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In this supplementary material, we prove the two lemma in the main paper.

Lemma 1. Suppose thatl satisfies z; > m

are variables generated by the Algorithm 3, Then

T mi .
(1) If zmia > mid—k+r+1-di-6(r+1) then mid <.

Tr,mi .
(2) If zpmia < mid—k+r+1j—B(r+l) then | < mid — 1.

And

Lemma 2. For any r such that r € [0,k — 1]. If zi,_, > 0, it definitely exists a
l satisfies z; > l—kwflw > 2141 in the range of [k —r,nd]. If zp—,. = 0, we
can return l =k —r.

Before we prove the Lemma 1, we need the following two lemmas.

Tr,1 Tri—1

Lemma 3. Ifz; > [y s e p ) then z;_1 > [ s s e where T,.; =
Zi:k—r Zi
Proof.
ziepx(l—1—k+rL+1+p5(r+1))
=zgax(l—k+r+14+8(r+1)— 2z
>ax(l—k+r+14+8(r+1)—2z-1 (1)
>Tr — 211

= Lri-1

where the first inequality follows z;_1 > z; and the second inequality is the
assumption. |

Ty,

! Tri+1
l—k+r+1+5(r+1)’

I+1—k+r+14+8(r+1) -

Lemma 4. If z; < then z141 <

Proof.
Zprx(l+1—k4+r+14p6(r+1))
=z x(l—k+r+14+80r+1)+ 211

<zx(l—k+r+1+60+1)+ 2141 (2)
<Tri+ 2141
= Lpril+1

where the first inequality follows z; > 2z;41 and the second inequality is the
assumption. [

> z141- Let low, high, mid
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According to Lemma 3 and Lemma 4, we can proof the Lemma 1. 045
046
Proof. (1) Assumed that the claim does not hold. Thus, we have [ +1 <
. : T mi
mid. According to zmiq > mid*kJrr’Jrliﬂ(TH) and Lemma 3, we know z;41 > 048
T,
l+17k+r+lJ1rJlrﬁ(r+1) - Hence 049
050
T
1 > 41 051
I+1—-k4+r+148(r+1) 052
= 21 (l—k+r+14+6(r+1)+ 241 > T ) 053
S an(l—k+r+1+480r+1) > Ty 22‘5‘
T,
— 241 > ol 056
l—k+r+1+80r+1) 057
058
This is a contradiction with MW > 2141. 050
(2) Assumed that the claim does not hold. Thus, we have [ > mid. According
ymi T, .
t0 Zmid < mid—k+r+1iﬁ(r+1) and Lemma 4, we know z; < W This
is a contradiction with z] > Hﬁ_ﬁ% [ | 062
063
Now, we proof the Lemma 2. 064
Proof. First, when zi_, = 0, it means that z_,+1 = ... = 2,4 = 0. In such case, 065
there is not exist a [ satisfies z; > m Any | € [k — r,nd] can be 223
returned and not influence the result. Hence, we can simply let [ =k — r. o6t
Now, we consider the case of z;_, > 0. To proof | € [k — r,nd], we only need 060
N Tron
to show (1) 2 > == k+ri1+ﬁ(r+1) and (2) Znat1 < srmiseEn 070
both (1) and (2) are satisfied, according to Lemma 1, we have [ > k —r and
I < nd. Hence [ € [k — r,nd]. 07
. . . Trhr
Itis easy to verify that both (1) and (2) are true. Since zj_,— k7T7k+T’j1+ﬁ(r+1) =073
2y — m > 0, we have the (1). Since z441 = —00, it is less than or equal o074
to any value, hence we have the (2). 075

Now, we show which [ € [k — r, nd] satisfies the inequalities. Since both (1) 076
and (2) are true, this indicates that we can find at least a [ € [k —r, nd] satisfies 077

1 TT,l+1
2~ meriraern > 0 and 2 — mmmeee <0 o7
Tr,H»l r 1+2141 079
We have 241 — 8o+ = 0= 241 < o k+r+1+ﬂ(r+1) = (I+ 050
1—k+r+1+80r+1)a <To+zm=I—k+r+1+80r+1))z4 < 081

1l

Tr1 = 2141 < IS 1050 - 082
Hence,z; > Wrrﬂ% > z141. we find the [. [ | 083
084
Lemma 5. If z_,. > 0, there is an unique | satisfies z; > l—#&-vﬂ% > 085
zi+1 in the range of [k —r,d]. 086
: Tr,l Tr,l 081
P'I"OOf. Since z] > W > Zl+1, We have (1) Z] — m >0 088
and (2) 2141 — 5= k+7;r+l11+[‘3(7‘+1) 0. (According to the Lemma 2). 089
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We show there is an unique [ € [k — r, d] satisfies the inequalities. Assumed
the claim does not hold. Thus, there exists [ and [ for which [ < [, we have

Tr
{Zl ~ =eriseTn > 0

T
A+l z+17k+r+ﬁﬁ(r+1) <0
and .
o i
2 [—k+r+14+8(r+1) >0
N _ r i+l
FH1 T Tkt 11 B(r ) <0
Since z;41 — l+1—k+7;111r}&-5(r+1) <0Oandl>1+ 1, according to Lemma 4, we
have z; TR Tii BT < 0. This is a contradiction with z; L B0TD) >
0.
1 Computation of the proximity operator
. B 2 1 sSp\2
min &l — ol + 3wl (4)

Argyriou et al. [8] showed that this computation of the prozimity operator
can be done in O(nd(k + log(nd))) steps. Here we include the derivation for
self-containedness.

