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Abstract. We present a hierarchical graphical model to probabilistically
estimate head pose angles from real-world videos, that leverages the tem-
poral pose information over video frames. The proposed model employs
a number of complementary facial features, and performs feature level,
probabilistic classifier level and temporal level fusion. Extensive experi-
ments are performed to analyze the pose estimation performance for dif-
ferent combination of features, different levels of the proposed hierarchical
model and for different face databases. Experiments show that the pro-
posed head pose model improves on the current state-of-the-art for the
unconstrained McGillFaces [10] and the constrained CMU Multi-PIE [14]
databases, increasing the pose classification accuracy compared to the cur-
rent top performing method by 19.38% and 19.89%, respectively.

Keywords: Face, hierarchical, probabilistic, video, graphical, temporal,
head pose.

1 Introduction

Video cameras are ubiquitous in today’s world, from street and area surveillance
to intelligent digital signs and kiosks. The imagery provided by these cameras is
unconstrained and capture video streams of people in many different poses and
under a wide variety of lighting conditions. Robustly estimating head pose from
such video is an increasingly important and necessary task. In the context of real-
world scenarios, face recognition/verification, facial attribute classification and
human computer interaction all generally benefit from using head pose estimates
as prior information in order to boost their performance [7, 12, 16, 19, 22, 23, 41].

There is a wide literature on head pose estimation, [2–4, 6, 11, 13, 17, 18, 20,
25, 27, 28, 30, 32, 34, 35, 39, 42, 43]. The general categories of methods described
in this literature include [26]: Appearance template methods use image-based
comparison techniques to match a test image to a set of training images with
corresponding pose labels. Manifold, subspace embedding methods project an im-
age onto the head pose manifold using linear and nonlinear subspace techniques.
When such techniques are used for video frames, they implicitly model a given
video sequence temporally by mapping similar frames onto nearby locations in
the manifold. Geometric methods use the location of facial landmarks to deter-
mine the head pose from their relative configuration. Lastly, tracking methods
aim to estimate the global movement of a head by using the relative movement
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Fig. 1. Examples of tracked faces from the McGillFaces Database [10] depicting the
head pose ground truth angles, extracted features and estimated pose information:
(a) Head pose (yaw angle) ground truth labels of example faces, (b) Different facial
representations, namely facial landmark [40], facial region (BPLR), patch (SIFT and
CSIFT) and edge (GB), employed by the proposed model and the estimated pose
information. The pose ground truth label obtained via [10] is shown on the top right.
The yaw distribution calculated by our approach is shown on the top bottom and the
corresponding MAP estimate is shown in red on the pose distribution.

between consecutive video frames. The highest accuracies published in the head
pose literature are presented by the manifold learning methods, e.g.[4]. Most
of these methods, however, are not designed to operate in unconstrained envi-
ronments. A common assumption is that the entire set of facial features typical
for frontal poses is always visible. Facial features are often manually labeled
in the testing data, rather than extracted automatically. Furthermore, most ap-
proaches are trained and tested on images which do not exhibit wide variation in
appearance. The testing databases mostly contain images with solid or constant
background, limited facial expression, no random illumination, and limited or
no facial occlusion (e.g. Multi-PIE [14]). Finally, current face tracking methods
require a known initial head pose, and usually must be reinitialized whenever the
tracking fails. All of these issues contribute to poor performance when applied
to real-world videos.

Estimation of head pose from uncontrolled environments has recently been
receiving more attention [2, 11, 12, 28, 35, 40, 43]. Orozco et al. [28] and Tosato
et al. [35] address the problem of head pose estimation in single, low resolution
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video frames of crowded scenes under poor and/or limited, e.g. indoor, light-
ing, where they treat the problem as a classification problem. That is, they
assign a face image to one of the coarse discrete pose bins, e.g. front and back.
Some approaches [11, 43], on the other hand, use relatively higher quality video
frames/images and perform classification on finer pose bins whereas others de-
fined the pose estimation problem as a continuous (fine discrete) pose angle esti-
mation task [2, 12, 40]. In short, most of these approaches either do not leverage
the temporal pose information available between consecutive video frames, or
focus on only a specific set of features (e.g. facial landmark points) to represent
faces. It is shown in [40] that facial landmarks can be used successfully to esti-
mate head pose when they are reliably located. However, it is difficult to extract
such features when a significant facial occlusion is present (see Fig. 1(b)) or when
the pose angle is more than 45o, leading to occlusion of facial landmark regions
(e.g. eyes) in the image.

