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Abstract. Appearance model is one of the most important components
for online visual tracking. An effective appearance model needs to strike
the right balance between being adaptive, to account for appearance
change, and being conservative, to re-track the object after it loses track-
ing (e.g., due to occlusion). Most conventional appearance models fo-
cus on one aspect out of the two, and hence are not able to achieve
the right balance. In this paper, we approach this problem by a max-
margin learning framework collaborating a descriptive component and a
discriminative component. Particularly, the two components are for dif-
ferent purposes and with different lifespans. One forms a robust object
model, and the other tries to distinguish the object from the current
background. Taking advantages of their complementary roles, the com-
ponents improve each other and collaboratively contribute to a shared
score function. Besides, for realtime implementation, we also propose a
series of optimization and sample-management strategies. Experiments
over 30 challenging videos demonstrate the effectiveness and robustness
of the proposed tracker. Our method generally outperforms the existing
state-of-the-art methods.

Keywords: Descriptive model, discriminative model, collaborative track-
ing, SVDD, structural prediction, long-term and short-term memory.

1 Introduction

Visual tracking is a fundamental research problem in computer vision and is im-
portant for a large variety of applications. Although significant progress has been
made, challenges still remain due to numerous factors such as partial occlusion,
illumination change, pose variation, and background clutter, etc. To handle the
challenges, it is important to adopt an appropriate appearance model.

An appearance model can be built descriptively, to form a robust object
model; or be built discriminatively, to separate the object from surrounding
background. Both have their strengths and weaknesses in visual tracking. The
former directly models the object appearance [13,17,11,20], but easily drifts to
similar distractors, the latter one distinguishes the target from the background
[2,10,14], but is not robust enough as the background may change dramatically.
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Although several collaborative models have been proposed to take the best of
both [26,30], they usually learn the two kinds of appearance models separately,
which hinders them seeking the right level of balance between these two types
of models.

Another factor needs to be considered for appearance model is adaption. In
order to capture the dynamically changing appearance, it is also required that
the appearance model should be adaptively updated. Some models adjust an ad-
hoc learning rate to update the appearance model with most recent observations
[2,11,6], which makes the tracker be prone to drift in case of erroneous updates.
Some other models learn from a subset of historically observed samples [10,12],
which is not sufficiently adaptive to handle fast appearance change. To cope
with the well known “stability-plasticity” dilemma, Santner et. al [21] combine
complementary models operated at different timescales, Xing et al[28] collect
samples at different time for online dictionary learning. Their success suggest
that utilizing different lifespan information is important for adaption, but how
to balance this these information remains to be an open problem.

We propose a novel way to collaborate the descriptive component with the
discriminative component in a unified max-margin framework for appearance
modeling. The two components are with different lifespans to better exploit their
complementary modeling power, leading to a more data-dependent adaption of
appearance model. The main contributions of the paper lies in three aspects:

Components: We employ a descriptive component and a discriminative com-
ponent to composite the appearance model. The descriptive component is based
on Support Vector Data Description (SVDD) [23]. It describes the global prop-
erties of the target from all the tracked frames, using representative samples to
capture their essential characteristics. Meanwhile, the discriminative component
is based on Structured Output SVM (SSVM) [24]. It differentiates the targets
from its surrounding background in recent frames, focusing on the most violated
background samples to guide the accurate localization.

Collaboration:We cast the two relevant but distinctive components in a unified
max-margin learning framework, where they are combined in a mutually benefi-
cial way. The descriptive component uses discriminative information to modify
its descriptive boundary, and the discriminative component recalls relevant de-
scriptive samples to increase its discriminative ability. More meaningfully, as the
two components have different lifespans. The adaption of the appearance model
is influenced by current discriminative samples, but at the same time seeks for
a consistence with previous descriptive samples.

Computation: To reduce the computational burden, two kinds of strategies are
taken. The first is the learning strategy. We optimize the collaborative model
in its dual form to make use of optimized solution from previous time instance,
and only select the most informative samples for fast approaching the optimum.
The second is the implementation strategy. As the training data increase linearly
during tracking, there is a need to control the size of sample set. We adopt a
series of set management operations, which boost the tracking speed without
impacting much of the tracking accuracy.
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2 Related Work

We compare our description-discrimination collaborative tracker with the previ-
ous methods based on generative, discriminative and collaborative models.

