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Abstract. In this paper, we show that tracking different kinds of interacting ob-
jects can be formulated as a network-flow Mixed Integer Program. This is made
possible by tracking all objects simultaneously and expressing the fact that one
object can appear or disappear at locations where another is in terms of linear
flow constraints. We demonstrate the power of our approach on scenes involving
cars and pedestrians, bags being carried and dropped by people, and balls being
passed from one player to the next in a basketball game. In particular, we show
that by estimating jointly and globally the trajectories of different types of ob-
jects, the presence of the ones which were not initially detected based solely on
image evidence can be inferred from the detections of the others.

1 Introduction

Tracking people or objects over time can be achieved by first running detectors that
compute probabilities of presence in individual images and then linking high probabil-
ities of detections into complete trajectories. This can be done recursively [6,19], using
dynamic programming [26,11,23], or using Linear Programming [25,15,5].

Most of these approaches focus on one kind of object, such as pedestrians or cars,
and only model simple interactions, such as the fact that different instances may repel
each other to avoid bumping into each other or synchronize their motions to move in
groups [20,28]. In this paper, we introduce a Mixed Integer Programming framework
that lets us model the more complex relationship between the presence of objects of a
certain kind and the appearance or disappearance of objects of another. For example,
when tracking people and cars on a parking lot, this enables us to express that people
may only appear or disappear either at the edge of the field of view or as they enter
or exit cars that have stopped. Similarly, when attempting to check if a bag has been
abandoned in a public place where we can track the people, we can express that this
can only happen at locations through which somebody has been the instant before. The
same goes for the ball during a basketball match; it is usually easiest to detect when it
has left the hands of one player and before it has been caught by another.

We will show that enforcing the fact that one object can only appear or disappear at
locations where another is or has been can be done by imposing linear flow constraints.
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(a) POM [11] (b) KSP [5] (c) Ours

Fig. 1. Motivation for our approach. (a) Thresholding the detector [11] scores for cars and peo-
ple produces only one strong detection in this specific frame of a complete video sequence. (b)
Linking people detections across frames [5] reveals the presence of an additional person. (c) This
additional person constitutes evidence for the presence of a car he will get in. This allows our
algorithm to find the car as well in spite of the car detection failure. Because we treat people and
cars symetrically, the situation could have been reversed: The car could have been unambigu-
ously detected and have served as evidence for the appearance of a person stepping out of it. This
would not be the case if we tracked cars first and people potentially coming out of them next.

This results in a Mixed Integer Programming problem, for which the global optimum
can be found using standard optimization packages [14]. Since different object types are
handled in symmetric fashion, the presence of one can be evidence for the appearance of
the other and vice-versa. For example, Fig. 1 depicts a case where simply thresholding
the response of the car detector we use leads to a car being missed. However, because
people are properly detected disappearing at a location in the middle of the parking lot,
the algorithm eventually concludes correctly that there must have been a car there which
they entered. So, in this scenario, not only does the presence of a vehicle “allow” the
disappearance of pedestrians but the disappearance of pedestrians is treated as evidence
for the presence of a vehicle.

This is much more general than what is done in approaches such as [28], in which
the appearance of people is used to infer the possible presence of a static entrance. It
also goes beyond recent work on interaction between people and objects [2]. Due to the
global nature of the optimization and the generality of the constraints, we can deal with
objects that may be completely hidden during large portions of the interaction and do
not require any training data.

Our contribution is therefore a mathematically principled and computationally feasi-
ble approach to accounting for the relationship between flows representing the motions
of different object types, especially with regard to their container/containee relationship
and appearance/disappearance. We will demonstrate this in the case of people entering
and leaving cars, bags being carried and dropped, and balls being passed from one
player to the next in a ball-game.

2 Related Work

Multiple target tracking has a long tradition, going back many years for applications
such as radar tracking [7]. These early approaches to data association usually relied
on gating and Kalman filtering, which have later made their way into our commu-
nity [6,19]. Because of their recursive nature, they are prone to errors that are diffi-
cult to recover from by using a post processing step. Particle-based approaches such as
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[13,24,8], among many others, partially address this issue by simultaneously exploring
multiple hypotheses. However, they can handle only relatively small batches of tempo-
ral frames without their state space becoming unmanageably large, and often require
careful parameter setting to converge.

