
Learning 6D Object Pose Estimation
using 3D Object Coordinates
- Supplementary Material -

Eric Brachmann1, Alexander Krull1, Frank Michel1, Stefan Gumhold1, Jamie
Shotton2, and Carsten Rother1

1 TU Dresden, Dresden, Germany
2 Microsoft Research, Cambridge, UK

This supplementary material is not necessary to understand the main pa-
per. As mentioned in the main paper the supplementary material discusses the
following points in more detail:

– Details on our dataset
– Details on the decision forest
– Deduction of Eq.1 of the main paper (calculating object probabilities)
– List of parameter settings
– Exact definition of the pose tolerance
– Detailed qualitative and quantitative results for the data of Hinterstoisser et

al. [2] and our data.
– Additional experimental results regarding detection, occlusion and contribu-

tion of our different energy terms.
– Description of the supplementary video

1 Data Acquisition

In this section we describe our data acquisition process. Fig. 1 displays the
scan and preprocessing pipeline. The objects are scanned with a commercially
available Kinect camera and are segmented in each RGB-D image afterwards.
This procedure is done three times with varying lighting conditions. For each
object we obtain three sequences which are shown exemplarily for five of our
objects in Fig. 2. Fig. 3 shows every object of our dataset with its name.

2 Details on the Decision Forest

Forest Features. In the feature design for the tree nodes we follow [7] in their
use of various simple RGB and depth features. The features are extremely fast to
evaluate because they are based on simple pixel comparisons [3, 6]. The feature
responses can be computed as follows:
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Fig. 1. Training data acquisition pipeline. For each object we run the following acqui-
sition procedure. We use the commercially available Kinect camera and KinectFusion
[4] system to obtain a 3D scan of the scene together with the camera poses (b) and
the RGB-D data for each captured frame (a). The black holes in the RGB-D images
correspond to pixels were no depth information was available. (b) A top-side view with
a subset of 50 out of 1000 camera-frusta, and the object (red) in the center. The object
has been manually segmented in 3D. (c) A 3D bounding box (light blue) is positioned
around the object (shown as the depth map from the camera with red frustum in (b)).
The object mask for each RGB-D frame is then defined by all object pixels where the
corresponding depth values fall inside the bounding box. (d) For training we use the
segmented RGB-D images. The segmentation has holes and is imperfect at boundaries,
due to the inaccurate and missing depth values from Kinect. However, the test data
presents similar noise characteristics, and so it is beneficial to have such noise in the
training images (rather than e.g. rendering from the 3D reconstruction in (b)). In (e)
we show the continuous 3D object coordinates, and in (f) the quantized 3D object
coordinates on a 5 × 5 × 5 grid. This quantization is used to compute the objective
function for learning the tree structure. Both, (e) and (f) are derived directly from the
3D object bounding box only.
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Fig. 2. Three different lighting conditions. For each object we gathered training and
test images under three different lighting conditions: bright artificial light (left), darker
natural light (middle), directional spot light (right). Note that the markers on the table
are used only to register scans of different lighting conditions.
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Audiobox Carry Case Dishsoap Helmet Hole Puncher

Pump Teapot Toolbox Toy (Battle Cat) Toy (Panthor)

Toy (Stridor) Stu�ed Cat Duck Dwarf Mouse

Owl Elephant Samurai Abstract Sculpture 1 Abstract Sculpture 2

Fig. 3. Each object of our dataset segmented and labeled with its name. This is the
same segmentation we use for training our decision forests.
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where I(pi, γ) = xrgb
i [γ] returns the R, G, or B channel of a pixel according to

γ, and d(pi) = di returns the depth at position pi. Abbreviations ‘da-rgb’ and
‘da-d’ stand for depth adaptive RGB differences and depth adaptive depth differ-
ences. ω indicates a 2D offset. The division by di makes the features largely depth
invariant, and is similar in spirit to [8]. Each split node in the forest thus stores
a unique set of parameters θn ⊆ {ω1,ω2, γ1, γ2, z, τf}, with z ∈ {da-d,da-rgb}
indicating the type of feature to use. τf denotes a threshold on the feature re-
sponse that decides whether a pixel goes to the left or the right child of a node.
This threshold is also stored per node.

We also tested absolute LAB features, and features built on the angles be-
tween estimated normals but both without performance gain.

Forest Training. In the following, we describe the training of a randomized
decision tree. The procedure is the same for all trees of the forest. We will treat
the training images as a combined set of training pixels. Each training pixel i is
characterized by its position pi, its color xrgb

i , its depth di, its object instance
label ci and its object coordinate yi.