Generative models estimate the distribution of object appearance directly,
they usually form a robust object representation in a particular feature space,
including superpixel [25], and feature histograms [1,11,6], etc. Recently, subspace
based generative models attract a lot of attention [20,15], and the trackers mak-
ing use of sparse representation become quite popular [17,13,30]. Different from
generative models, the descriptive component in our method is based on the idea
of SVDD [23], which estimates the support of the target distribution rather than
the full density. As shown in [7], the decision function of SVDD can well capture
the density and modality of the feature distribution by using kernel techniques
[7,16], which is effective to capture the changing appearance of the target.

Discriminative models aim to distinguish the target from the background.They
usually train a dynamic target classifier with the most prevalent algorithms, such
as boosting [9,2], random forest [21,14] and SVM [12,10]. The discriminative com-
ponent in our model is inspired by a state-of-the-art discriminative tracker [27],
termed “Struck” [10]. Struck predicts the change in object location using struc-
tured output SVM(SSVM) [24], which alleviates the “label jitter” and turns out
to be more suitable than binary classifier for prediction. Compared with Struck,
our discriminative component regards the temporal inequality between target and
background. Specifically, we only utilize recent background samples, which is more
suitable for tracking in the dynamic environment.

Collaborative models have already attracted a lot of attention. They collab-
orate different models to explore their complementary strength to enhance the
tracking robustness. For example, Wen et. al [26] and Zhong et. al [30] employ
the different models in parallel, and predict the targets by fusing their separate
results. Meanwhile, Kalal et. al [14] integrate different models in a cascade, suc-
cessively selects the best sample from the candidates. Both kinds of collaboration
do not build mutual beneficial connections between different models, therefore
lack a unified and consistent treatment to explore the complementary strength.

3 Description-Discrimination Collaboration

An object is represented by a bounding box. Let Y stand for the set of possible
bounding boxes, whose element y = {x, y, s} is a three dimensional vector de-
scribing position and scale. The features extracted from image xt that correspond
to the area inside the bounding box y are denoted as φ(xt,y). In this paper,
φ(xt,y) is a high dimensional normalized vector, whose L2 norm is required to
be a constant.

Instead of training a binary classifier over φ(xt,y), we learn a score function
F : X×Y→R that measures the compatibility between (xt,y) pairs. Considering
its efficiency at predictive stage, F is assumed to be linear that can yield higher
scores to those more similar to the target. The optimal state ŷt is predicted by:
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Fig. 1. Overview of our Description-Discrimination Collaborative Tracking algorithm.
We crop the long-term target samples and short-term target-background samples into
SA and SB(red dot is the target while blue dot is the background). In order to keep
both robustness and adaptiveness, the score the target samples are highlighted by
different samples from different views. We put the learned support vectors ( dots with
loops) into VA and VB . They together contribute to the score function.

ŷt = argmax
y

F (xt,y) = 〈w, φ(xt,y)〉. (1)

Parameters w encode the object’s appearance, which is collaboratively learned
from two components through a single objective function:

min
w

R(w) + Cdes · Ldes(w) + Cdis · Ldis(w), (2)

where Ldes, Ldis represent the loss terms on the descriptive component and
discriminative component. Cdes and Cdis are scalar parameters to trade-off the
impact between the two components. R(w)=‖w‖22 is the regularization term.

3.1 Descriptive Component

As the object appearance continuously changes in the feature space, neither off-
line trained detector nor the appearance template from the first frame is able
to capture its variations. To built an effective prior for tracking, we focus on
describing the dynamical target set SA, which ideally contains the features of all
tracked targets until the current time instance, i.e. SA = {φ(xi, ŷi)|i = 1...t}.