In recent years, techniques that optimize a global objective function over many
frames have emerged as powerful alternatives. They rely on Conditional Random Fields
[17,27], belief Propagation [29,9], Dynamic or Linear Programming [3,10]. Among the
latter, some operate on graphs whose nodes can either be all the spatial locations of
potential people presence [26,11,5,1], only those where a detector has fired [25,15], or
short temporal sequences of consecutive detections that are very likely to correspond to
the same person [21,30,23,4].

On average, these more global techniques are more robust than the earlier ones but,
especially among those that focus on tracking people, do not handle complex interac-
tions between them and other scene objects. In papers such as [18], which looks into the
behavior of sports players, their trajectories are assumed to be given. In [20,28], group
behavior is considered during the tracking process by including priors that account for
the fact that people tend to avoid hitting each other and sometimes walk in groups.

In [28], there is also a mechanism for guessing where entrances and exits may be
by recording where tracklets start and end. However, this is very different from having
objects that may move, thereby allowing objects of a different nature to appear or dis-
appear at varying locations. In [2], person-to-person and person-to-object interactions
are exploited to more reliably track all of them. This approach relies on a Bayesian
Network model to enforce frame-to-frame temporal coherence, and on training data to
learn object types and appearances. Furthermore, it requires the objects to be at least oc-
casionally visible during the interaction. By contrast, we propose a global optimization
framework that does not require training and can handle objects that remain invisible
during extended periods of time, such as a person inside a car or a ball being carried
and hidden by a player.

3 Method

In this section, we first formulate the problem of simultaneously tracking multiple in-
stances of two kinds of objects, one of which can contain the other, as a constrained
Bayesian inference problem. Here, we take “contain” to mean either fully enclosing the
object, as the car does to its occupants, or simply being in possession of and partially
hiding it, as a basketball player holding the ball. We then discuss these constraints in
more details and show that they result in a Mixed Integer Program (MIP) on a large
graph, which we solve by first pruning the graph and then using a standard optimizer.

3.1 Bayesian Inference

Given image sequences from one or more cameras with overlapping fields of view,
we will refer to the set of images acquired simultaneously as a temporal frame. Let
the number of time instants be T and the corresponding set of temporal frames I =
(I1, . . . , IT ).
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Assuming the position of target objects to be completely defined by their ground
plane location, we discretize the area of interest into a grid of L square cells, which we
will refer to as spatial locations. Within each one, we assume that a target object can be
in any one of O poses. In this work, we define this pose space to be the set of regularly
spaced object orientations on the ground plane.

For any pair k of location l and orientation o, let N (k) ⊂ {1, . . . , LO} denote
the neighborhood of k, that is, the locations and orientations an object located at l and
oriented at o at time t can reach at time t+1. Let also l(k) and o(k) respectively denote
the location and orientation of k.

Similar to [5], which treats spatial locations as graph vertices, we build a directed
acyclic graph G = (V,E) on the locations and orientations, where the vertices V =
{vtk} represent pairs of orientation angles and locations at each time instant, and the
edges E = {etkj} represent allowable transitions between them. More specifically, an

edge etkj ∈ E connects vertices vtk and vt+1
j if and only if j ∈ N (k). The num-

ber of vertices and edges are therefore roughly equal to OLT and |N (.)|OLT ,
respectively.

Recall that we are dealing with two kinds of objects, one of which can contain the
other. Let X = {Xt

k} be the vector of binary random variables denoting whether lo-
cation l(k) is occupied at time t by a containee type object with orientation o(k), and
x = {xt

k} a realization of it, indicating presence or absence of a containee object. Sim-
ilarly, let Y = {Y t

k } and y = {ytk} respectively be the random occupancy vector and
its realization for the container object class.

