-1.94m, and mass range 69-90kg)
participated in the study after giving informed consent. An
IMU (Freesense, Sensorize srl) was mounted on the lower
back of the subjects so that the axes of the unit local frame
(ULF) were aligned with the anatomical axes of the lower
trunk (see Fig. 3). In addition, three markers were attached
to the unit case and defined a marker-cluster local frame
(MLF).

Subjects were asked to walk at their self-selected
“natural” walking speed (as determined by ad hoc
preliminary trials) on a motorized treadmill for 35s. Angular
velocity data were collected from the IMU (f,=100sample.s’
") while the marker trajectories were tracked by five infrared
cameras (MX, Vicon, fs=100sample.s'l).

Stereophotogrammetric
system

-

Fig. 3: Experimental setup used for the algorithm validation.
Initial posture is used to define the ULF.

Yaw, pitch and roll angles, describing the orientation of
the sensor in the ULF were estimated from the IMU data
using the proposed methodology, and those describing the
orientation of the MLF, were reconstructed from
stereophotogrammetric data. The time-invariant offset of the
MLF orientation relative to the ULF orientation was
mathematically removed through a rigid transformation. In
this way both instruments could be assumed to provide yaw,
pitch and roll angles in the same lower trunk anatomical
frame. It has to be recalled that both ULF and MLF are
affected by the same skin artefacts during the movement and
their accuracy in representing the lower trunk movements
might hence be limited.



D. Input data values

The values of the algorithm parameters were chosen
following the literature and the authors’ experience (see
section I. A). The number of harmonics is typically fixed to
M=1 in the literature and 0< u<uz <1 must be satisfied to
ensure stability [11]. Based on the authors’ experience the
following parameters values were chosen: y,= 1e'4, u=0.08,
Urrc—= 10y, and ,ubZIe'G. The initial estimate of the frequency
weight required by WFLC algorithm was set to w, = 4,
while amplitude weights were set equal to zero.

E. Assessment of accuracy

To assess the accuracy of the proposed approach, its
outputs were compared to the orientation angles estimated
from measured stereophotogrammetric system data. Root
mean square difference (RMSD), and correlation coefficient
(r) were calculated for the comparison.

II. RESULTS
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Fig. 4: Experimental illustration of the proposed method
obtained with a planar motion of the IMU. Black lines
correspond to measured data. Green and blue lines indicate
algorithm estimates with and without the start-stop
detection, respectively.

An experimental illustration of the application of the start-
stop automatic detection obtained with a planar motion of
the IMU is shown in Fig. 4. The IMU was moved back and
forth manually with an amplitude of 30° on a plane at a
frequency close to 1Hz. The green line indicates that by
using start-stop automatic detection, the algorithm is able to
maintain a constant value of orientation angle by stopping
the update of the filter parameters while the WFLC
estimation tends to diverge when oscillations stop (blue
line). It should be noted that the algorithm rapidly re-
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converges with the measured data once the oscillations are
again present.

Fig. 5 exemplifies the ability of the WFLC algorithm in
tracking the measured angular velocities.
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Fig. 5: Angular velocities estimated by the WFLC (blue line)

and measured by the IMU (black line) during a 5s window

extracted from one randomly chosen trial.

Fig. 6 shows the typical behavior of the proposed method:
after a short adaptation time (= 5s), the proposed algorithm
is able to estimate accurately the sensor orientation angles in
the ULF. In addition, the first 5 seconds of the motion
correspond to the acceleration phase of the treadmill.
Nevertheless, the estimate of sensor orientation angles
during this adaptation time seem not to impact RMS and
correlation coefficients calculated for all trials and during all
their duration (Table 1). For all orientation angles and all
trials, the mean RMS difference was lower than 1° (Table 1).
The r» values show a very good correlation between
measured orientation angles and their estimates.