This paper is concerned with the automated estimation of very fine discrete
head pose (yaw angle only) in unconstrained videos. The video data is assumed
to include difficult aspects such as a wide range in face scales, extreme head
poses, variable and non-uniform illumination conditions, partial occlusions, mo-
tion blur, and background clutter (see Fig. 1). The probabilistic graphical model
proposed in this paper (Fig. 2 and 3) is based on a hierarchy of complementary
robust local invariant facial features, which leverages the dependencies between
consecutive video frames in order to substantially improve head pose estima-
tion in real world scenarios. These features have a high degree of invariance
to various transformations, such as changes in scale, viewpoint, rotation and
translation. They include: (i) facial landmarks, (ii) densely sampled patch-based
features, (iii) regions, mainly associated with anatomical structures such as the
eyes, forehead, and cheeks, and (vi) edge points, mainly arising from the eye-
brows, mouth, eyes and nose (see Fig. 1(b)). These features are complementary
in that when one feature type is not reliably detected from a face image, the other
feature(s) can compensate for it, in order to robustly estimate head pose. In each
video frame, the system assesses the probability density function over the pose
angle, ranging from −90o to +90o (Fig. 1(b)). Spatial codebook representations
are inferred from the various local features. For each feature type, we calculate
the codebook statistics to infer the corresponding pose distribution. These are
used in the graphical model to estimate the single video frame pose probability
distribution. These head pose probabilities over the given video sequence, later,
are temporally modelled. Finally, the non-parametric density estimation is em-
ployed to obtain fine discrete head pose probabilities. The results show that that
the proposed framework outperforms competing methods [2, 4, 12, 40, 43] when
evaluated on a challenging, unconstrained, public available video database, i.e.
the McGillFaces Database [10] (see Fig. 1). The proposed model is also eval-
uated on the CMU Multi-PIE [14] database, which is collected in a controlled
environment. It is observed that compared to the next closest competitor, our
method achieves a much higher pose classication accuracy.
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2 Methodology

In Level 1 (Fig. 3), the framework models the relationship between the statistics
learned from different local invariant features on the detected face, and their
corresponding face pose distributions. In Level 2, the single frame pose distribu-
tion is inferred based on the different feature-based face pose estimates inferred
at Level 1. Finally, Level 3 (Fig. 2) estimates the most likely face pose config-
uration Θ by leveraging the temporal information. To achieve, this we employ
Belief Propagation (BP).

Assume that a video contains T video frames, each of which contains a
successfully located and tracked face image via the algorithm in [10], Xt

intXt
intXt
int,

t ∈ {1, 2, · · · , T }. Our goal is to estimate the set of head pose PDFs through-
out the video, Θ = {θ1, θ2, · · · , θt, · · · , θT } given Y = {Y1, Y2, · · · , Yt, · · · , YT },
where θt = {φ1, φ2, · · · , φM} is the set of head pose angles for each video frame,
and Yt = {ytpatch, ytedge, ytregion, ytlandmark}, which are the patch, edge, region
based and facial landmark based pose distributions. The posterior distribution is

p(Θ|Y ) = p(Θ,Y )
p(Y ) , where p(Y ) is a normalization term, which is constant with re-

spect to Θ. To model the head pose over a video sequence Θ, the graphical model
shown in Fig. 2 is employed. This allows us to express the posterior distribution

with pairwise interactions: p(Θ|Y ) = 1
p(Y )

(∏T
t=1 ϑ(θ

t, Y t)
)(∏T−1

t=1 ϕ(θt, θt+1)
)
.

In this equation, the unary compatibility function accounting for local evidence
(likelihood) for θt is represented by ϑ(θt, Y t), whereas the pairwise compatibility
function between θt and θt+1 is represented by ϕ(θt, θt+1).

The unary compatibility function for each node i, ϑ(θt, Y t), is defined as
the joint distribution p(θt, Y t) given by: p(θt, ytpatch, y

t
edge, y

t
region, y

t
landmark) =

p(θt|ytpatch, ytedge, ytregion, ytlandmark)p(y
t
patch, y

t
edge, y

t
region, y

t
landmark), where

p(θt|ytpatch, ytedge, y
t
region, ytlandmark) and p(ytpatch, y

t
edge, y

t
region, y

t
landmark) are

computed by a hierarchical graphical model, whose parametrization and learning
are explained in the following subsections. A Gaussian distribution, N(μ,Δ),
assumption is made to model the pairwise compatibility function ϕ(θt, θt+1).

