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Abstract. We present a statistical model for 3D human faces in varying
expression, which decomposes the surface of the face using a wavelet
transform, and learns many localized, decorrelated multilinear models
on the resulting coefficients. Using this model we are able to reconstruct
faces from noisy and occluded 3D face scans, and facial motion sequences.
Accurate reconstruction of face shape is important for applications such
as tele-presence and gaming. The localized and multi-scale nature of our
model allows for recovery of fine-scale detail while retaining robustness to
severe noise and occlusion, and is computationally efficient and scalable.
We validate these properties experimentally on challenging data in the
form of static scans and motion sequences. We show that in comparison
to a global multilinear model, our model better preserves fine detail and
is computationally faster, while in comparison to a localized PCA model,
our model better handles variation in expression, is faster, and allows us
to fix identity parameters for a given subject.

Keywords: Statistical shape models, human faces, multilinear model,
wavelets.

1 Introduction

Acquisition of 3D surface data is continually becoming more commonplace and
affordable, through a variety of modalities ranging from laser scanners to struc-
tured light to binocular and multi-view stereo systems. However, these data are
often incomplete and noisy, and robust regularization is needed. When we are
interested in a particular class of objects, such as human faces, we can use prior
knowledge about the shape to constrain the reconstruction. This alleviates not
only the problems of noise and incomplete data, but also occlusion. Such priors
can be learned by computing statistics on databases of registered 3D face shapes.

Accurate 3D face capture is important for many applications, from perfor-
mance capture to tele-presence to gaming to recognition tasks to ergonomics,
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and considerable resources of data are available from which to learn a statistical
prior on the shape of the human face (e.g. [5,33,32,24]).

In this paper, we propose a novel statistical model for the shape of human
faces, and use it to fit to input 3D surfaces from different sources, exhibiting
high variation in expression and identity, and severe levels of data corruption in
the forms of noise, missing data and occlusions. We make the following specific
technical contributions:

– A novel statistical shape space based on a wavelet decomposition of 3D face
geometry and multilinear analysis of the individual wavelet coefficients.

– Based on this model, we develop an efficient algorithm for learning a statis-
tical shape model of the human face in varying expressions.

– We develop an efficient algorithm for fitting our model to static and dynamic
point cloud data, that is robust with respect to highly corrupted scans.

– We publish our statistical model and code to fit it to point cloud data [6].

Our model has the following advantages. First, it results in algorithms for train-
ing and fitting that are highly efficient and scalable. By using a wavelet transform,
we decompose a high-dimensional global shape space into many localized, decorre-
lated low-dimensional shape spaces. This dimensionality is the dominant factor in
the complexity of the numerical routines used in both training and fitting. Train-
ing on thousands of faces takes a few minutes, and fitting to an input scan takes a
few seconds, both using a single-threaded implementation on a standard PC.

Second, it allows to capture fine-scale details due to its local nature, as shown
in Figure 5, while retaining robustness against corruption of the input data. The
wavelet transform decomposes highly correlated vertex coordinates into decorre-
lated coefficients, upon which multilinear models can be learned independently.
Learning many low-dimensional statistical models, rather than a single high-
dimensional model, as used in [5,30,7], greatly reduces the risk of over-fitting
to the training data; it avoids the curse of dimensionality. Thus, a much higher
proportion of the variability in the training data can be retained in the model.
During fitting, tight statistical bounds can be placed on the model parameters
for robustness, yet the model can still fit closely to valid data points.

Third, it is readily generalizable and extendable. Our model requires no ex-
plicit segmentation of the face into parts; the wavelet transform decomposes the
surface hierarchically into overlapping patches, and the inverse transform recom-
bines them. Unlike manually decomposed part-based models, eg. [14,13,26], it
requires no sophisticated optimization of blending weights and the decomposi-
tion is not class-specific. Further, it can be easily extended to include additional
information such as texture.

2 Related Work

This work is concerned with learning 3D statistical shape models that can be
used in surface fitting tasks. To learn a statistical shape model, a database of
shapes with known correspondence information is required. Computing corre-
spondences between a set of shapes is a challenging problem in general [28].
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However, for models of human faces, correspondences can be computed in a
fully automatic way using template deformation methods (e.g. [20,23]).