As will be discussed in Section 4, we can estimate image-based probabilities ρtk =
P (Xt

k = 1 | It) and βt
k = P (Y t

k = 1 | It) that a containee or container object is
present at grid location l(k), with orientation o(k), and at time t in such a way that their
product over all k and t is a good estimate of the joint probability P (X = x, Y = y |
I). Among other things, this is done by accounting for objects potentially occluding
each other.

Given the graph G and the probabilities ρtk and βt
k, we look for the optimal set of

paths as the solution of

(x,y)∗ = argmax
(x,y)∈F

P (X = x, Y = y | I) (1)

≈ argmax
(x,y)∈F

∏

t,k

P (Xt
k = xt

k | It)P (Y t
k = yt

k | It) (2)

= argmax
(x,y)∈F

∑

t,k

logP (Xt
k = xt

k | It) + logP (Y t
k = yt

k | It)

= argmax
(x,y)∈F

∑

t,k

xt
k log ρ

t
k + (1− xt

k) log(1− ρtk)

+ yt
k log β

t
k + (1− yt

k) log(1− βt
k) (3)

= argmax
(x,y)∈F

∑

t,k

log

(
ρtk

1−ρtk

)
xt
k+log

(
βt
k

1−βt
k

)
yt
k (4)

where F stands for the set of all feasible solutions as defined in the following section.
Eq. 2 comes from the above-mentioned property that the product of image-based prob-
abilities is close to true posterior of Eq. 1, which will be discussed in more details in
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(a) (b)

Fig. 2. A graph representing 3 spatial locations at 3 consecutive times. (a) Each ellipse corre-
sponds to one spatial location at one time instant. Some are connected to a source and a sink node
to allow entrances and exits. (b) Within each ellipse are four nodes, one for each possible orien-
tation and the arrows represent possible transitions from one location and orientation to those in
the neighboring ellipse.

§ 4, and from the assumption that all feasible transitions from time t to time t + 1 are
equally likely. Eq. 3 is true because both xt

k and ytk are binary variables. Finally, Eq. 4
is obtained by dropping constant terms that do not depend on xt

k or ytk. The resulting
objective function is therefore a linear combination of these variables.

However, not all assignments of these variables give rise to a plausible tracking re-
sult. Therefore, the optimization of Eq. 4 must be performed subject to a set of con-
straints defined by F , which we describe next.

3.2 Flow Constraints

To express all the constraints inherent to the tracking problem we introduce two addi-
tional sets of binary indicator variables that describe the flow of objects between pairs
of discrete spatial locations and orientations at consecutive time instants. More specif-
ically, we introduce the flow variables f t

kj and gtkj , which stand respectively for the
number of containee and container type objects moving from orientation o(k) and lo-
cation l(k) at time t to orientation o(j) and location l(j) at time t+ 1.

In the following, in addition to the integrality constraints on the flow variables, we
define six sets of constraints to obtain structurally plausible solutions.

Upper Bound on Flows: We set an upper-bound of one to the sum of all incoming flows
to a given spatial location because it cannot be simultaneously occupied by multiple
objects of the same kind.

∑

k:l=l(k),
i:k∈N (i)

f t−1
ik ≤ 1,

∑

k:l=l(k),
i:k∈N (i)

gt−1
ik ≤ 1, ∀t, l . (5)

Spatial Exclusion: As detailed in § 4.1, we model objects such as cars or people as rect-
angular cuboids, whose size is usually larger than that of a single grid cell. We impose
spatial exclusion constraints to disallow solutions that contain overlapping cuboids in
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the 3D space. Let Nf (k) and Ng(k) denote the spatial exclusion neighborhoods for the
containee and container objects respectively. We write

∑

i:k∈N (i)

f t−1
ik +

∑

j∈Nf (k),

i:j∈N (i)

f t−1
ij ≤ 1,

∑

i:k∈N (i)

gt−1
ik +

∑

j∈Ng(k),
i:j∈N (i)

gt−1
ij ≤ 1, ∀t, k . (6)

Flow Conservation: We require the sum of the flows incoming to a graph vertex vtk to
be equal to the sum of the outgoing flows for each container object type.

yt
k =

∑

i:k∈N (i)

gt−1
ik =

∑

j∈N (k)

gtkj , ∀t, k . (7)

This ensures that the container objects cannot appear or disappear at locations other
than the ones that are explicitly designated as entrances or exits. Graph vertices associ-
ated to these entrance and exit points serve respectively as a source and a sink for the
flows. To allow this, we introduce two additional vertices vs and vn into our graph G,
which are linked to all the vertices representing positions through which objects can
respectively enter or leave the observed area. Furthermore, we add directed edges from
vs to all the vertices of the first time instant and from all the vertices of the last time
instant to vn, as illustrated by Fig. 2.