Belief Propagation (BP) [29] is used to calculate the MAP estimate as the
most likely head pose configuration, Θ∗ = argmaxΘp(Θ|Y ). In our experiments,

Fig. 2. Level 3 (the highest level) of the proposed framework: Belief Propagation de-
fined over the proposed graphical model and local message passing for head pose esti-
mation from a video sequence
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we adapt the sum-product BP algorithm, which is efficient and provides the
exact solution since the highest level of our model is a chain.

2.1 Hierarchical Temporal Graphical Model

Xt
intXt
intXt
int is the set of intensity values in RGB space at time t for the pixels in the

image of the tracked face:Xt
intXt
intXt
int =

{
xt
i,j | ∀i ∈ {1, · · · , I} , ∀j ∈ {1, · · · , I}}, where

the image has the size of I × I and xt
i,j is the intensity value of an individual

pixel at location (i, j).
Given the challenges presented by real-world environments, local invariant

features are inferred due to their high degree of robustness to various transfor-
mations, such as changes in scale, viewpoint, rotation and translation. Extensive
analysis of a number of different local invariant features (e.g. [36, 37]) shows that
using both densely and sparsely detected features, and representing these fea-
tures with complementary descriptors is beneficial for classification/detection
tasks.

The collection of the different feature representations (see Fig. 1(b)) inferred

fromthe tracked faceXt
intXt
intXt
int is denotedbyX

tXtXt =
{
Xt

patchXt
patchXt
patch,X

t
edgeXt
edgeXt
edge,X

t
regionXt
regionXt
region,X

t
landmarkXt
landmarkXt
landmark

}
,

where Xt
patchXt
patchXt
patch is the densely sampled patch representation, Xt

edgeXt
edgeXt
edge is the sparsely

sampled edge representation,Xt
regionXt
regionXt
region is the dense region, andXt

landmarkXt
landmarkXt
landmark is the fa-

cial landmark representation.
Here, Xt

patchXt
patchXt
patch is the collection of image patches extracted from Xt

intXt
intXt
int:

Xt
patchXt
patchXt
patch =

{
xt
p | ∀p ∈ {1, · · ·P}} , (1)

where P is the total number of patches and xt
p denotes a single patch with index

p, which contains two pieces of information: 1) the set of pixels in the patch,{
xt
i,j

}
p
, and 2) the location of the patch center, (rp, cp):

xt
p =

{
(
{
xt
i,j

}
p
, rp, cp) |

{
xt
i,j

}
p
⊂Xt

intXt
intXt
int, rp ∈ {1, · · · , I} , cp ∈ {1, · · · , I}} .

(2)

Xt
edgeXt
edgeXt
edge denotes the collection of distinct points lying on the edge map inferred

from Xt
int:

Xt
edgeXt
edgeXt
edge =

{
xt
e | ∀e ∈ {1, · · ·E}} , (3)

where E is the total number of detected edge points, and xt
e is a single edge

point with edge index e, which contains two pieces of information: 1) the set of
pixels

{
xt
i,j

}
e
that describes the e-th distinct edge point, and 2) location of the

distinct edge point (re, ce):

xt
e =

{
(
{
xt
i,j

}
e
, re, ce) |

{
xt
i,j

}
e
⊂Xt

intXt
intXt
int, re ∈ {1, · · · , I} , ce ∈ {1, · · · , I}} . (4)
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Xt
regionXt
regionXt
region denotes the collection of facial regions extracted from Xt

int:

Xt
regionXt
regionXt
region =

{
xt
r | ∀r ∈ {1, · · ·R}} , (5)

where R is the total number of facial regions extracted from Xt
intXt
intXt
int, and xt

r is
the rth single face region, which includes three pieces of information: 1) its set
of pixels

{
xt
i,j

}
r
, 2) the location of the region center (rr, cr), and 3) the region

scale (size) sr:

xt
r =

{
(
{
xt
i,j

}
r
, rr, cr, sr) |

{
xt
i,j

}
r
⊂Xt

intXt
intXt
int,

rr ∈ {1, · · · , I} , cr ∈ {1, · · · , I} , sr ∈ Z+
}
. (6)

Xt
landmarkXt
landmarkXt
landmark denotes the collection of facial landmarks extracted from Xt

int:

Xt
landmarkXt
landmarkXt
landmark =

{
xt
fl | ∀l ∈ {1, · · ·L}} , (7)

where L is the total number of facial landmarks extracted from Xt
intXt
intXt
int, and xt

fl

is the flth single facial landmark, which contains the facial landmark location
(rfl, cfl).