We describe the set SA using SVDD. The basic idea of SVDD is to employ
a hypersphere to enclose the target set and minimize the sphere’s volume to
exclude outliers. Given the hypersphere’s center c, the descriptive loss term is :

Ldes(c) = min
R

R2+C̄
∑

i

H(‖φ(xi, ŷi)−c‖2−R2), (3)

where R is the radius of the hypersphere, and H(z)=max(0, z) is the hinge loss.
As mentioned above, all the features are constrained to have a constant norm
a, i.e., ‖φ(xt,y)‖2 = a. Let w = 2c and ρ = 1

4‖w‖22+a2−R2, Ldes(c) can be
transformed to Ldes(w):

Ldes(w) = min
ρ

1

4
‖w‖22 − ρ+C̄

∑

i

H(ρ−w · φ(xi, ŷi)) + const. (4)
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where Ldes(w) is in the form of 1-class svm [22], which is convenient to be
optimized and is good at handling high dimensional data. The proposed de-
scriptive component have two advantages for object tracking. It captures the
global support of the samples in SA, hence is robust to outlier target samples.
In addition, the learning of descriptive component needs less prior knowledge
but depends more on the tracked samples, enabling the tracker to adapt to the
complex changes of the object.

3.2 Discriminative Component

However, if the tracker merely relies on the descriptive component, it tends to fail
when the object’s appearance changes rapidly. This is because the descriptive
component attempts to describe the whole distribution of target samples and
may not well capture the current object appearance. Opposite to the target
object, the background contains important contextual cues and is effective for
accurate localization. To achieve tracking adaptivity, we only focus on the most
recent N frames, where the both target and background samples are cropped
into a set SB , i.e. SB={φ(xj ,y)|y ∈ Y, j= t−N+1, ..., t}.

Inspired by the Struck tracker [10], we discriminate the target and the back-
ground samples in SB using SSVM [24]. The basic idea of SSVM is that the
scores of the target should be larger than those of the background samples in
the same frame at least by a margin Δ(ŷj ,y). Therefore, Ldis(w) is

Ldis(w) =
∑

j,y �=ŷj

H(Δ(ŷj,y)−w · δφj(xj ,y)), (5)

where δφj(xj ,y) = φ(xj , ŷj)−φ(xj ,y), and Δ(ŷi,y) is the structural loss that
rescales the margin of each sample differently based on the bounding box over-

lap ratio, defined as Δ(ŷi,y) = 1−Area(ŷi
⋂

y)
Area(ŷi

⋃
y) . Different from binary classifiers,

SSVM explores the structural relationship among samples that each target sam-
ple is associated with the background samples in the same frame. In this way,
the contextual information contained in background samples is well oriented to
the specific target instance and can be updated along with the target instance
as well.

3.3 Collaborative Model

We take Eq. 4 and Eg. 5 into Eq. 2. After arranging the coefficients, the original
objective function is rewritten as:

min
w,ρ

1

2
‖w‖22−C1ρ+C2

∑

i

H(ρ−w ·φ(xi, ŷi))+C3

∑

j,y �=ŷj

H(Δ(ŷi,y)−w ·δφj(xj ,y)), (6)

Using standard Lagrangian duality and reparametrizing techniques [4], we in-
troduce multipliers αi, β

y
j for each feature φ(xi, ŷi) in SA and φ(xj ,y) in SB .

Then the dual form of Eq. 6 is1:

1 We leave the derivation in the supplementary materials.
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max
α,β

−1

2
α�KAα−α�KABβ− 1

2
β�KBβ−β�Δ,

s.t. ∀i
∑

i

αi = C1, 0 ≤ αi ≤ C2; ∀j,y
∑

y

βy
j = 0, βy

j ≤ C3δ(y, ŷ),
(7)

where α, β and Δ are column vectors that concatenate the αi, β
y
j and Δ(ŷj ;y);

KA and KB are the kernel matrices for SA and SB; and KAB measures the inter
affinities between the two sets. The entries of the three matrices are all calculated
based on a linear kernel function: k(x,y, x̄, ȳ)=〈φ(x,y), φ(x̄, ȳ)〉. With the mul-
tipliers α and βy

j , the parametersw in Eq.7 is represented as: w=α�ΦA+β
�ΦB ,

where ΦA and ΦB are feature matrices that concatenate the features in SA and
SB along the column. α�ΦA corresponds to the descriptive component, which
is a nonnegative linear combination of features in SA, while β�ΦB corresponds
to the discriminative component, which is a linear combination of features in
SB highlighting the difference between target and background samples. All the
features with non-zero multipliers are called Support Vectors.