The most related works to our work are part-based multilinear models that
were recently proposed to model 3D human body shapes [9]. To define the part-
based model, a segmentation of the training shapes into meaningful parts is
required. This is done manually by segmenting the human models into body
parts, such as limbs. Lecron et al. [17] use a similar statistical model on hu-
man spines, that are manually segmented into its vertebrae. In contrast, our
method computes a suitable hierarchical decomposition automatically, thereby
eliminating the need to manually generate a meaningful segmentation.

Many statistical models have been used to analyze human faces. The first
statistical model for the analysis of 3D faces was proposed by Blanz and Vet-
ter [5]. This model is called the morphable model, and uses Principal Component
Analysis (PCA) to analyze shape and texture of registered faces, mainly in neu-
tral expression. It is applied to reconstruct 3D facial shapes from images [5]
and 3D face scans [4,22]. Amberg et al. [1] extend the morphable model to con-
sider expressions, by combining it with a PCA model for expression offsets with
respect to the neutral expression geometry. An alternative way to incorporate
expression changes is to use use a multilinear model, which separates identity
and expression variations. This model has been used to modify expressions in
videos [30,11,31], or to register and analyze 3D motion sequences [7]. Multilin-
ear models are mathematically equivalent to TensorFaces [29] applied to 3D data
rather than images, and provide an effective way to capture both identity and
expression variations, and thus in Section 6 we compare to a global multilinear
model and show that our model better captures local geometric detail.

Blanz and Vetter [5] manually segmented the face into four regions and learned
a morphable model on each segment. The regions are fitted to the data indepen-
dently and merged in a post-processing step. This part-based model was shown
to lead to a higher data accuracy than the global morphable model. As part-
based models are suitable to obtain good fitting results in localized regions, they
have been used in multiple follow-up works, eg. [14,13,26]. While the model of
Kakadiaris et al. [14] shares some similarities with our model, they use a fixed an-
notated face model, and wavelet transforms to compare facial geometry images.
In contrast, we learn multilinear models on subdivision wavelet coefficients.

All of the methods discussed so far model shape changes using global or part-
based statistical models. In contrast, by applying a wavelet transform to the
data first, statistical models can be constructed that capture shape variation
in both a local and multi-scale way. Such wavelet-domain techniques have been
used extensively for medical imaging [12,21,18], and Brunton et al. [8] proposed
a method to analyze local shape differences of 3D faces in neutral expression
in a hierarchical way. This method decomposes each face hierarchically using a
wavelet transform and learns a PCA model for each wavelet coefficient indepen-
dently. This approach has been shown to capture more facial details than global
statistical shape spaces. Hence, in Section 6 we compare to a wavelet-domain
approach and show that our model better captures expression variation.



300 A. Brunton, T. Bolkart, and S. Wuhrer

We propose a method that combines this localized shape space with a multi-
linear model, thereby allowing to capture localized shape differences of databases
of 3D faces of different subjects in different expressions.

3 Multilinear Wavelet Model

Our statistical shape space for human faces consists of a multilinear model for
each wavelet coefficient resulting from a spherical subdivision wavelet decom-
position of a template face mesh. The wavelet transform takes a set of highly
correlated vertex positions and produces a set of decorrelated wavelet coeffi-
cients. This decorrelation means that we can treat the coefficient separately and
learn a distinct multilinear model for each coefficient. These multilinear models
capture the variation of each wavelet coefficient over changes in identity and
expression. In the following, we review the two components of our model.

3.1 Second Generation Spherical Wavelets

Spherical wavelets typically operate on subdivision surfaces [25] following a stan-
dard subdivision hierarchy, giving a multi-scale decomposition of the surface.
This allows coarse-scale shape properties to be represented by just a few coeffi-
cients, while localized fine-scale details are represented by additional coefficients.
Second generation wavelets can be accelerated using the lifting scheme [27], fac-
toring the convolution of the basis functions into a hierarchy of local lifting op-
erations, which are weighted averages of neighboring vertices. When combined
with subsampling, the transform can be computed in time linear in the number
of vertices. The particular wavelet decomposition we use [3] follows Catmull-
Clark subdivision, and has been used previously for localized statistical models
in multiple application domains [18,8]. The wavelet transform is a linear opera-
tor, denoted D. For a 3D face surface X , the wavelet coefficients are s = DX .