To model each of these representations, one can use different features. Here,
the features chosen are: (i) densely sampled “SIFT” [24] and “Color SIFT
(CSIFT)” [9] features for modeling the face image patches, (ii) sparsely sam-
pled “Geometric Blur (GB)” [5] features for modeling the distinct facial edge
points, (iii) “Boundary Preserving Local Region (BPLR)” [21], and (iv) facial
landmark [40] features for modeling the facial anatomical regions.

For the landmark features, we use the location information directly. For the
remaining features, rather than using the pixel intensities directly for each fea-
ture type, the corresponding descriptor d is extracted from each feature point’s
intensity representation, such as

{
xt
i,j

}
p
,
{
xt
i,j

}
e
or

{
xt
i,j

}
r
. For the patch rep-

resentation, SIFT and CSIFT descriptors are used, dtsift,p=k and dtcsift,p=k. In

the case of edge features, the GB descriptor dtGB,e=l is chosen. Pyramids of His-

tograms of Oriented Gradients are used as the region descriptor, i.e. dtPHOG,r=m.
A visual vocabulary (codebook) is learned for each feature type, using the corre-
sponding feature descriptors and an appropriate mapping function which takes
the extracted feature’s location information into account. That is, in the en-
coding step, hierarchical K-means clustering is performed on this information.
Learning the optimal number of codewords is achieved via cross validation on
training set. In the pooling step, vector quantization is used. Next, each extracted
feature is represented by a visual word (codeword), from which codeword statis-
tics will be learned. Occurrence statistics, for example, model how likely it is
to observe a codeword for a pose value of interest. These statistics will be later
used in the potential functions. Note that in the rest of the formulation, instead
of the pixel intensity values, the corresponding descriptors d are used in xt

p=k,

xt
e=l and xt

r=m.



334 M. Demirkus et al.

Fig. 3. An overview of Level 1 and Level 2 of the hierarchical graphical model for
the t-th frame in a video sequence. The red nodes are the patch, edge, region and
landmark based visual words. The yellow nodes of yt

patch, y
t
edge, y

t
region and yt

landmark

represent pose distributions for the patch, edge, region and landmark representations,
respectively. The green node Y t is the pose distribution at the t-th frame. The boxes
show the potential functions used to model the relationship between the corresponding
two nodes.

We now define each of the facial feature types used in the proposed model:
The Patch-based Representation: A dense sampling of the given facial im-
age is achieved by the patch representation. SIFT and CSIFT vocabularies are
used to model each image patch. This choice is motivated by the observed per-
formance increase when CSIFT is combined with SIFT, as in [31]. To map the
k-th image patch xt

p=k to a visual word f t
sift,p=k learned using the SIFT and

CSIFT descriptors, a mapping function g is used such that g : xt
p=k → f t

sift,p=k

and g : xt
p=k → f t

csift,p=k (that is Xt
patchXt
patchXt
patch → F t

patchF t
patchF t
patch). To leverage the spatial

information, the patch location (rp, cp) is used in the coding and pooling phases,
similar to the IG-BOW method in [10]. By adding two more dimensions to the
descriptor space, this permits modeling the spatial inter-patch relationship. Be-
cause faces are aligned in the preprocessing step, this mapping provides better
modeling for the face vocabulary. The Edge-based Representation: The Ge-
ometric Blur (GB) framework ([1, 5]) is used for detecting the key facial edge
points and calculating the corresponding descriptor around each edge point.
Geometric blur is shown to be effective when applied to sparse edge points.
Thus, first the oriented edge filter responses are extracted from face images.
Then, the rejection sampling over the edge map is used to obtain sparse inter-
est points along edges. Once these interest points are detected, GB descriptors
are calculated around each point [5]. GB descriptors, unlike uniform Gaussian
blur-based descriptors, models the blur as small near the corresponding points,
and larger far from them. Here the motivation is that the distortion due the
affine transformations should be modeled properly: the amount of blur varies
linearly with distance from corresponding points. To map the l-th distinct edge
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point xt
e=l to a visual word f t