Discussion. The proposed collaborative model intends to better exploit the dif-
ferent properties of the target samples and background samples to build more
robust appearance model for visual tracking. Generally, there are a small number
of target samples, while background samples surround the target are abundant.
Furthermore, the appearances of target samples from different frames are rela-
tively similar, while the appearances of background samples vary a lot especially
in dynamic scenes. The collaborative model is well oriented to the two properties.

Firstly, the discriminative component takes advantage of SSVM [24] like
Struck. SSVM makes use of structured samples, it does not need to sample
around the target to obtain positive samples that may cause “label jitter”, but
only stresses that the score of target sample should be larger than the scores
of background samples in the same frame. Secondly, the descriptive component
utilizes SVDD [23]. SVDD explicitly puts a prior on the target samples to cap-
ture the major characteristic of the object. It is robust to outlier and alleviates
the learning burden of SSVM by avoiding using obsolete background samples.

The collaborative strategy is superior to Struck - the tracker using SSVM,
which, along with its variants has been regarded as the state-of-the-art during
recent evaluations and challenges [18,27]. Under the framework of SSVM, in order
to retrieve historical target samples for learning the appearance model, Struck
has to use the obsolete background samples in the same frame with the target
sample. However, for tracking in dynamic scenes, the obsolete background sam-
ples can hardly help the current tracking, instead it would actually contaminate
the appearance model and increase the computational cost. Our collaborative
model gets rid of this limitation. The descriptive component summarizes the pre-
vious target samples to be robust, while the discriminative component adopts
most effective background samples to be accurate. The two components build
natural connections between each other, and the samples in SA and SB together
decide the learning of each component.

More interesting, as the two components have different lifespans, their collab-
oration corresponds to the theory of the long-term and short-term memory in
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human brain, where the long-term memory (descriptive component)recalls more
about the object itself rather than the background, while the short-term memory
(discriminative component) utilize the contextual information to influence the
forming of the long-term memory.

4 Online Optimization

Eq.7 is a typical quadratic optimization problem for both α and β. Considering
the tracking efficiency, we decompose the original problem into a sequence of
subproblems inspired by the SMO algorithm [19]. Each subproblem first selects
coefficient pairs (α+, α−) and (βy+

j , βy−
j ) , then optimizes the coefficients using

an elementary step. In this section, we first discuss the elementary step, then
explain the online selection.

4.1 Elementary Step

As constrained by
∑

i αi=C1 and
∑

y β
y
j =0, the elementary step modifies the

coefficient pairs by opposite amounts:

{
α+← α++λα

α−← α−−λα

{
βy+
j ← βy+

j +λβ

βy−
j ← βy−

j −λβ , (8)

where λα, λβ ≥ 0, leading to an one-step maximization subject to the constraints
in Eq. 7. In order to obtain λα, λβ , we first introduce g(αi) and g(βy

j ), which are

the gradients of Eq.7 w.r.t. the multipliers αi and βy
j , respectively:

g(αi) = −〈w, φ(xi, ŷi)〉; g(βy
j ) = −〈w, φ(xj ,y)〉 −Δ(ŷj ,y). (9)

We first calculate the unconstrained λ̃α and λ̃β as:

λ̃α=
g(α+)−g(α−)

Zα+α−
, λ̃β =

g(βy+
j )− g(βy−

j )

Z
β
y+
j

β
y−
j

Zα+α−=kα+α++kα−α−−2kα+α−, Z
β
y+
j β

y−
j

=k
β
y+
j β

y+
j
+k

β
y−
j β

y−
j
−2k

β
y+
j β

y−
j

(10)

where kα+α+,kβy+
j βy+

j
, ... are kernel values for the corresponding feature pairs. We

enforce the constraints in Eq.7 to get the exact adjustment of λα and λβ , i.e.:

λα = max(min(λ̃α, α−, C2−α+), 0), λβ = max(min(λ̃β, C3δ(y, ŷj)− βy+
j ), 0). (11)

Finally, the parameter w is updated according to

w← w+λβ(φ(xj,y+)−φ(xj ,y−)) + λα(φ(x+, ŷ+)−φ(x−, ŷ−)). (12)

The entire elementary step is summarized in Alg. 1.
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Algorithm 1. Elementary step

Compute the gradients g(α+), g(α−), g(β
y+
j ), g(βy−

j ) Eq. 9

Compute the unconstrained λ̃α, λ̃β Eq. 10
Enforce the constrains to obtain λα, λβ Eq. 11
Update the coefficients α+, α−, β

y+
j , βy−

j Eq. 8
Update the parameter w Eq. 12

4.2 Online Selection

Online selection hinges on how to choose proper coefficient pairs that should
be optimized by the elementary step. Intuitively, the pair of coefficients should
define the feasible search direction with highest gradient. Even by doing so,
searching such coefficients from all the samples still need large storage and ex-
pensive computation, which hinders online tracking. As it has been observed
that support vectors are not updated frequently [3], it is indeed effective to se-
lect coefficients focusing on support vectors. Inspired by OLaRank [5], we design
three blocks for selection, which can update, retrieve, and adjust the support
vectors respectively:

– UPDATE selects the coefficients from newly incoming frame xt to improve the
model with new information.

– RETRIEVE selects the coefficients from past frames to retrieve past data to
assure the model’s generalization ability.

– ADJUST selects the coefficients of the current support vectors , and adjust them
to better adapt the model.

For convenience, we define VA and VB as the support vectors in SA and SB , and
we also define CSA, CSB, CV A, CV B as the coefficient sets for SA, SB , VA, VB,
respectively. Each block simultaneously selects the coefficients from α and β, and
the process is summarized in Tab.1. All the coefficients associated with a new
frame are initialized to be zeros except α1. We initialized α1=C1 to satisfy the
constraint

∑
i αi=C1, and α1 will gradually decrease to be within [0, C2] as the

online optimization proceeds. As a result, the appearance model stresses more
on the first frame at the primary stage of tracking, which is reasonable before
forming a stable appearance model. We schedule the three blocks as suggested by
Bordes et al. [5], which is a simple scheme that considers both the computation
time and the progress of the objective function.

5 Implementation

We now explain some important implementation details of our algorithm.

Features. We use intensity histograms and gradient orientation histograms to
represent φ(x,y). The bounding box region is divided into 5×5 cells, and then
the intensity value and gradient orientation in a cell are quantized into 8 bins.
Therefore, each cell is represented by a 16 dimensional vector. Besides, for every
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Table 1. The three basic blocks for selecting the coefficient pairs to be optimized.
Specifically, for β, we first determine frame j , then select the coefficient pair from the
frame.

UPDATE RETRIEVE ADJUST

α+ αt argmaxα∈CSA g(α) argmaxα∈CV A g(α)
α− argminα∈CSA g(α) argminα∈CSA g(α) argminα∈CV A g(α)

frame j t a random k in SB a random k in VB

βy+
j βŷt

t argmaxβ
y
k
∈CSB g(βy

k ) argmaxβ
y
k
∈CV B g(βy

k )

βy−
j argminβ

y
t ∈CSB g(βy

t ) argminβ
y
k
∈CSB g(βy

k ) argminβ
y
k
∈CV B g(βy

k )

neighbouring 2×2 cells, we calculate the histogram sum to represent the appear-
ance of a larger region; for a set of randomly selected 30 cell pairs, we calculate
the histogram difference of each pair to capture the inter-cell dependency. All
these 16 dim histograms are L2-normalized within their separate channels, and
then they are concatenated together to form a 1136 dim vector. Note that the
norm of the feature is made to be a constant. By using integral histogram [1],
the features can be computed efficiently.