Training starts at the top node where a feature with parameters θ is selected
with the goal to reduce the uncertainty in p(c) and p(y|c) the most (based on
the training data). The selected feature divides the data to go to the left resp.
the right child node, where the feature selection process repeats. This process
iterates until a stopping criterion is met. This is the case if a maximum depth has
been reached, or not enough training pixels arrived at the node. Due to runtime
complexity only a random sub-sampling of both, training pixels and features, is
used. This also introduces variability between trees in the forest, and hence the
ability to generalize to unseen data.

The selection of features at each node is based on a split score which should
be able to handle well the discrete distribution p(c) and the continuous location
distribution p(y|c). We quantize the continuous object coordinate labels y based
on a grid to obtain discrete object coordinate labels ŷ. We denote by pη(ŷ, c)

the joint distribution at node η, and by pθ,←η (ŷ, c) resp. pθ,→η (ŷ, c) the distri-
butions in the left resp. the right child of node η, split by parameters θ. We
select parameters θ such that the information gain IG in objects and classes is
maximized:

IG(η,θ) = H(pη(ŷ, c))

−
∑

k∈{←,→}

[ |ηk|
|η|
H(pθ,kη (ŷ, c))

]
(3)

where H(pη(ŷ, c)) = −
∑
c

∑
ŷ pη(ŷ, c) log pη(ŷ, c), |η| is the number of training

pixels which arrived at that node, and |ηk|, k ∈ {←,→} is the number of pixels
split to the left resp. the right child node.
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3 Combining Object Probabilities from Multiple Trees

In this section we will give a deduction of Eq. 1 in the main paper, where we
combine the probability outputs of the individual trees to calculate the object
probabilities pc,i. Our goal is to calculate the approximate probability pc,i ≈
p(c|li), that a pixel i belongs to object c given it ended up in the leafs li =

(l1i , . . . , l
|T |
i ) of the trees T 1 . . . T |T |. Based on Bayes’ theorem we can calculate

this probability as

p(c|li) =
p(c, li)

p(li)
(4)

=
p(c, li)∑

ĉ∈C p(ĉ, li) + p(bg, li)
, (5)

where p(li) is the joint probability that a pixel ends up in the leafs li regardless
the object it belongs to. The expression p(bg, li) denotes the joint probability,
that the pixel is part of the background and ends up in the leafs li. We will first
focus on calculating the joint probability p(c, li) that the pixel belongs to object
c and ends up in the leafs li. It can be calculated as

p(c, li) = p(c)p(li|c) (6)

= p(c)

|T |∏
j=1

p(lji |c), (7)

where equation 7 is based on the assumption of conditional independence of
the leaf outcomes li given the pixel’s object affiliation c. This assumption can
be seen as problematic, since the trees were trained to separate pixels not only
according to object affiliation but also according to their position in object space.
Our calculations should thus be viewed as an approximation. We can calculate
the conditional probability p(lji |c) for a leaf outcome lji given the pixel is part of
object c as

p(lji |c) =
p(c|lji )p(l

j
i )

p(c)
, (8)

where p(lji ) is the a priori probability of the leaf outcome lji . We can thus calculate
the joint probability p(c, li) for the object affiliation c and leaf outcome li as

p(c, li) = p(c)

|T |∏
j=1

p(c|lji )p(l
j
i )

p(c)
, (9)

In a similar fashion we can calculate the joint probability p(c, li) for the pixel is
part of the background and leaf outcome li as
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p(bg, li) = p(bg)

|T |∏
j=1

p(bg|lji )p(l
j
i )

p(bg)
, (10)

where p(bg) is the a priori probability that a pixel belongs to background. By
combining equations 5, 9 and 10 we can calculate the desired probability

p(c|li) =
p(c, li)

p(li)
, (11)

=
p(c, li)∑

ĉ∈C p(ĉ, li) + p(bg, li)
, (12)

=
p(c)

∏|T |
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j
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p(ĉ|lji )p(l
j
i )

p(ĉ)
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(14)

If we assume that the a priori probability p(c) that a pixel is part of an object
c is the same for each object and identical to the a priori probability p(bg) that
a pixel is part of the background, we can simplify:

p(c|li) =

∏|T |
j=1 p(c|l

j
i )p(l

j
i )(∑

ĉ∈C
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j
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=
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j
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The factor
∏|T |
j=1 p(l

j
i ) is present in the numerator and denominator. We can

thus finally write:

pc,i = p(c|li) =

∏|T |
j=1 p(c|l

j
i )(∑

ĉ∈C
∏|T |
j=1 p(ĉ|l

j
i )
)

+
∏|T |
j=1 p(bg|l

j
i )
.