GB,e=l learned using GB descriptors, we use the

mapping function g : xt
e=l → f t

GB,e=l (that is Xt
edgeXt
edgeXt
edge → F t

edgeF t
edgeF t
edge). Similar to

the facial patch occurrence model, the location information (re, ce) is used in
the coding and pooling steps. The Region-based Representation: To learn
the pose information inherent in the facial anatomical regions, e.g the mouth,
the eyes, the ears and the eyebrows, we use the boundary-preserving local re-
gions (BPLRs) [21], i.e. xt

r=m. Facial BPLRs are densely sampled local regions
which preserve the shape of the facial structure on which they are detected.
The BPLR detection is achieved based on the following steps [21]; The algo-
rithm first obtains multiple overlapping segmentations from a given face image,
for which the corresponding distance transform maps are computed. Then, it
divides each segment into regular grid cells, and samples an element feature in
each cell. The cell position and scale information is determined by the max-
imal distance transform value in the cell. Then, it links all elements using a
minimum spanning tree, which extends connections and integrates multiple seg-
mentations. Finally, it outputs a set of overlapping regions which contains a
group of linked elements within the tree, namely BPLRs. Once the BPLRs are
extracted, the Pyramids of Histograms of Oriented Gradients (PHOG) descrip-
tors are computed over the gPb (globalized probability of boundary)-edge map
for each detected BPLR. The mapping function g : xt

r=m → f t
PHOG,r=m not only

uses the spatial information in the coding and pooling steps, but also the scale
(size) information for each extracted BPLR. The Facial Landmark-based
Representation: As facial landmarks [40] are shown to successfully estimate
head pose when they are reliably detected, we also incorporate these features to
our framework. The facial landmarks locations are used in the graphical model.
Robust landmark extraction is achieved via the algorithm by Xiong and De la
Torre [40].

2.2 Estimation of Level 2 Probabilities

The goal of this level is to estimate the posterior distribution p(θt|ytpatch, ytedge,
ytregion, y

t
landmark) for the face image in t-th video frame, by learning different

combinations of patch, edge, region and landmark classifier pose distributions.
To infer the posterior probability p(θt|ytpatch, ytedge, ytregion, ytlandmark), given the
hierarchical model in Fig. 3, the following expression is proposed:

p(θt|yt
patch, y

t
edge, y

t
region, y

t
landmark) =

1

Z(yt
patch, y

t
edge, y

t
region, y

t
landmark)

exp {−U} ,
(8)

where as before, the normalization function is denoted by Z and U is the energy
function defined as:



336 M. Demirkus et al.

U = β1ν(θ
t, ytpatch) + β2ν(θ

t, ytedge) + β3ν(θ
t, ytregion) + β4ν(θ

t, ytlandmark)+

β5ν(θ
t, ytpatch, y

t
edge) + β6ν(θ

t, ytpatch, y
t
region) + β7ν(θ

t, ytedge, y
t
region) + ...

β11ν(θ
t, ytpatch, y

t
edge, y

t
region) + ...+ β15ν(θ

t, ytpatch, y
t
edge, y

t
region, y

t
landmark).

(9)

{β1, · · · , β15} are the weights for each possible clique and potential function
combinations, which are learned using the optimization strategy in [15], namely
the de-randomized evolution strategy with covariance matrix adaptation (CMA-
ES). CMA-ES is chosen since it does not require any prior information, such as
the distribution shape, which is a difficult task considering the dimensionality
of the β space. The potential function ν models the unary, pairwise, triplet and
fourth order cliques of t-th frame pose distribution. Note that since we cannot
show all 15 potential functions here, we show only a subset. The probability
distribution functions are used to define corresponding ν :

ν(θt, ytpatch) = − log
{
p(θt|ytpatch)p(ytpatch)

}
(10)

ν(θt, ytpatch, y
t
edge) = − log

{
p(θt|ytpatch, ytedge)p(ytpatch, ytedge)

}
(11)

ν(θt, ytpatch, y
t
edge, y

t
region)

= − log
{
p(θt|ytpatch, ytedge, ytregion)p(ytpatch, ytedge, ytregion)

}
(12)

ν(θt, ytpatch, y
t
edge, y

t
region, y

t
landmark)

= − log
{
p(θt|ytpatch, ytedge, ytregion, ytlandmark)p(y

t
patch, y

t
edge, y

t
region, y

t
landmark)

}
.