3.2 Multilinear Models

To statistically analyze a population of shapes, which vary in multiple ways,
such as identity and expression for faces, one can use a multilinear model. In
general, one constructs a multilinear model by organizing the training data into
an N -mode tensor, where the first mode is the vector representation of each
training sample, and the remaining modes contain training samples varied in
distinct ways.

We organize our set of parametrized training shapes into a 3-mode tensor
A ∈ R

d1×d2×d3 , where d1 is the dimension of each shape, and d2 and d3 are the
number of training samples in each mode of variation; in our case, identity and
expression. It would be straightforward to extend this model to allow for more
modes, such as varying textures due to illumination changes, if the data were
available. We use a higher-order Singular Value Decomposition (HOSVD) [16]
to decompose A into

A = M×2 U2 ×3 U3, (1)
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Training Data Wavelet Decomposition Localized Multilinear Models

Shape Space

Fig. 1. Overview of the training. Left: Training data with highlighted impact of the
basis function. Middle: Wavelet decomposition of each face of the training data. Right:
Corresponding wavelet coefficients and learned multilinear model shape spaces.

where M ∈ R
d1×m2×m3 is a tensor called a multilinear model, and U2 ∈ R

d2×m2

and U3 ∈ R
d3×m3 are orthogonal matrices. The i-th mode product M ×i Ui

replaces each vector m ∈ R
mi of M in the direction of i-th mode by Uim ∈ R

di .
To compute the orthogonal matrix U2, A is unfolded in the direction of 2-nd
mode to the matrix A(2) ∈ R

d2×d1d3 , where the columns of A(2) are the vectors
of A in direction of 2-nd mode.

The decomposition in (1) is exact, if mi = rank(U(i)) for all i. If mi <
rank(U(i)) for at least one i, the decomposition approximates the data. This
technique is called truncated HOSVD, and we use this to reduce the dimension-
ality of the training data.

The multilinear model represents a shape s ∈ R
d1 by

s ≈ f+M×2 w
T
2 ×3 w

T
3 , (2)

where f is the mean of the training data (over all identities and expressions), and
w2 ∈ R

m2 and w3 ∈ R
m3 are identity and expression coefficients. Varying only

w2 changes identity while keeping the expression fixed, whereas varying only w3

changes the expression of a single identity.

4 Training

In this section, we describe the process of learning the multilinear wavelet model
from a database of registered 3D faces in a fixed number of expressions. Using
the notation from Section 3.2, the database contains d2 identities, each in d3
expressions. We discuss in Section 6 how to obtain such a registered database.
The training process is depicted graphically in Figure 1.

The first stage in our training pipeline is to apply a wavelet transform to
every shape in our training database. The left-most part of Figure 1 shows the
influence region of two wavelet coefficients on four face shapes (two identities
in two expressions). To obtain a template with the proper subdivision connec-
tivity, we use a registration-preserving stereographic resampling onto a regular
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grid [8], although any quad-remeshing technique could be used. Because the
training shapes are registered, and have the same connectivity, we now have a
database of registered wavelet coefficients (middle of Figure 1). Note that this
does not require any manual segmentation, but is computed fully automatically.
By considering the decorrelating properties of wavelet transforms, we can look at
it another way: we now have a training set for each individual wavelet coefficient,
which we can treat separately.

From these decorrelated training sets, covering variations in both identity
and expression, we can learn a distinct multilinear model for each coefficient,
resulting in many localized shape spaces as shown in the right part of Figure 1.
This allows a tremendous amount of flexibility in the model.

Training our model has the following complexity. Each wavelet transform has
complexity O(n), for n vertices, and we perform d2d3 of them. The complexity
of the HOSVD is O(d21(d2d

2
3 + d3d

2
2)) [16], and we compute n of them. Because

every multilinear model is computed for only a single wavelet coefficient over
the training set, d1 = 3 so the complexity is O(d2d

2
3 + d3d

2
2) per wavelet coeffi-

cient and O(n(d2d
2
3 + d3d

2
2)) overall. Thus, our model allows highly efficient and

scalable training, as detailed in Section 6.
Training many low-dimensional models has statistical benefits too. We retain

a large amount of the variation present in the training data by truncating modes
2 and 3 at m2 = 3 and m3 = 3. We chose m2 = m3 = 3 because d1 = 3 is the
smallest mode-dimension in our tensor.