The probabilities p(c|lji ) and p(bg|lji ) are stored at the leaf lji . In our implemen-
tation we add a small constant (const = 10−8) in the denominator for numerical
stability.



8 E. Brachmann, A. Krull, F.Michel, S. Gumhold, J. Shotton, C. Rother

4 Complete List of Parameter Settings

The following settings were used in all pose estimation experiments:

Training Parameters

maximum feature offset: 20 pixel meters
number of features generated at each node: 1000
ratio of ‘da-d’ to ‘da-rgb’ features 0.5
number of trees |T |: 3
random pixels per image to learn tree structure: 1000
random pixels per image to learn leaf distributions: 5000
stopping criterion: minimum number of pixels per
node:

50

Testing Parameters

depth comp. weight λdepth: 1.5
coordinate comp. weight λcoord: 1
object comp. weight λobj: 1
threshold τd used in Edepthc : 50 mm
threshold τy used in Ecoordc : (0.2 · δc)2
threshold τpc used in Ecoordc : 10−8

number of Hypothesis to be sampled: 210
threshold used during sampling of poses: 0.05 · δc
inlier threshold used in refinement: 20 mm
number of Hypothesis to be refined: 25

5 Exact Definition of the Pose Tolerance

We follow Hinterstoisser[2] by measuring accuracy as the fraction of test images
where the pose of the object in question was estimated correctly. Poses are
correct, if the following inequality holds:

τp <
1

|M|
∑
x∈M

||Hx− H̃x|| (17)

where M is the set of all object vertices, H is the ground truth pose and H̃ is
the estimated pose. For rotationally symmetric objects (e.g. a bowl) a slightly
different metric is used:

τp <
1

|M|
∑

x1∈M
min
x2∈M

||Hx1 − H̃x2||. (18)

The threshold τp is fixed to be 10% of the object diameter. The following objects
from our dataset were considered rotationally symmetric: Dish Soap, Abstract
Sculpture 2 and Toolbox. The following objects from the Hinterstoisser dataset
were considered rotationally symmetric: Glue and Box.
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6 Detailed Qualitative and Quantitative Results

Complete quantitative results for all of our own objects are included in Table 1,
and Fig. 4 shows more qualitative examples of the output of our system on our
dataset. Table 2 lists all quantitative results on the Hinterstoisser dataset, and
Fig. 5 shows more qualitative examples.

Table 1. Accuracy on our dataset when testing with different lighting (spot light) and
same lighting (bright light) compared to the training data.

Object bright test condition spot test condition

Audio Box 90.5% 75.4%
Carry Case 97.9% 95.9%
Dish Soap 100.0% 100.0%
Helmet 91.0% 77.6%
Hole Puncher 99.9% 98.1%
Pump 81.5% 69.3%
Teapot 99.5% 91.9%
Toolbox 99.0% 99.5%
Toy (Battle Cat) 96.9% 91.8%
Toy (Panthor) 99.7% 96.9%
Toy (Stridor) 97.8% 94.0%
Stuffed Cat 100.0% 98.3%
Duck 89.9% 81.6%
Dwarf 87.7% 67.6%
Mouse 94.6% 89.1%
Owl 97.3% 60.5%
Elephant 98.6% 94.7%
Samurai 97.7% 98.5%
Sculpture 1 92.5% 82.7%
Sculpture 2 99.9% 100.0%

Average 95.6% 88.2%
Median 97.7% 93.0%
Best 100.0% 100.0%
Worst 81.5% 60.5%

7 Additional experimental results

In this section we report results of additional experiments that proof the de-
tection capability of our approach and its performance on occluded objects.
Furthermore, we analyze the contribution each part of our energy formulation.

7.1 Detection Task

Our main experimental setup deals with the task of pose estimation of a known
object in a RGB-D image. In many applications, the presence of an object is
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Fig. 4. Qualitative results on our dataset. Poses estimated with our system (blue
bounding box) versus the ground truth pose (green bounding box). Next to each test
image are the predicted object coordinates y from one tree of the forest. The inlay
figures show the ground truth object coordinates (top) and the best object coordinates
(bottom), where “best” is the best prediction of all trees with respect to ground truth
(for illustration only).
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Fig. 5. Qualitative results on the Hinterstoisser dataset. Poses estimated with our
system (blue bounding box) versus the ground truth pose (green bounding box). Next
to each test image are the predicted object coordinates y from one tree of the forest.
The inlay figures show the ground truth object coordinates (top) and the best object
coordinates (bottom), where “best” is the best prediction of all trees with respect to
ground truth (for illustration only).
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Table 2. Results on the Hinterstoisser et al. dataset with synthetic training data, real
training data and different background models (plane, noise). We see that our approach
is consistently superior to [2, 5].