TABLE 1
SUMMARY OF RESULTS OBTAINED OVER 10
WALKING TRIALS
Yaw Pitch Roll
RMSD  0.5+0.1° 0.9+0.1° 0.9+0.6°
r 0.9+0.1 0.9+0.0 0.8+0.1



10

=

Pitch [°]

ﬁ[,“j \//\/ y

[

A
7\

A A

C‘N“‘;: (' f f]
AVAVAYRWA
YAVRTAY \J .
[

|

‘\/ \;\\1\/“ M WWW/J /\/\MN\ﬁ WJ N

[

f‘l\*““d\ // \/‘f“\/vﬂ ‘\/‘AJ\/V/*WAV\/V/% J\;\;ﬁ"VM\‘V'A\q“:\”-’N‘/\‘/‘/\“.f{ﬂ&\ﬁ(\“J‘/ WA JWA W 4/\\#

| [ | [

5 10 15

20 25 30 35

time [s]

Fig. 6: Sensor pitch, roll and yaw angles as obtained for one randomly chosen trial. The black lines represent the angles
obtained from the stereophotogrammetric system and the green lines the output of the proposed algorithm.

Fig. 7 shows the evolution of the frequency estimate
provided by the WFLC adaptive filter, as obtained from the
angular velocity measured around the x-axis of the sensor.
As is clearly apparent in the figure, the frequency is updated
at each sample time and converges rapidly from the initial
guess.
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Fig. 7: Representative estimate of the frequency obtained
with the WFLC algorithm and measured angular velocity
along x-axis of the sensor.

ITI. DISCUSSION

The proposed method provides estimates of the variation
of lower trunk lateral (pitch) and frontal (roll) angles, during
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walking on a treadmill, that are comparable to the
stereophotogrammetric system resolution, i.e. 0.5° [15]. The
accuracy of the estimate obtained with the proposed method
for these two orientation angles is similar to that obtained
using a Kalman filter for a similar task [1]. We believe
however, that a Kalman filter is more robust for un-periodic
motions since its output does not require any assumptions of
the signal characteristics. Axial rotation of the lower trunk
(yaw) can however, also be accurately estimated with the
present method whereas this is not the case with methods
based on a single IMU and using a Kalman filter [1]. IN
addition, the possibility of estimating in real time the sensor
orientation opens the way to a number of applications
requiring, for example, a bio-feedback to the subject [18].

The use of FLC adaptive filters has increased in the last
two decades, with the development of several
implementations to extend its field of application [11]. The
WFLC algorithm generally adapts to a single frequency
present in the analyzed signal [11], [17]. For the case of a
signal modulated by two or more frequencies close in
spectral domain, the performance of the WFLC can be
degraded [11], [17]. To overcome the problems associated
with a modulated signal, a very popular Band-limited
Multiple Fourier Linear Combiner (BMFLC) [17], [19] that
can track band limited modulated signals was proposed. The
BMFLC filter requires an a prior determined set of
frequencies. In walking analysis application the fundamental
frequency can have high variations from trial to trial. As a
consequence, the WFLC algorithm, which is able to track
the frequency change (Fig. 7), was chosen in this study. In
this context, the proposed algorithm may not provide the



best estimate of lower trunk orientation angles however it
appears to be robust enough to handle human walking
variability. Finally, the frequency estimate could provide
interesting interpretation of gait variability [16] and this
particular aspect will be addressed in the future.

1IV. CONCLUSION

This study proposed the use of a combination of WFLC
and FLC adaptive filters to estimate of the lower trunk
orientations during treadmill walking. The proposed method
can be used for estimating lower trunk lateral, frontal, and
axial rotations during walking for a prolonged period of
time. Future work will consist in validating our method with
other quasi-periodic tasks such as squatting, rowing,
running, or swimming. The limitations on the use of this
method with other motor-tasks and for the estimation of
variables other than lower trunk orientation angles need
further investigation.

ACKNOWLEDGMENT

The authors would like to acknowledge the support of
Dr. Lana Z. Popovic from the University of Belgrade
(Serbia) for the help in implementing the method.

REFERENCES

C. Mazza, M. Donati, J. McCamley, P. Picerno, and A.
Cappozzo, “An optimized Kalman filter for the estimate
of trunk orientation from inertial sensors data during
treadmill walking”, Gait and Posture, 2011, vol. 35, pp.
138-142.