Our model generates a 3D face surface X as follows. The vertex positions
x ∈ X are generated from the wavelet coefficients via the inverse wavelet trans-
form, denoted by D−1. The wavelet coefficients are generated from their individ-
ual multilinear weights for identity and expression. Thus, following (2), wavelet
coefficients are generated by

sk = sk +Mk ×2 w
T
k,2 ×3 w

T
k,3 (3)

where k is the index of the wavelet coefficient, and the surface is generated by
X = D−1s where s = [s1 . . . sn]

T .

5 Fitting

In this section, we discuss the process of fitting our learned model to an input
oriented point cloud or mesh P , which may be corrupted by noise, missing data
or occlusions. The process is depicted graphically in Figure 2. We fit our model by
minimizing a fitting energy that captures the distance between X and P , subject
to the constraints learned in our training phase. We minimize the energy in a
coarse-to-fine manner, starting with the multilinear weights of the coarse-scale
wavelet coefficients, and refining the result by optimizing finer-scale multilinear
weights.
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Localized Multilinear Models

Input Face Initialize Fit Surface

Fig. 2. Overview of the fitting. Top: Localized multilinear models. Bottom, left to right:
input face scan, result after initialization, result of full surface fitting.

5.1 Fitting Energy

We optimize our model parameters to minimize an energy measuring the distance
between X and P . Our model parameters consist of the per-wavelet coefficient
multilinear weights, wk,2, wk,3 for k = 1, . . . , n, and a similarity transform (rigid
plus and uniform scaling)Rmapping the coordinate frame of X to the coordinate
frame of P .

Our fitting energy consists of four parts: a landmark term, a surface fitting
term, a surface smoothing term, and a prior term. That is,

Efit = EL + EX + ES + EP (4)

where EL, EX , ES and EP are the landmark energy, surface fitting energy,
surface smoothing energy and prior energy, respectively. We now describe each
of these energies in turn.

The landmark energy measures the Euclidean distance between correspond-
ing landmark sets L(m) ⊂ X and L(d) ⊂ P located on the model surface and
input data, respectively. These landmarks may be obtained in a variety of ways,
including automatically [10,23], and do not restrict our method. In Section 6, we
demonstrate how our method performs using landmarks from multiple sources.

The landmarks are in correspondence such that |L(m)| = |L(d)| and �
(m)
i and �

(d)
i

represent the equivalent points on X and P respectively. With this, we define
our landmark energy as,

EL = ρL
|X |

|L(m)|
|L(m)|∑

i=1

∥∥∥R�
(m)
i − �

(d)
i

∥∥∥
2

2
(5)

where ρL = 1 is a constant balancing the relative influence of landmarks against
that of the rest of the surface.

The surface fitting energy measures the point-to-plane distance between ver-
tices in X and their nearest neighbors in P . That is,

EX =
∑

x∈X\L(m)

ρ(x) ‖Rx− y(x)‖22 (6)
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where y(x) is the projection of Rx into the tangent plane of p, where p ∈ P is
the nearest neighbor of Rx. The distances are weighted by

ρ(x) =

{
1 if ‖Rx− p‖2 ≤ τ

0 otherwise
(7)

where τ = 1cm is a threshold on the distance to the nearest neighbor, providing
robustness to missing data. We compute nearest neighbors using ANN [2].

The prior energy restricts the shape to stay in the learned shape space, pro-
viding robustness to both noise and outliers. We avoid introducing undue bias
to the mean shape via a hyper-box prior [7],

EP =

n∑

k=1

⎛

⎝
m2∑

j=1

fk,2,j(wk,2,j) +

m3∑

j=1

fk,3,j(wk,3,j)

⎞

⎠ (8)

where

fk,2,j(w) =

{
0 if w̄k,2,j − λ ≤ w ≤ w̄k,2,j + λ

∞ otherwise
(9)

restricts each component of wk,2 to be within a constant amount λ of the same
component of the mode-mean w̄k,2, and similarly for each component of wk,3.

The smoothing energy is the bi-Laplacian energy, which penalizes changes in
curvature between neighboring vertices. It is needed due to the energy mini-
mization algorithm, described in Section 5.2, which optimizes each multilinear
wavelet independently. Without a smoothing energy, this can result in visible
patch boundaries in the fitted surface, as can be seen in Figure 4.