To ensure that the total container flow is conserved in the system, we enforce the
amount of flow generated at the source vs to be equal to the amount consumed at the
sink vn.

∑

j∈N (s)

gsj =
∑

i:n∈N (i)

gin . (8)

Consistency of Interacting Flows: We allow a containee type object to appear or dis-
appear at a location not designated as entrance or exit only when it comes into contact
with or is separated from a container object. We write

−
∑

m:l(k)=l(m),
i:m∈N (i)

gt−1
im ≤ a(t, k) ≤

∑

m:l(k)=l(m),
j∈N (m)

gtmj , ∀t, k (9)

a(t, k) =
∑

i:k∈N (i)

f t−1
ik −

∑

j∈N (k)

f t
kj (10)

In Eq. 9, the total amount of container flow passing through the location k is denoted
by the two sums on both sides of the inequality. When they are zero, these constraints
impose the conservation of flow for the containee objects at location k. When they are
equal to one, a containee object can appear or disappear at k. Note that, here we assume
the containee objects never come to interact with the container one at exactly the same
moment. For example, at one time instance only one person is allowed to enter the car.

Note that all four sums in Eqs. 9 and 10 can be equal to one. As a result, these
constraints allow for a container and a containee object to coexist at the same location
and at the same time instant, which can give rise to several undesirable results as shown
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Fig. 3. Flow constraints in a two-orientation case. In each of the eight examples shown here, the
two circles represent two orientation nodes at the same spatial location. The solid and the dotted
arrows represent respectively non-zero flows gtkj and f t

kj of the container and of the visible
containee objects. Top Row. Forbidden configurations, which are all cases where a containee
and a container coexist at the same location and at the same time instant without interacting with
each other. For example, the configuration on the left could be interpreted as someone jumping
in and out of the car at the same time. Bottom Row: Feasible configurations.

in the top row of Fig. 3. To avoid this, we bound the total amount of containee flow
incoming to and outgoing from a location by one when there is a container object at
that location.

∑

k:l=l(k),
i:k∈N (i)

f t−1
ik +

∑

k:l=l(k)
j∈N (k)

f t
kj ≤ 2−

∑

k:l=l(k)
j∈N (k)

gtkj , ∀t, l (11)

Tracking the Invisible: We say a containee object is invisible when it is carried by a
container. The four sets of constraints described above do not allow us to keep track
of the number of invisible instances carried by a container object at a time. To facili-
tate their tracking even when they are invisible, we introduce additional flow variables
ht
kj , which stand for the number of invisible containees moving from orientation o(k)

and location l(k) at time t to orientation o(j) and location l(j) at time t + 1. These
variables act as counters that are incremented or decremented when a containee object
respectively disappears or appears in the vicinity of a container.

∑

k:l=l(k)
j∈N (k)

ht
kj =

∑

k:l=l(k),
i:k∈N (i)

ht−1
ik +

∑

k:l=l(k),
i:k∈N (i)

f t−1
ik −

∑

k:l=l(k)
j∈N (k)

f t
kj , ∀t, l (12)

ht
kj ≤ c ∗ gtkj , ∀t, k, j : j ∈ N (k) (13)

where c is a fixed integer constant standing for the maximum number of containee in-
stances a container can hold. For example, in the case of cars and people, this constant
is set to 5. As a result, unlike the flow variables f t

kj and gtkj that are binary, ht
kj usually

have a higher but finite upper bound. Note that, in Eq. 12, the ht
kj variables are incre-

mented or decremented always by an integer value. Therefore, during the optimization,
we allow these variables to be continuous, except only those that are connected to the
source, i.e., hsj , which we restrict to be integers. Our experimental results show that
allowing ht

kj:k �=s to be continuous slightly speeds up the optimization, compared to
imposing the integrality constraints on these variables.
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Additional Bound Constraints: Finally, we impose additional upper or lower bound
constraints on the flow variables when the maximum or minimum number of object in-
stances of a certain type in the scene is known a priori. For instance, during a basketball
game, the number of balls in the court is bounded by one. We write this as

