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Many observations have confirmed that human walking 

frequency is subject specific but it exhibits a small variation 

of 3±4% in the stride interval during walking [14]. However, 

even if human walking data can be qualified as quasi-

periodic signals [15], meaning that they repeat almost 

identically in every steady-state gait cycle, they cannot be 

assumed to be stationary. The non-stationary nature of 

human gait, i.e. the stride variability, data can be particularly 

apparent in long lasting experiments or with patients 

affected by gait abnormalities such as hemiplegic [16] or 

elderly [17]. In addition, the gait variability is used as a 

quantitative tool to categorize walking performance [16] in 

clinical applications. Therefore, if the aim is to provide a 

clearer picture of each individual, it is desirable to develop 

algorithms that do not assume a stationary signal [11], and 

thus that are able to self-adjust their parameters. For this 

purpose a very popular class of adaptive filters which 

minimize the least mean square (LMS) difference between 

the measured signal and its estimate was proposed by 

Widrow [13]. WFLC filters are based on the LMS algorithm 

and use Fourier series, which are continuously updated, to 

represent the measured signal. Once the Fourier series 

coefficients are identified they can be analytically integrated 

without drift due to the null mean value hypothesis that is 

fundamental to the Fourier series. As a consequence, WFLC 

seems ideal for modelling and integrating quasi-periodic 

human walking signals in which neither frequency nor 

amplitude are fixed. 

This paper proposes the use of Fourier Linear Combiner 

adaptive filters to perform drift-free lower trunk orientation 

angles estimation using the three angular velocity 

components measured by an IMU. 

 

I. METHODS 

 

In order to estimate the sensor orientation angles, 

gyroscope measured angular velocities need to be integrated. 

To do this, online tracking of angular velocities will be first 

performed. This tracking will allow identification of the 

Fourier series coefficients. The identified Fourier series 

coefficients will then be analytically integrated. 

 

A. Tracking of angular velocities  

The WFLC is an adaptive signal processing algorithm that, 

at each sample of time, compares the phase of a measured 

signal with its estimate, and modifies the frequency weight 

w0k [11] to reduce the difference between these two 

quantities. Due to its adaptive capabilities, the WFLC can be 

used to model a quasi-periodic signal when both amplitude 

and frequency are unknown and slightly time-varying. The 

WFLC input vector �Þ L >T5Ö å T6Æa
?Í  is [11]: 
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where M is the number of harmonics and k is the number of 

measured samples.  

The instantaneous frequency weight S4Öcan be estimated by 

updating every sample using the equations: 
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where the amplitude and phase of the input signal sk are 

estimated by the so-called adaptive vector �Þ L>S5Ö åS6Æa
?Í, ÝÞ is the instantaneous difference between 

the output of the WFLC algorithm and sk. In general, pre-

filtering is used in WFLC, to separate the low frequency 

component/drift from the analysed signal. Pre-filtering 

inherently introduces phase lag. In order to avoid the use of 

pre-filtering, a bias weight SÕÖ with adaptive gain has been 

proposed [13], [19]: 

 

  SÕÖ6- L SÕÖ E täÕÝÞ�������������������������������������������������������������(1e) 

 

Three adaptation gains are used in the current 

implementation of the WFLC algorithm: the frequency (�0), 

the amplitude (�), and the bias (�b). It has to be noted that it 

is not possible to define a theoretical time constant for the 

algorithm [11], [8], and that the algorithm gains must be 

chosen as a trade-off between convergence time and 

algorithm stability [13]. High values of the gains can 

improve tracking of the input signal but can cause the 

algorithm to diverge  

 

To allow the use of high gains values, the WFLC filter has 

been used in conjunction with a FLC filter, which receives 

as input the estimate of the instantaneous frequency w0k  

provided by the WFLC (Fig. 2) together with a different set 

of amplitude adaptive gains (�FLC). The tracking can then be 

seen as a two step process: the first step, based on the 

WFLC, performs the frequency weight identification with a 

high �0 value and a small � value; the second step identifies 

the amplitude weights with a high �FLC value. 

 

 

 
Fig. 2: Block diagram of the proposed approach.  
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B. Calculation of orientations from gyroscopes data 

a) Integration of gyroscope data 

The estimates of orientation require an integration of 

gyroscopes data. Tan and his colleagues [4] recently 

illustrated how the identified Fourier series can be 

analytically integrated at each sample time using the 

following equations:  
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where �� is the vector containing the Fourier series 

integrated amplitude coefficients, and fs is the sample 

frequency.  