Formally, we write

ES = ρS
∑

x∈X

∥∥U2(x)
∥∥2
2

(10)

where U2(x) is the double-umbrella discrete approximation of the bi-Laplacian
operator [15], and ρS is a constant weight.

The smoothing energy poses a trade-off: visually pleasing smooth surfaces
versus fitting accuracy and speed. Leaving outES allows the energy minimization
to get closer to the data (as expected), and leads to faster fitting due to the energy
being more localized. Hence, we retain the option of not evaluating this energy
in case the scenario would favor close fitting and fast performance over visually
smooth results. We use either ρS = 100 or ρS = 0 in all our experiments. Section
6 discusses this trade-off in more concrete terms.

5.2 Energy Minimization

Weminimize (4) in a two-step procedure. In the first step, we iteratively minimize
EL + EP + ES with respect to R and the multilinear weights of each wavelet
coefficient. This rigidly aligns the model and the data, and coarsely deforms the
surface to fit the landmarks, giving a good initialization for subsequent surface
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fitting. We solve for R that minimizes EL, given the landmark positions L(m)

and L(d). This involves solving a small over-determined linear system. Then, we
optimize wk,2 and wk,3 for k = 1, . . . , n to minimize EL+EP . Figure 2 (bottom,
middle) shows the result of landmark fitting for a given input data.

In the second step, we fix R and minimize (4) with respect to only the multi-
linear weights. This deforms the surface so that it closely fits the input data P .
Figure 2 (bottom, right) shows the final fitting result.

The energies EL, EX and ES are nonlinear with respect to the multilinear
weights, and we minimize them using the L-BFGS-B [19] quasi-Newton method.
This bounded optimization allows the prior (8) to be enforced simply as bounds
on the multilinear weights. The hierarchical and decorrelating nature of the
wavelet transform allows us to minimize the energies separately for each multi-
linear model in a coarse-to-fine manner. During initialization, we recompute R
and optimize the multilinear weights iteratively at each level of wavelet coeffi-
cients. During surface fitting, nearest neighbors are recomputed and the multi-
linear weights optimized iteratively at each level. During initialization, we allow
greater variation in the model, λ = 1, because we assume the landmarks are not
located on occlusions. During surface fitting, we restict the shape space further,
λ = 0.5, unless the particular weight component is already outside this range
from the initialization.

Fitting many low-dimensional local multilinear models is more efficient than
fitting a single high-dimensional global multilinear model, because the dimen-
sionality of the variables to be optimized is the dominant factor in the complexity
of the quasi-Newton optimization, which achieves super-linear convergence by
updating an estimate of the Hessian matrix in each iteration. For a problem size
d = m2 + m3 the Hessian contains Ω(d2) unique entries, which favors solving
many small problems even if the total number of variables optimized is greater.
This is confirmed experimentally in Section 6. Further, each multilinear model
has compact support on X , which reduces the number of distances that must be
computed in each evaluation of (6) and its gradient.

5.3 Tracking

As an application of our shape space, we show how a simple extension of our
fitting algorithm can be used to track a facial motion sequence. To the first
frame, we fit both identity and expression weights. Subsequently, we fix identity
weights and only fit expression weights. This ensures that shape changes over
the sequence are only due to expression, not identity. A more elaborate scheme,
which averages the identity weights, would also be feasible.

To avoid jitter, we introduce a temporal smoothing term on the vertex po-
sitions. Approaches based on global multilinear models often place a temporal
smoothing term on the expression weights themselves [31,7] since these are usu-
ally much lower dimension than the surface X . In our case, the combined di-
mensionality of all expression weights is equal to that of the vertex positions, so
no efficiency is to be gained by operating on the weights rather than the vertex
positions. Further, placing a restriction on the vertex positions fits easily into our
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energy minimization. We use a simple penalty on the movement of the vertices
x ∈ X between frames. This is easily incorporated into our fitting algorithm by
simply adding a Euclidean distance penalty to our energy function (4) during
surface fitting:

ET =
∑

xt∈Xt

ρT ‖xt − xt−1‖22 (11)

where ρT = 1 is a constant balancing allowing the surface to move versus reduc-
ing jitter.