Synth. Training Real Training

LINEMOD[2] DTT-3D[5] Our(plane) Our(noise) Our(plane) Our(noise)

Ape 95.8% 95.0% 95.8% 85.4% 91.1% 89.2%
Bench V. 98.7% 98.9% 100.0% 98.9% 100.0% 99.7%
Cam 97.5% 98.2% 99.6% 92.1% 98.7% 95.5%
Can 95.4% 96.3% 95.9% 84.4% 99.6% 98.9%
Cat 99.3% 99.1% 100.0% 90.6% 99.7% 98.8%
Driller 93.6% 94.3% 99.5% 99.7% 99.9% 100.0%
Duck 95.9% 94.2% 95.9% 92.7% 96.8% 94.4%
Box 99.8% 99.8% 98.0% 91.1% 100.0% 99.2%
Glue 91.8% 96.3% 98.9% 87.9% 91.7% 96.7%
Hole P. 95.9% 97.5% 99.4% 97.9% 99.6% 99.0%
Iron 97.5% 98.4% 97.6% 98.8% 99.9% 100.0%
Lamp 97.7% 97.9% 99.8% 97.6% 99.1% 98.7%
Phone 93.3% 95.3% 97.6% 86.1% 98.8% 95.8%
Bowl 99.9% 99.7% - - - -
Cup 97.1% 97.5% - - - -

Avg. 96.6% 97.2% 98.3% 92.6% 98.1% 97.4%
Med. 97.1% 97.5% 98.9% 92.1% 99.6% 98.8%
Max. 99.9% 99.8% 100.0% 99.7% 100.0% 100%
Min. 91.8% 94.2% 95.8% 84.4% 91.1% 89.2%

unknown and has to be established first. This can be done by defining a threshold
on the energy of the final pose estimate. The system would report a detection
only if this energy is below the threshold. In the following experiment we evaluate
the detection performance of this approach.

We perform this experiment on the Hinterstoisser [2] images since they con-
tain dense clutter. In each of the 13 object image sets we only search for the
corresponding object, although other objects might be present. This is because
the Hinterstoisser dataset only provides ground truth for one object per set.
We run our full pipeline to extract one hypothesis per image. We extract a 2D
bounding box based on this hypothesis3, following the detection evaluation setup
in [5]. The bounding boxes of all images of a sequence are ranked according to
their hypothesis’ energy. The ground truth bounding box is extracted using the
ground truth pose. As in [5], we consider a detection correct if the intersection
over union of detected bounding box and ground truth bounding box is at least
70%. We generated precision-recall curves for each of the 13 Hinterstoisser ob-
jects and calculated the average precision4, AP .In Fig. 6 we show precision-recall

3 We render the object segmentation mask based on the pose hypothesis and use its
bounding box.

4 We calculate AP according to VOC2012[1].
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curves for 4 representative objects, with large and small AP. The mean AP is
0.88, which proves sensible detection performance on the Hinterstoisser dataset.
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Cat, AP=0.97654

Hole Puncher, AP=0.97758

Glue, AP=0.73331

Phone, AP=0.73574

Fig. 6. Detection performance. Precision-recall curves of 4 different objects. The mean
AP of all 13 objects is 0.88

7.2 Occlusion Dataset

Our dataset and the dataset of [2] are free of occlusions. While the objects
annotated in the dataset of [2] are embedded in dense clutter, they are still
fully visible in each frame. Hence, to demonstrate robustness against occlusion
we created a new dataset. We annotated one sequence (“Bench Vise”, ca. 1200
frames) of the dataset of [2] with 6DOF poses of 8 additional objects present in
the scene. Depending on the viewing direction, these objects occlude each other
to a large extent making this dataset very challenging. Fig. 7 shows one frame
with all annotations marked, and a closeup of a heavily occluded object.