Before we present the solution, we firstly give the following two lemmas.
Lemma 6 indicates that the each component of the optimal solution w* has the
same sign of its counterpart in v. Lemma 7 shows that if |v;| is the jth largest
element of |v|, then |w;| is the jth largest element of |w*|.

Lemma 6. Let w* be the optimal solution to the minimization problem given in
Eq. (4). Then wiv; >0 for alli=1,...,nd.

Proof. Assume that the claim does not hold. Thus, there exists ¢ for which
wiv; < 0. Let w be a vector such that wy, = wj, for all k£ # ¢ and w; = 0. It is
easy to verify that (1) |[w*|[;? > ||w]|;¥ and (2) ||w* —v||* > ||w —v]|*>. We thus
find a solution w which attains an objective value smaller than that of w*. This
is a contradiction with w* is the optimal solution. |

Lemma 7. Let w* be the optimal solution to the minimization problem given in
Eq. (4). Then for any i,j, if |vi| > |v;], we also have |w;| > |w;].

Proof. Assume that the claim does not hold. Thus, there exists ¢,j for which
[vi| > |vj| and |wi| < |wj]. Let w be a vector such that wy = wj for all
k# 1,k # j and w; = sign(v;)|w} |, w; = sign(v;)|w}|. Therefore, 5 (|[w*[|;¥)? +
sl vl =3 ([wl[i)? = 5llw—vl]* = (W} —vi)*+(w] —v;)* — (sign(vi) |wf|—
vi)? — (sign(v)|w;| —v;)?) = —w]|Jvi] — [wjllv;] + [w]|[vs| + [w] ||vs] = (Jw}| -
|wi])(Jvi| = |vs]) = 0.

Hence, w attains an objective value less than or equal to that of w*. This is
a contradiction. |
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Based on the lemma 6 and lemma 7, we can rewrite the optimization problem
as
k—r—1

1 1 2
minggl 2 W Hll;m + 5l — 2l
st. q1>q2> ... > Gng >0 (5)
1 nd
1> — i) 2 Qk—r
dk 1 7‘+1(,_1€Z_ ai) > qx

where z denotes the vector obtained by sorting the absolute value of v in a
descending order, z1 > zo > ... > zpq > 0. Let s be denoted as the corresponding
index, |vs,| = z;. Once we obtain the optimal solution of Eq. (5), we can construct
the solution of Eq. (4) by setting

Ws; = 57;9”(”&;)%' (6)

Now, we consider to solve the Eq. (5). Without the constrains, Eq.(5) can be
rewrite as the following two sub problems:

k—r—1

. 1 2 2
5 ' i~ Zi 7
L min o ; (@2/B+ (¢ — =)?) (7)
1 nd 1 nd
in oo i)?+ = i — 2i)° 8
e e LD DIV 1D DU ®

Eq (7) is a simple problem. The optimal solution is

B

mzi fori=1.,k—r—1 9)

qi =

We take the derivative of Eq.(8) with respect to g; to zero, where j = k—r, ..., nd.
we obtain

Z i) Vg + (¢ — 2;) =0 (10)

T+1’Lk}7“

where V|g;| is the sub-gradient of |g;|. Since g; > 0, we have

G _JieeRI0<¢; <1}ifg =0
V|q]{ ifg; >0

Hence, we need to discuss the two cases for finding the solution of Eq.(8).
Suppose that gz—r > ... > g > 0 and q;41 = ... = gnq = 0. Substitution it into
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Eq. (10), we have

B(r+1)

m(‘ ¢i) > 2141

Hence, the optimal solution of Eq (8) is

L
=15 k+;+f+b(r+1) ifi=k—r..l (12)
0 1fz:l+1,..., nd

Substitution the solution into Eq. (11), we have I satisfies

l
Zz k—r %i

TPy e

Zl4+1- (13)

d .
Now, we consider the constrain ¢qp_,_1 > TH(E" . qu) > qg—r. Substi-
tution the solutions of Eq. (8) and Eq. (7) into it, we have

ri1>7ZQz_ri
i=k—r

Zi’:kfrzi )
ﬂ(r;rl)+lfk+r+1 (14)
Zi:k—rzi
Br+1)+l—k+r+1
Zé*k—r'zi 1
= Zh—r—1 > — >
B+1 " T B+ ) +l—ktr+1 - B+1
Hence, the solution of Eq. (5) is

é%Zkfrfl > B(

> Zk—r —

Zk—r

7% ifi=1,..,k—r—1

_ Sz e .

qi = Zi—mlfl—k—r,...,l (15)
0 ifi=1+1,..nd

where r and [ satisfy that

1

i=k—r %t
FrT k- 1> Bk = 7% (16)

i=k—r %i
ZZ>WZZI+1
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