∑

vt
k∈V (t),
j∈N (k)

ht
kj +

∑

vt
k∈V (t),
j∈N (k)

f t
kj ≤ 1 , ∀t (14)

where V (t) denotes the set of graph vertices of time instant t. Together with the in-
visible flow constraints expressed in Eqs. 12 and 13, these constraints allow us to keep
track of where the ball is and who has possession of it even when it is invisible. Another
interesting case arises from the fact that a moving vehicle must have a driver inside. We
express this as

ht
kj ≥ gtkj , ∀t, k, j : j ∈ N (k), l(k) �= l(j) (15)

3.3 Mixed Integer Programming

The formulation defined above translates naturally into a Mixed Integer Program (MIP)
with variables f t

kj , gtkj , ht
kj and a linear objective

∑

t∈{1,··· ,T},
vt
k∈V (t)

∑

j∈N (k)

(
αt
k f t

kj + γt
k gtkj

)
, (16)

with

αt
k = − log

(
ρtk

1− ρtk

)
, and γt

k = − log

(
βt
k

1− βt
k

)
. (17)

This objective is to be minimized subject to the constraints introduced in the previ-
ous section. Since there is a deterministic relationship between the occupancy variables
(xt

k, y
t
k) and the flow variables (f t

kj , g
t
kj), this is equivalent to maximizing the expres-

sion of Eq. 4.
Solving the Linear Program (LP) obtained by relaxing the integrality constraints

may, in some cases, result in fractional flow values as will be shown in the results
section. That is why, we explicitly enforce the integrality constraints in our final results.

3.4 Graph Size Reduction

In most practical situations, the MIP of Eq. 16 has too many variables to be handled
by ordinary solvers. To reduce the computational time, we eliminate spatial locations
whose probability of occupancy is low.

A naive way to do this would be to simply eliminate grid locations l(k) whose purely
image-based probabilities ρtk and βt

k are below a threshold. However, this would be
self-defeating because it would preclude the algorithm from doing what it is designed
to do, such as inferring that a car that was missed by the car detector must nevertheless
be present because people are seen to be coming out of it.
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Instead, we implemented the following two-step algorithm. First, we designate all
grid locations as potential entries and exits, and run the K-Shortest Paths Algorithm
(KSP) [5] for containers and containees independently. In our experiments, we used
the publicly available KSP code, which is shown to be very efficient. This produces a
set of container and containee tracklets that can start and end anywhere and anytime on
the grid. Second, we connect all these tracklets both to each other and to the original en-
trance and exit locations using the Viterbi algorithm [12]. Finally, we obtain a subgraph
of G, whose nodes belong either to the tracklets or the paths connecting them.

In this way, the resulting subgraph still contains the low ρtk and βt
k locations that may

correspond to missed detections while being considerably smaller than the original grid
graph. For example, on a 20-frame PETS2006 [22] image sequence that will be intro-
duced in the results section, this procedure reduces the number of edges from around
22M to 17K. The resulting graphs are small enough to solve the MIP of Eq. 16 on
batches of 500 to 1000 frames using the branch-and-cut procedure implemented in the
Gurobi optimization library [14]. It minimizes the gap between a lower bound obtained
from LP relaxations and an upper bound obtained from feasible integer solutions. The
algorithm stops when the gap drops below the specified tolerance value. In practice, we
set it to 1e−4 indicating the solution it finds is very close to the global optimum.