6 Evaluation

6.1 Experimental Setup

Training Data: For a training database, we use the BU3DFE database [33]
registered using an automatic template-fitting approach [23] with ground truth
landmarks. This database contains 100 subjects in 25 expressions levels each. We
successfully registered 99 subjects in all expressions and used this for training in
our experiments.

Test Data: To test our fitting accuracy we use 200 scans from the Bosphorus
database [24] including variation in identity, expression and types of occlusions.
We specifically do not test on scans from the same database we use for training
to avoid bias. Further, the Bosphorus scans typically have higher noise levels
than those in BU3DFE, and contain occlusions. This database contains land-
marks on each scan; we use the subset of those shown in Figure 2 present on a
given surface (not blocked by an occlusion). In Section 6.4, we show the perfor-
mance of our method when tracking facial motion sequences from the BU4DFE
database [32] with landmarks automatically predicted using an approach based
on local descriptors and a Markov network [23].

Comparison: We compare our fitting results to the localized PCA model [8]
and the global multilinear model [7]. All three models are trained with the same
data, with the exception that because the local PCA model does not model
expression variation, we train it separately for each expression and give it the
correct expression during fitting. The other two are given landmarks for fitting.

Performance: We implemented our model, both training and fitting, in C++
using standard libraries. We ran all tests on a workstation running windows with
an Intel Xeon E31245 at 3.3GHz. Training our model on 2475 face shapes each
with 24987 vertices takes < 5min using a single-threaded implementation. In
practice we found our training algorithm to scale approximately linearly in the
number of training shapes. Fitting takes 5.37s on average with ρS = 0, and 14.76s
with ρS = 100, for a surface with approximately 35000 vertices (Sections 6.2
and 6.3). For the motion sequences with approximately 35000 vertices per frame
(Section 6.4), fitting takes 4.35s per frame on average without smoothing and
11.14s with smoothing. The global multilinear model takes ≈ 2 min for fitting to
a static scan. A single-threaded implementation of the local PCA model takes
5 min due to the sampling-based optimization, which avoids local minima.
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Fig. 3. Left block: Median reconstruction error for noisy data using multiple local-
ized PCA models, a global multilinear model, our model (ρS = 0), and our model
(ρS = 100). Right block: mask showing the characteristic detail regions of the face,
and cumulative error plot for varying identity and expression. Errors in millimeters.

Fig. 4. Effect of smoothing energy ES on an example noisy scan. Left block: fitting
results for a scan in surprise expression, with a close-up of the nose region in the bottom
row. Left to right: local multiple PCA, global multilinear model, our model (ρS = 0),
our model (ρS = 100), and input data. Right block: our reconstructions for a fear
expression for ρS = 0 (left) and ρS = 100. Note the faint grid-artifacts that appear
without smoothing, eg. in the cheek region and around the mouth. The input data can
be seen in Figure 5 (left block).

6.2 Reconstruction of Noisy Data

In this section, we demonstrate our model’s ability to capture fine-scale detail
in the presence of identity and expression variation, and high noise levels. We
fit it to 120 models (20 identities in up to 7 expressions) from the Bosphorus
database [24]. We measure the fitting error as distance-to-data, and the per-
vertex median errors are shown for all three models in Figure 3 (left). Our
model has a greater proportion of sub-millimeter errors than either of the other
models. Specifically, the local PCA and the global multilinear have 63.2% and
62.0%, respectively, of vertices with error < 1mm, whereas our model has 71.6%
with ρS = 100 and 72.4% with ρS = 0. Figure 3 (right) shows cumulative
error plots for all three methods for vertices in the characteristic detail region
of the face, which is shown next to the plot. This region contains prominent
facial features with the most geometric detail. We see that our model is more
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Fig. 5. Reconstruction examples for noisy scans in different expressions. Left block:
fear expression. Right block: happy expression. Each block, from left to right: local
multiple PCA [8], global multilinear [7], proposed (ρS = 100), input data.
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Fig. 6. Left block: Masks used to measure error for the different occlusions types and
combined cumulative error plot. Right block: reconstruction examples for a scans with
occlusions. Top: eye occlusion. Bottom: mouth occlusion. Each row: local multiple PCA
model, global multilinear model, our reconstruction with ρS = 100, input data.

accurate than previous models in this region and has many more sub-millimeter
errors; the local PCA and global multilinear have 60.4% and 58.0% of errors
< 1mm, respectively, whereas our model has 70.2% with ρS = 100 and 72.7%
with ρS = 0. This shows that our model has improved accuracy for fine-scale
detail compared to existing models, in particular in areas with prominent features
and high geometric detail.