(13)
{
ytpatch, y

t
edge, y

t
region, y

t
landmark

}
are the pose distributions, which are in-

ferred through Section 2.3. The estimation of the joint probability p(θt, ytpatch) is

achieved using the training database: p(θt, ytpatch) ∝ k(θt, ytpatch)+dt. The count

of the joint occurrence event (θt, ytpatch) is represented by k(θt, ytpatch), and the
Dirichlet regularization parameter dt is used to compensate for the sparsity.
Because a uniform prior is assumed, dt is constant for all t. Note that proba-
bilities in other cliques are calculated in a similar fashion. The RFs [8], on the
other hand, are used to calculate the posterior probabilities, such as p(θt|ytpatch),
p(θt|ytpatch, ytedge), p(θt|ytpatch, ytedge, ytregion) and p(θt|ytpatch, ytedge, ytregion,
ytlandmark). Next, Gaussian kernel-based model fitting is employed to estimate
the pose density in the range [−90o,+90o] with 1-degree intervals. The motiva-
tion behind using such a kernel-based method is that the initial pose densities
do not follow any specific parametric distribution. Note that it is possible to get
even much finer pose intervals, if needed.
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2.3 Estimation of Level 1 Probabilities

To infer
{
ytpatch, y

t
edge, y

t
region, y

t
landmark

}
, we need to model the posterior distri-

butions p(ytpatch |Xt
patchXt
patchXt
patch), p(y

t
edge |Xt

edgeXt
edgeXt
edge), p(y

t
region |Xt

regionXt
regionXt
region) and p(ytlandmark |

Xt
landmarkXt
landmarkXt
landmark). The posterior distribution for the patch-based features is given by:

p(ytpatch |Xt
patchXt
patchXt
patch) =

1

Z(Xt
patchXt
patchXt
patch)

exp {−Upatch} , (14)

where Z is the normalization function and, given the proposed graphical model,
the energy function U is defined as:

Upatch = λ1ϕ1,sift(y
t
patch,X

t
patchXt
patchXt
patch) + λ2

P∑
k=1

ϕ1,csift(y
t
patch,X

t
patchXt
patchXt
patch), (15)

where the unary potential ϕ1 models the relationship between patch features
(e.g., SIFT or CSIFT) and the t-th frame patch-based pose distribution. The
weights {λ1, λ2} are learned from the training data using 2-fold cross validation.

For edge-based features, the posterior distribution is defined as:

p(ytedge |Xt
edgeXt
edgeXt
edge) =

1

Z(Xt
edgeXt
edgeXt
edge)

exp {−Uedge} , (16)

where Z is the normalization function and the energy function Uedge is defined
as: Uedge = ζ(ytedge,X

t
edgeXt
edgeXt
edge), where ζ is the edge related unary potential function,

which models the relationship between edge features and the t-th frame edge-
based pose distribution

The region and landmark posterior distributions, i.e. p(ytregion | Xt
regionXt
regionXt
region)

and p(ytlandmark | Xt
landmarkXt
landmarkXt
landmark), are modeled via the unary potential functions

of Φ1(Y
t
region,X

t
regionXt
regionXt
region) and ω(Y t

landmark,X
t
landmarkXt
landmarkXt
landmark), in a similar fashion to the

edge-based features.

Facial Patch Potentials: The following expressions are used to model the oc-
currence potential function for SIFT and CSIFT based vocabulary (recall that
using the codebook mapping g : Xt

patchXt
patchXt
patch → F t

patchF t
patchF t
patch for SIFT and CSIFT sepa-

rately):

ϕ1,sift(y
t
patch,X

t
patchXt
patchXt
patch) = −log

{
p(ytpatch | F t

patchF t
patchF t
patch)p(F

t
patchF t
patchF t
patch)

}
, (17)

where ϕ1,csift(y
t
patch,X

t
patchXt
patchXt
patch) is calculated similarly and uniform priors are as-

sumed . Any classifier can be user to model the posterior probabilities p(ytpatch |
F t
patchF t
patchF t
patch) for SIFT and CSIFT. In this work, we choose to use a Random Forest

(RF) [8] to perform inference. A RF is a discriminative classier that consists of an
ensemble of decision tree classifiers, where the final classification is determined
by summing the votes cast by each individual tree. Due to random selection of
subset of training data and features, contrary to traditional decision trees, RF
is less prone to overfitting,. Also The RF classifier is computationally efficient
and also provides probabilistic outputs.
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Table 1. The mean and standard deviation statistics of pose classification accuracy
and RMSE for the different pose classification approaches, which are averaged over all
folds

Method Accuracy (%) RMSE

Aghajanian and Prince [2] 20.68 ± 3.55 > 40
BenAbdelkader [4] 54.04 ± 8.77 > 40
Demirkus et al. [12] 55.04 ± 6.53 > 40

Xiong and De la Torre [40] 58.41 ± 9.61 29.81 ± 7.73
Zhu and Ramanan [43] 59.64 ± 7.66 35.70 ± 7.48