4 Estimating Probabilities of Occupancy

Our approach to computing the image-based probabilities of presence ρtk and βt
k that

appear in Eq. 3 and Eq. 4 is an extension of the one proposed in [11].
This earlier algorithm was designed to estimate such probabilities for pedestrians

given the output of background subtraction on a set of images taken at the same time.
Its basic ingredient is a generative model that represents humans as cylinders that it
projects into the images to create synthetic ideal images we would observe if people
were at given locations. Under this model of the image given the true occupancy, the
probabilities of occupancy at every location are taken to be the marginals of a product
law minimizing the Kullback-Leibler divergence from the “true” conditional posterior
distribution. This makes it possible to evaluate the probabilities of occupancy at every
location as the fixed point of a large system of equations.

Importantly, probabilities computed in this way exhibit the property that allows us
to go from Eq. 1 to Eq. 2 in our derivation of the objective function. We have there-
fore extended the approach to handling multiple classes of objects simultaneously as
follows.

4.1 Oriented Objects

To handle objects such as cars or bags, we extend [11] by introducing simple wireframe
models to represent them, as shown in Fig. 4. The only difficulty is that in the case
of cylinders, orientation is irrelevant whereas the projections of our wireframe models
depend on it. We solve this by allowing the generative model to model objects of any
type at any one of the O regularly spaced orientations. This means that the projections
of our 3D models can have arbitrary shapes and that we cannot use the integral image
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(a) (b)

Fig. 4. Simultaneously detecting people and cars. (a) A person and a car is detected, as indicated
by the red and green wireframes. (b) The same boxes are projected and filled as black boxes
to create a synthetic image that approximates as closely as possible the background subtraction
results, shown in green. Note that the white car is the same as the one that appears in Fig. 1. It
remains undetected because the background subtraction algorithm fails to extract it.

trick of the publicly available software anymore [11]. We therefore use an “integral
line” variant, which is comparably efficient. More specifically, we compute an integral
image by taking integral of the image values only along the horizontal axis. At detection
time, we then take the difference between the left-most and right-most integral pixels
of a projected region and sum the resulting differences obtained from each row. This
lets us detect objects of different types simultaneously and compute the probabilities of
occupancy ρtk and βt

k introduced in § 3.1.
Note however, that the white car in Fig. 4 is missed because its color is similar to that

of the background used for training, which is taken under direct sunlight. Arguably, we
could have used a more powerful car detector but all detectors sometime fail and the
point of this paper is that our technique can recover from such failures by leveraging
information provided by other objects, in this case the people getting out of the car.

4.2 Objects Off the Ground Plane

In [11], objects of interest are assumed to be on the ground and the fact that they can
move in the vertical direction, such as when people jump, is ignored. For people, this
is usually not an issue because the distance of their feet to the ground tends to be small
compared to their total height and the generative model remains roughly correct. How-
ever, in the case of an object such as a ball, which is small and can be thrown high into
the air, this is not true anymore.

In theory, this could be handled by treating height over ground as a state variable,
much as we do for orientation. However, in the specific case of the basketball competi-
tion we show in the result section that when the ball is in the air it also often is in front
of the spectators, making the background non-constant and the results of [11] unsatis-
factory. Therefore, in this specific case, we use a discriminative approach and run a ball
detector based on color and roundness in each one of the frames taken at the same time,
triangulate the 2D detections to obtain candidate 3D detections, and project the result-
ing probability estimate on the ground plane. Due to the small size of the ball compared
to that of people, its presence or absence in a frame has little effect on the estimated
probabilities of presence of people and we can assume conditional independence of
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(a) Car-People (b) PETS2006 (c) FIBA

Fig. 5. Tracking results on three representative subsequences taken from our datasets. Top row.
Sample frames with the detected container objects highlighted with circles and containee ones
with dots. Bottom Row. Corresponding color-coded top-view trajectories for interacting objects
in the scene. The arrows indicate the traversal direction. Note that, in the FIBA case, even though
there are many players in the field, we plot only two trajectories: one for the ball the other for the
player first holding it and then throwing it.

presence of people and ball given the images, which means we can still multiply the
probabilities as required for the derivation of Eq. 2.

5 Experiments

In this section, we briefly describe the sequences we used for validation and give im-
plementation details of our approach. We then introduce several baseline methods and
finally present our comparative results. We show that our approach outperforms state-
of-the-art methods on complex scenes with multiple interacting objects.