The instantaneous estimate OÜÖ �of the integral of the 

measured angular velocity can then be obtained as follows: 

 

OÜÖ L �ÜÖ
.��Þ                                                                       (3) 

b) Automatic start-stop detection 

The importance of a correct estimate of the frequency 

weight w0, to avoid indeterminate values of �6  is evident 

from (2). Estimating values of w0k that are close to zero, such 

as in the case of reduced oscillations, (obtained for example 

when a subject stops walking), would lead the WFLC 

algorithm to diverge. To overcome this problem, the 

duration during which the WFLC algorithms can properly be 

run must be detected. A windowed algorithm based on a 

priori determined threshold Tr is proposed. The threshold is 

determined using the mean value and standard deviation of 

the first 20 samples of a given signal:  

 

6å L O§5å64 E t5&:O§5å64;                                                   (4) 

 

The mean value of the signal calculated over a moving 

window of 20 samples is compared to Tr at each sample of 

time, and used to start or stop the WFLC and FLC 

algorithms. If the algorithms are stopped then the last values 

of w0 and w are held in order to avoid the WFLC divergence.  

c) Lower trunk orientation angles 

IMU motion occurs in three-dimensions, thus the three 

unit local axis (x, y, z) fixed to the device move relative to 

the global frame. Consequently, the estimated integrals :OÜëÖ á OÜìÖ á OÜíÖ; of the angular velocities around each axis 

need to be expressed in the unit local frame (ULF), i.e. the 

initial local frame defined at the first sample time (Fig. 3). 

Instantaneous lower trunk orientations angles (;Þ á2Þ á4Þ) in 

the ULF can be obtained through rigid transformation. This 

assumption is justified by the fact that the angles are 

relatively small and that the motion is quasi-periodic and 

thus do not lead to singularities in the rotation matrices. 

 

 

C. Human walking data collection 

 

Ten healthy subjects (5 males, 5 females, age range 24-64 

years, stature range 1.60-1.94m, and mass range 69-90kg) 

participated in the study after giving informed consent. An 

IMU (Freesense, Sensorize srl) was mounted on the lower 

back of the subjects so that the axes of the unit local frame 

(ULF) were aligned with the anatomical axes of the lower 

trunk (see Fig. 3). In addition, three markers were attached 

to the unit case and defined a marker-cluster local frame 

(MLF). 

Subjects were asked to walk at their self-selected 

³QDWXUDO´� ZDONLQJ� VSHHG� �DV� GHWHUPLQHG� E\� DG� KRF�

preliminary trials) on a motorized treadmill for 35s. Angular 

velocity data were collected from the IMU (fs=100sample.s
-

1
) while the marker trajectories were tracked by five infrared 

cameras (MX, Vicon, fs=100sample.s
-1

). 

 

 
 

Fig. 3: Experimental setup used for the algorithm validation. 

Initial posture is used to define the ULF. 

 

Yaw, pitch and roll angles, describing the orientation of 

the sensor in the ULF were estimated from the IMU data 

using the proposed methodology, and those describing the 

orientation of the MLF, were reconstructed from 

stereophotogrammetric data. The time-invariant offset of the 

MLF orientation relative to the ULF orientation was 

mathematically removed through a rigid transformation. In 

this way both instruments could be assumed to provide yaw, 

pitch and roll angles in the same lower trunk anatomical 

frame. It has to be recalled that both ULF and MLF are 

affected by the same skin artefacts during the movement and 

their accuracy in representing the lower trunk movements 

might hence be limited. 
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best estimate of lower trunk orientation angles however it 

appears to be robust enough to handle human walking 

variability. Finally, the frequency estimate could provide 

interesting interpretation of gait variability [16] and this 

particular aspect will be addressed in the future. 

IV. CONCLUSION 

 
  This study proposed the use of a combination of WFLC 

and FLC adaptive filters to estimate of the lower trunk 

orientations during treadmill walking. The proposed method 

can be used for estimating lower trunk lateral, frontal, and 

axial rotations during walking for a prolonged period of 

time. Future work will consist in validating our method with 

other quasi-periodic tasks such as squatting, rowing, 

running, or swimming. The limitations on the use of this 

method with other motor-tasks and for the estimation of 

variables other than lower trunk orientation angles need 

further investigation. 
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