R. Moe-Nilssen, and J.L. Helbostad, “Estimation of gait
cycle characteristics by trunk accelerometry”, J.
Biomech., vol. 37, pp.121-6, 2004.

K. Aminian, et al., “Temporal feature estimation during
walking using miniature accelerometers: an analysis of
gait improvement after hip arthroplasty”, Med. Biol.
Eng. Comput., vol. 37, pp. 686-91, 1999.

U.X. Tan, K.C. Veluvolu, W.T. Latt, C.Y. Shee, C.N.
Riviere, and W. T. Ang, “Estimating displacement of
periodic motion with inertial sensors”, IEEE Sensors J.,
vol. 8,pp. 1385-1388.

A.M. Sabatini, “Quaternion-based extended Kalman
filter for determining orientation by inertial and
magnetic sensing”, IEEE Trans. Biomed. Eng., vol. 53,
pp. 1346-56, 2006.

B. Kemp, J. Janssen, and B. van der Kamp, “Body
position can be monitored in 3D using miniature
accelerometers and earth-magnetic field sensors”,
Electro. Clin. Neurophysiol., vol. 6, pp. 484-8, 1998.
J.A. Gallego, E. Rocon, J. O. Roa, J. C. Moreno and J.
L.,” Real-Time Estimation of Pathological Tremor

(4]

372

Parameters from Gyroscope Data”, Sensors, vol. 10,pp.

2129-2149, 2010.

C.A. Vaz, X. Kong, and N.V. Thakor, “An adaptive

estimation of periodic signals using a Fourier Linear

Combiner”, IEEE Trans. Signal Process, vol. 42, pp. 1—

10, 1994.

C.A. Vaz, and N.V. Thakor, “Adaptive Fourier

estimation of time varying evoked potentials”, IEEE

Trans. Biomed. Eng., vol. 36, pp. 448—455, 1989.

[I0]R. Richa, A. P. L. Bo, and P. Poignet, “ Motion
Prediction for Tracking the Beating Heart”, In Proc. of
IEEE Int. Conf. EMBS, pp. 3261-3264, Vancouver,
Canada, 2008.

[11]C. N. Riviere, R. S. Rader, and N. V. Thakor, “Adaptive
canceling of physiological tremor for improved
precision in microsurgery”, IEEE Trans. Biomed. Eng.,
vol. 45, pp. 839-846, 1998.

[12]K.C. Veluvolu, and W.T. Ang, “Estimation and filtering
of physiological tremor for real-time compensation in
surgical robotics applications”, Int. J. med. Robot., vol.
6, pp. 334-342, 2010.

[13]1B. Widrow, and S.D. Stearns, Adaptive Signal
Processing, Prentice-Hall, Englewood Cliffs, N.J.,
1985, pp. 474.

[14]]. Rose, D. W. Morgan, and J. G. Gamble, Human
Walking, edited by J. Rose and J. G. Gamble, Lippincott
Williams & Wilkins, 2006.

[15]F. Pecoraro, C. Mazza, M. Zok, and A. Cappozzo,
“Assessment of level-walking aperiodicity”, J. of
Neuroengineering and Rehabilitation, vol. 3:28, 2006.

[16]C.K. Balasubramanian , R.R. Neptune, S.A. Kautz,
“Variability in spatiotemporal step characteristics and
its relationship to walking performance post-stroke”,
Gait and Posture, vol. 2, pp. 408—414, 2009.

[17]1K.C. Veluvolu, W.T. Latt, W.T. Ang,”Double adaptive
bandlimited multiple Fourier linear combiner for real-
time estimation/filtering of physiological tremor”, vol.
5, Pages 3744, 2010.

[18]B. C. Lee, J. Kim, S. Chen and K. H. Sienko,”Cell
phone based balance trainer”, J. of Neuroengineering
and Rehabilitation, vol. 9:10, 2012.

[19]W.T. Latt, K. C. Veluvolu, and W. T. Ang, “Drift-free
position estimation of periodic or quasi-periodic motion
using inertial sensors”, Sensors, vol. 11, pp. 5931-595,
2011.

(8]

[9]