5.1 Test Sequences

We tested our approach on three datasets featuring three very different scenarios: peo-
ple and vehicles on a parking lot (Car-People dataset), people and luggage in a railway
station (PETS2001 dataset), and basketball players and the ball during a high-level com-
petition (FIBA dataset). These datasets are multi-view and we processed a total of about
15K temporal frames. They all involve multiple people and objects interacting with each
other. In Fig. 5, we show one image from each dataset with recovered trajectories. We
summary the datasets as follows.

– Car-People Dataset: We captured several 300- to 5000-frame sequences from 2
cameras that feature many instances of people getting in and out of the cars. We
show experimental evaluation on two sequences in the manuscript and provide fur-
ther results in the supplementary material.
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– PETS2006 Dataset: We use a 3020-frame sequence acquired by 2 cameras that
shows people entering and leaving a railway station while carrying bags. Notably,
one person brings a backpack into the scene, puts it on the ground, and leaves.

– FIBA Dataset: We use a 2600-frame sequence captured by 6 cameras at the 2010
FIBA Women World Championship. It features two 5-player-teams, 3 referees and
2 coaches. This sequence is challenging due to the complex and frequent interac-
tions between the players and the ball, which makes it hard to detect the ball.

5.2 Parameters and Baselines

To compute the probabilities of occupancy ρtk and βt
k of Section 4, we used 12 regularly

distributed orientations for cars and 2 for luggages, which we found to be sufficient
given the quality of the videos. For the outdoor scenes and the basketball court, we
discretized the ground plane into 25cm×25cm cells. For the railway station, the area of
interest is relatively small, which allowed us to perform a finer sampling with a cell size
of 10cm×10cm to improve the localization accuracy.

We compared our approach, denoted as OURS-MIP, against six baseline methods,
which we summarize below.

– POM: We keep those orientation nodes, for which one of the occupancy probabil-
ities ρtk or βt

k is greater than 0.5, and suppress the others. The resulting detections
lack temporal consistency and may not satisfy the constraints introduced in § 3.2.

– SSP: The Successive Shortest Path (SSP) [23] is a algorithm for tracking multiple
objects. It first builds a graph by linking pairs of object detections in consecutive
temporal frames and then applies Dynamic Programing to find solutions. We run
the publicly available SSP code and compared the results with ours.

– KSP-free: As discussed in Section 3.4, the KSP approach of [5] can be used to
compute object trajectories for the container and containee objects independently
using their occupancy probabilities. We designate all the grid locations as potential
entries and exits prior to running the KSP algorithm. As a result, this approach
allows objects to appear or disappear at any location at a certain cost value, which
we take to be 40.

– KSP-fixed: This algorithm is similar to KSP-free, except that we use the original
entrances and exits of the scene, such as the edge of the field of view. Therefore,
objects can only appear or disappear at these predetermined locations.

– KSP-sequential: We first use the KSP-fixed algorithm to track the container ob-
jects and designate all the nodes that belong to the resulting trajectories as potential
entrances and exits for the containees. We then use the same algorithm to find the
containee trajectories, which may emerge from or enter the container ones. In other
words, unlike in our approach, the two object classes are not treated symmetrically.

– OURS-LP: The linear programming approach (LP) solves the problem introduced
in § 3.3 with the integrality constraints relaxed. The resulting flow variables are
then rounded to the nearest integer to obtain the final solution.

5.3 Results

We ran all the baseline algorithms and ours on all the test sequences introduced in § 5.1.
We show some qualitative results in Fig. 5. In the following, we present quantitative



Tracking Interacting Objects Optimally Using Integer Programming 29

results on a representative subset of the sequences. We provide additional ones as well
as videos overlaid with detection results in the supplementary material.

To quantify these results, we use the standard CLEAR [16] metrics, Multiple Ob-
ject Detection Accuracy (MODA) and Multiple Object Tracking Accuracy (MOTA).
MODA focuses on missed and false detections, while MOTA also accounts for identity
switches. They are defined as a function of the amount of overlap between the detections
and the ground-truth.