Our Method 79.02± 3.79 12.41± 1.60

Facial Edge Potential: The following expressions model the facial edge po-
tential function using the mapping defined earlier, i.e. g :Xt

edgeXt
edgeXt
edge → F t

edgeF t
edgeF t
edge:

ζ
(
ytedge,X

t
edgeXt
edgeXt
edge

)
= − log

{
p
(
ytedge | F t

edgeF t
edgeF t
edge

)
p
(
F t
edgeF t
edgeF t
edge

)}
, (18)

where p(F t
edgeF t
edgeF t
edge) is assumed to be uniform, and the posterior probability p(ytedge |

F t
edgeF t
edgeF t
edge) is also estimated using a Random Forest classifier.

Facial Region and Landmark Potentials: Modeling the potential functions
Φ1

(
ytregion,X

t
regionXt
regionXt
region

)
and ω

(
ytlandmark,X

t
landmarkXt
landmarkXt
landmark

)
is achieved by using a similar

method to estimate the edge-based potential functions. To estimate the posterior
probabilities p(ytregion | F t

regionF t
regionF t
region) and p(ytlandmark | F t

landmarkF t
landmarkF t
landmark), a Random Forest

classifier is used.

2.4 Experimental Results

We begin by testing the proposed method on a fully unconstrained video dataset,
and compare it to the top performing methods. To this end, we chose to test
it on the McGillFaces Database [10]. This freely-accessible public database con-
sists of 18,000 real-world video frames captured from 60 different subjects. The
videos exhibit wide variability in captured head poses, with 45% of the frames
showing non-frontal head poses, with more than half of these having poses be-
yond 45o (see Fig. 1(a)). Each frame in the database has a labeled head pose.
This ground-truth pose label is obtained using the robust 2-stage labeling strat-
egy introduced in [10]. This labeling strategy provides pose distributions, in the
range [−90o,+90o], which can be interpreted as a measure of the labelers’ belief
of the pose angle. This labeling scheme provides 9 different discrete pose labels
computed using the MAP estimates of the pose distributions (see Fig. 1(a)). The
competing approaches provide only discrete pose estimates rather than complete
pose distributions. Hence the discrete labels are used as the ground truth when
testing the alternative approaches. In all cases, the tracking algorithm described
in [10] is used to locate and track the faces in each video.

The proposed graphical model is compared to: (i) Aghajanian and Princes
probabilistic patch-based within-object classification framework [2], (ii) BenAb-
delkaders supervised manifold-based approach which uses raw pixel intensity
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Fig. 4. Comparison of the proposed and the leading alternative methods: (a) the con-
fusion matrices, and (b) the plot showing the pose estimation performance for each
head pose label

values [4], (iii) Demirkus et al.’s Bayesian framework which uses OCI [33] fea-
tures to model the pose in real-world environments [12], (iv) Zhu and Ramanan’s
unified model for face detection, pose estimation and landmark localization us-
ing a mixture of trees with a shared pool of parts [43], and (v) Xiong and De
la Torre’s Supervised Descent Method which solves a non-linear least squares
problem in the context of facial feature detection and tracking (IntraFace) [40].
Ten-fold cross validation is used to evaluate the performance of each method,
applied to videos taken from the McGillFaces Database.

In Table 1, quantitative comparison of the these approaches over all folds is
provided. The validation metrics consist of: (1) head pose classification accuracy
(results in terms of mean±std), and (2) the mean root mean square error (RMSE)
based on angle error. In both categories, the proposed framework significantly
(i.e., p-value of 4.9051 × 10−5 for the pose classification experiment compared
to [43]) out-performs the alternative approaches. Our method provides the best
accuracy and that the next closest competitors have over 19% lower accuracy.
[43] and [40] are the bests among comparative approaches. [43] and [40] overall
provide similar pose label estimation performance, whereas IntraFace [40] has
a much lower RMSE. Note that the original implementation provided by the
authors of [2, 40, 43] are optimized and used in our experiments. To accomplish
a more comprehensive analysis, the confusion matrices (see Fig. 4(a)) and the
plots showing the pose estimation performance for each head pose label (see
Fig. 4(b)) are provided for the proposed model, [43] and [40]. The confusion
matrix for [43] reveals that the approach is good at head pose estimation for face
images depicting maximum of 45o head pose angle. [43] does not provide reliable
pose estimation for very off frontal, i.e. more than 67.5o, face pose images. The
confusion matrix for [40] shows that [40] is better at detecting faces in the wild
however it has tendency to label face images with mostly frontal (in the range
of [−45o,+45o]) pose label, leading to a dominant vertical flow in the confusion
matrix. The confusion matrix for the proposed approach, on the other hand,
shows a more diagonal trend with small variance. It is observed in Fig. 4(b)
that all the methods, including the proposed method, perform poorly for pose
angles of −67.5o and +67.5o. This is due to the fact that humans showed poor
ability to perform ground truth labelling for these angles when shown images
that are very unconstrained (see some failure cases in Fig. 5). The proposed
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Fig. 5. Success and failure cases with the corresponding pose ground truth labels (in
yellow), estimated pose distributions (in blue) and the MAP estimates (in red)