We annotated the sequence by initializing the pose of each object by hand,
and propagating the object pose via the groundtruth transformation of each
frame. If the propagation produced errors or when the object was moved within
the scene we reinitialized by hand. For each frame, all poses were refined by ICP.
We term this dataset occlusion dataset and make the annotation data publicly
available.
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Fig. 7. Left: One frame of the Bench Vise sequence of the dataset of [2] annotated
with poses of 8 additional objects (each shown as bounding box). The original dataset
contains only the pose of one object (green bounding box). Note that some objects are
occluded. Right: Our annotations also include heavily occluded objects (here Ape, blue
bounding box).

We applied our full pose estimation approach to this challenging dataset,
resulting in 67.3% average accuracy. Our re-implementation of [2] achieves only
54.4% average accuracy. Consequently, we demonstrate superior robustness to
occlusion. Table 3 shows detailed results.

Table 3. Results on the occlusion dataset. We compare our full energy to an energy
which uses depth only, and to the approach of [2].

Full Energy Depth C. Only LINEMOD[2]

Ape 62.6% 51.9% 49.8%
Bench V. 100.0% 98.8% 98.7%
Can 80.2% 98.8% 51.2%
Cat 50.0% 27.7% 34.9%
Driller 84.3% 71.8% 59.6%
Duck 67.6% 57.8% 65.1%
Box 8.5% 2.4% 39.6%
Glue 62.8% 33.3% 23.3%
Hole P. 89.9% 71.5% 67.2%

Avg. 67.3% 57.1% 54.4%
Med. 67.6% 57.8% 51.2%
Max. 100.0% 98.8% 98.7%
Min. 8.5% 2.4% 23.3%
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7.3 Contribution of Energy Terms

We conducted further experiments to reveal the contribution of our individual
energy terms. We repeated pose estimation experiments on the dataset of [2],
but using each energy component alone. Results are included in Table 4. The co-
ordinate component and the object component alone give clearly inferior results.
The depth component alone gives results comparable to the full energy. However,
we repeated tests on the occlusion dataset introduced above, and observe that,
here, the depth component alone achieves only 57.1% average accuracy instead
of 67.3% with our full energy (see third column of Table 3).

Furthermore, we include an additional baseline: Similar to [7] we used the
percentage of inlier pixels in ML

c (Hc) (see Sec. 3.2 of the main paper) instead
of our energy to rate hypotheses. Inliers are defined as in Sec. 3.3 of the main
paper. We observe 40.3% average accuracy on the dataset of [2], which clearly
demonstrates that our energy formulation is superior.

Table 4. Results on the dataset of [2] with different variants of our energy.

Full Energy Depth C. Only Obj. C. Only Coord. C. Only Inlier Energy[7]

Ape 95.8% 88.8% 75.5% 79.8% 61.5%
Bench V. 100.0% 98.8% 50.6% 89.5% 37.7%
Cam 99.6% 96.9% 32.8% 85.3% 21.3%
Can 95.9% 97.4% 59.7% 70.0% 23.3%
Cat 100.0% 97.8% 77.6% 96.7% 47.1%
Driller 99.5% 99.1% 55.3% 78.4% 50.0%
Duck 95.9% 93.4% 49.2% 76.2% 42.9%
Box 98.0% 97.5% 52.6% 49.8% 27.3%
Glue 98.9% 95.3% 82.5% 58.7% 63.8%
Hole P. 99.4% 98.1% 25.6% 91.6% 34.5%
Iron 97.6% 98.6% 23.1% 80.5% 44.7%
Lamp 99.8% 99.8% 35.7% 91.6% 40.9%
Phone 97.6% 91.8% 15.1% 60.3% 29.1%

Avg. 98.3% 96.4% 48.9% 77.6% 40.3%
Med. 98.9% 97.5% 50.6% 79.8% 40.9%
Max. 100.0% 99.8% 82.5% 96.7% 63.8%
Min. 95.8% 88.8% 15.1% 49.8% 21.3%

8 Supplementary Video

In our supplementary video we show pose estimation results for single and mul-
tiple objects under different lighting conditions and occlusion. We use the same
forest as for the experiments on our dataset in the main paper. It was trained
with bright and dark training sets of all of our 20 objects.

In order to obtain more precise pose estimates we take the hypothesis with
the best energy after refinement and use it as initialization for local optimization
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of our energy function using a general purpose optimization algorithm. This
would not give substantially different results in our experiments due to the pose
tolerance thresholds, but the visual result is more pleasing.

In addition we run this local optimization for the pose estimated in the last
frame, and add the refined pose to the hypotheses pool of the current frame. We
use the pose with lowest energy as the pose estimate displayed.
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