In Fig. 6, we plot MOTA and MODA for our approach (OURS-MIP) against those
of our baselines on two sequences in the Car-People dataset, the PETS06 dataset, and
the FIBA dataset. For the results of the remaining sequences in the Car-People dataset,
we refer the reader to the supplementary material.

The sequence Car-People Seq.0 is the one from which we extracted the image shown
in Fig. 1 and the corresponding results are shown in the first column of Fig. 6. It involves
three people getting into a car stopped at the center of a parking lot. As discussed in
§ 4.1, the POM detector often fails to detect the car due to poor background subtraction.
As a result, both KSP-fixed and KSP-sequential yield poor results because they do not
create a car track, and hence are forced to explain the people in the scene by hallucinat-
ing them entering from the edges of the field of view. SSP and KSP-free do better by
allowing the car to appear and disappear as needed but this does not correspond to phys-
ically plausible behavior. POM does even better because the people are in fact detected
most of the time. OURS-MIP approach performs best because the evidence provided
by the presence of the people along with the constraint that they can only appear or
disappear in the middle of the scene, where there is a stopped car, forces the algorithm
to infer that there is one at the right place.

The Car-People Seq.1 features two people getting into the first car, staying for a
while, and getting out and entering the second one. Here, KSP-sequential and KSP-free
do slightly better than KSP-fixed, which needs to hallucinate two false positive tracks
to allow for the people emerging from the first car. The same happens in the PETS2006
sequence when the bag suddenly becomes visible in the middle of the image. Again, our
approach performs best on both sequences mainly because we do not allow solutions
that contain overlapping detections in the 3D space, which is enforced by the spatial
exclusion constraints of § 3.2. In contrast, all the baseline methods produce overlapping
spurious detections that are not physically plausible.

For the FIBA sequence, we show in Fig. 6(d) the MODA and MOTA scores for the
ball only because the people detection scores for both the baselines and our approach
are all very similar and the differences would not be visible in print. KSP-sequential
yields a poor performance because of the weak image evidence that gives rise to several
spurious ball detections. KSP-fixed eliminates some of these detections by forcing the
ball to enter the scene only from the designated locations, and KSP-free does so by
requiring that a cost to be paid for every appearance or disappearance of the ball. Our
approach achieves the best performance by reasoning simultaneously for both players
and ball, and enforcing that there can be at most one ball in the field during the game.

Note that solving the LP problem of § 3.3 and subsequently rounding the resulting
fractional flow variables as in OURS-LP systematically performs either very similarly
or worse than explicitly imposing the integrality constraints as we do in the OURS-MIP
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Fig. 6. Comparing our proposed approach (OURS-MIP) against the baselines in terms of the
MOTA and MODA scores. Our tracker yields a significant improvement on all datasets, thanks
to the joint-global optimization on both container and containee objects.

approach. In Car-People Seq.1 and PETS2006, where OURS-MIP significantly outper-
forms OURS-LP, the ratio of fractional flows to non-zero flows using OURS-LP are 39%
and 12% respectively. In the other two sequences the ratio are lower than 1%, therefore
the performance of OURS-LP and OURS-MIP are very similar.

Finally, in the Car-People dataset, we observe a few failure cases where a person gets
into the car but the associated counter variable is not incremented. This is because the
car is parked on the boundary of the monitored area and the person is detected closer
to the boundary than to the car, therefore the optimizer prefers the explanation that the
person leaves the monitored area than he enters the car.

6 Conclusion

We have introduced a new approach to tracking multiple objects of different types and
accounting for their complex and dynamic interactions. It relies on Mixed Integer Pro-
gramming and ensures convergence to a global optimum using a standard optimizer.
Furthermore, not only does it explicitly handle interactions, it also provides an estimate
for the implicit transport of objects for which the only evidence is the presence of other
objects that can contain or carry them.

We demonstrated our method on real-world sequences that feature people boarding
and getting out of cars, carrying and dropping luggages, and passing the ball during a
basketball match. The same approach could be applied to more complex situations and
future work will aim at extending it to scenarios with more than two types of objects.
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