approach tends to estimate the label as being either −45o or +90o, for each of
these angles respectively. As such, this reduced the overall reported accuracy in
terms of bin classification. However, the RMSE errors for these angles helped
this problem by reflecting the angle errors. Furthermore,the proposed approach
is the only method to perform accurate pose estimation even for images acquired
at full profile (90o) poses. Furthermore, in Fig. 4(b), it is observed that all the
three approaches do the best for the frontal images, which is expected. For [43]
and [40], the performance decreases dramatically as the head pose is more off-
frontal. The proposed approach, on the other hand, has a good pose estimation
performance even for the images with full profile (90o) poses.

The pose estimation performance for different combination of features is also
analyzed. It is observed that the patch only, edge only, region only and landmark
only achieves the pose estimation accuracy of 71.75%, 71.77%, 74.6%, 60.90%,
respectively. That is, the region representation achieves the best performance
among single features. When the region and patch features are combined, the
performance increases to 76%. Combining the top three representations, i.e. re-
gion, patch and edge, leads to an accuracy of 77.13% whereas using all types
of representations provides an accuracy of 79.02%. We also do a comparison of
the MAP based accuracies for each pose label before and after the temporal
stage. The maximum accuracy gain of 12.2% is achieved with a pose of −67.5o,
whereas the average accuracy gain over all pose bins is 9.17%. Over all folds,
the mean histogram distance between the ground truth PDF and the estimated
PDF decreases by 9.37% when Earth Mover’s Distance is employed.

Fig. 5 shows examples of cases in which the proposed method does well, and
where it fails. For each of these cases the estimated pose distributions are shown
along with the MAP estimate of the head pose as well as the ground truth la-
bels. One can also see that the method can be successful even in challenging
conditions such as the presence of occlusion, facial hair and glasses, blur and
various facial expressions. On the other hand, as depicted by some examples,
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the method can fail in the presence of motion blur, occlusions, due to the lack
of reliable features.

Finally, we wish to examine the method under more controlled conditions. To
this end, we test the proposed model on CMU Multi-PIE database [14], which is
collected in a controlled environment. We perform a comparison on 5200 images
which include all 13 different pose (equally distributed), along with lighting and
facial expression variations. Our method achieves a pose classification accuracy
of 94.46% whereas [43] provides an accuracy of 74.57%. Note that the pose
classification is performed over 13 head pose bins and this dataset is larger than
the one reported in [43].

3 Conclusions and Future Work

In this paper, we propose a hierarchical temporal graphical model to robustly
estimate fine discrete head pose angle from real-world videos, i.e. with arbi-
trary facial expressions, arbitrary partial occlusions, arbitrary and non-uniform
illumination conditions, motion blur and arbitrary background clutter. The pro-
posed methodology provides a probability density function (pdf) over the range
[−90o,+90o] of head poses for each video frame rather than just provide a single
decision. Experiments performed on the real-world video database (McGillFaces)
and the controlled CMU Multi-PIE database show that the proposed approach
significantly outperforms the alternative approaches. The proposed framework
is a general approach which can be directly applied to any temporal trait and
can use any type of feature. Our model does not rely on any subjective notion
of what features are more useful for the task of interest. Rather, it learns how
to optimally combine a set of features both spatially and temporally. It infers
which set of features are more useful. Furthermore, the framework outputs the
entire pose distribution for a given video frame, which permits robust temporal,
probabilistic fusion of pose information over the entire video sequence. This also
allows probabilistically embedding the head pose information for other tasks. We
are currently collecting the probabilistic head pose ground truth for the YouTube
Faces DB [38] to further evaluate our framework (the probabilistic labels will
be publicly available). In future work, we plan to further analyze how temporal
relationships can be used to improve other inference tasks (e.g. gender and facial
hair classification).
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