Figures 4 and 5 show examples of fitting to noisy scans of different subjects
in different expressions. These scans contain acquisition noise, missing data and
facial hair. Figure 4 (left) shows a surprise expression and close-ups of the nose
region; our reconstruction both ρS = 100 and ρS = 0 capture significantly more
fine-scale detail than previous models. The right part of the figure demonstrates
the effect of the smoothing energy in preventing faint grid artifacts appearing
in the reconstruction due to the independent optimization scheme. Figure 5
shows two subjects in fear and happy expressions. We again see the increased
accuracy of our model in terms of fine-scale detail on facial features compared to
previous models. Note the accuracy of the nose and mouth shapes in all examples
compared to the other models, and the accurate fitting of the underlying face
shape in the presence of facial hair. Further note how our model captures the
asymmetry in the eyebrow region for the fear expression.
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Fig. 7. Tracking results for the application of our fitting algorithm given in Section
5.3. Each block shows frames 0, 20, 40 and 60 of a sequence of a subject performing
an expression. Top: happy expression. Bottom: fear expression.

6.3 Reconstruction of Occluded Data

In this section, we demonstrate our model’s robustness to severe data corruptions
in the form of occlusions. We fit all three models to 80 scans (20 subjects, 4
types of occlusions) from the Bosphorus database [24]. Figure 6 (left) shows the
cumulative error for all three models. Since distance-to-data is not a valid error
measure in occluded areas, we apply different masks, shown next to the error
plot, depending on the type of occlusion so that only unoccluded vertices are
measured. Clockwise from top-left: the mask used for eye, glasses, mouth and
hair occlusions. From the cumulative error curves, we see that our model retains
greater accuracy in unoccluded parts of the face than previous models.

Figure 6 (right) shows example reconstructions in the presence of severe oc-
clusions. All models show robustness to occlusions and reconstruct plausible face
shapes, but our model provides better detail in unoccluded parts of the face than
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previous models (see the mouth and chin in the first row, and the nose in the
second row). For these examples, we show our reconstruction with ρS = 100.

6.4 Reconstruction of Motion Data

In this section, we show our model’s applicability to 3D face tracking using the
simple extension to our fitting algorithm described in Section 5.3. Figure 7 shows
some results for a selection of frames from three sequences from the BU4DFE
database [32]. We see that, as for static scans, high levels of facial detail are
obtained, and even the simple extension of our fitting algorithm tracks the ex-
pression well. Since landmarks are predicted automatically for these sequences,
the entire tracking is done automatically. This simple tracking algorithm is sur-
prisingly stable. Videos can be found in the supplemental material.

7 Conclusion

We have presented a novel statistical shape space for human faces. Our multilin-
ear wavelet model allows for reconstruction of fine-scale detail, while remaining
robust to noise and severe data corruptions such as occlusions, and is highly effi-
cient and scalable. The use of the wavelet transform has both statistical and com-
putational advantages. By decomposing the surfaces into decorrelated wavelet
coefficients, we can learn many independent low-dimensional statistical models
rather than a single high-dimensional model, reducing the risk of overfitting and
allowing us to set tight statistical bounds on the shape parameters, thereby pro-
viding robustness to data corruptions while capturing fine-scale detail. Model
dimensionality is the dominant factor in the numerical routines used for fitting
the model to noisy input data, and fitting many low-dimensional models is much
faster than a single high-dimensional model even when the total number of pa-
rameters is much greater. We have confirmed these properties experimentally
with a thorough evaluation on noisy data with varying expression, occlusions
and missing data. We have further shown how our fitting procedure can be
easily and simply extended to stable tracking of 3D facial motion sequences. Fu-
ture work includes making our model applicable for real-time tracking. Virtually
all aspects of our fitting algorithm are directly parallelizable, and an optimized
GPU implementation could likely achieve real-time fitting rates. Such high-detail
real-time tracking could have tremendous impact in tele-presence and gaming
applications. We have made our statistical model and code to fit it to point cloud
data available for research purposes [6].
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