Searching Strategy. Based on the histogram features, the distribution of score
values is usually smooth in the state space Y. Hence, we employ a coarse-to-fine
search strategy similar to that presented in [6]. This method iteratively samples
the candidates based on SMC [8], which gradually approches the high score re-
gion without the need of hand-tuning the motion parameters for different video
sequences.

Set Management. As tracking proceeds, the sizes of all the sets VA,VB,SA,SB

will increase incrementally, making the optimization more and more expensive.
Considering efficiency, we keep these sets with fixed size NV A, NV B, NSA, NSB,
and therefore an appropriate set management is necessary.

1. For SA, each time we add the feature of the optimal state. When the number of its
elements exceed NSA, we condense the set by sampling its elements. Specifically,
we reserve the existing support vectors, then uniformly sample half of the rest
features, finally combine them to form the new SA.

2. For SB, each time we add the features of both target and background samples.
We only consider the samples in the neighborhood of the target, hence we produce
these samples by sampling around the target state on a polar grid centered on the
target, which gives 81 different locations. These samples are produced with same
scale as the current target state. Only the features from the last N frames are kept
in SB.

3. We maintain the features with coefficient α > 0 in VA. When |VA| > NV A, we
delete the support vector with smallest α, and transit its coefficient to the one
with second smallest α.

4. We maintain features with coefficient β �= 0 in VB . When VB>NV B , we delete all
the support vectors from the oldest frames.

The entire algorithm of our proposed Description-Discrimination Collaborative
Tracker (DDCT) is summarized in Alg. 2.
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Algorithm 2. Description-Discrimination Collaboration Tracker

Input: ŷt−1, w,SA,SB,VA,VB

1. ŷt = argmaxy〈w, φ(xt,y)〉 according to Searching strategy

2. manage SA, SB according to Set management
3. UPDATE −→ elementary step
4. manage VA, VB according to Set management
5. for j = 1 to nR do
6. RETRIEVE −→ elementary step
7. manage VA, VB according to Set management
8. for k = 1 to nA do
9. ADJUST −→ elementary step

10. end for
11. end for
Output: ŷt, w,SA,SB ,VA,VB

6 Experiments

Datasets and Metric. Experiments are conducted over 30 publicly available
video sequences, which include the full MIL dataset [2] (tiger1, tiger2, coke,
cliffbar, david, dollar, face1, face2, girl, surfer, sylv, twinnings), the full PROST
dataset [21] (lemming, board, box, liquor), the full VTD dataset [15] (animal,
basketball, football, skating1, skating2, singer1, singer2, soccer, shaking) and other
5 frequently used sequences (woman, bolt, car4, trellis, jump). The challenges of
the data are summarized in Tab. 2. We use two widely accepted evaluation
metrics during our experiments: the center location error (CLE) [29] and the
Pascal VOC overlap ratio (VOR) [30]. Based on CLE and VOR, we employ
the precision plot and success plot to demonstrate the trackers’ performance.
The definition of the two plots can be found in [27].

Experiment Settings. The proposed Description Discrimination Collaborative
Tracker (DDCT) is implemented in MATLAB/C and runs about 12 FPS with
a 3.07GHZ CPU. We empirically set the parameters as C1 =8, C2 =0.75, C3 =
0.75, where C1 is the sum for coefficients of descriptive support vectors, and
C2, C3 restrict the influence of a single support vector in the descriptive and the
discriminative component, respectively. We fix the set sizes as NV A=20, NVB=
50, NSA=50, NSB=20×81. NV A, NV B define the maximum number of support
vectors in each component, and NSA, NSB are the sizes of SA and SB . For SB ,
we only keep the last N = 20 frames and extract features for 81 samples in
each frame. The iteration times in Alg. 2 are: nA = 12 and nR = 10. All the
parameters of DDCT are fixed in the experiments.

6.1 Analysis of the Proposed Method

Component analysis. In order to investigate the properties of the descriptive
component and the discriminative component, we construct two trackers using
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Table 2. The challenges of experimental sequences

Main Challenges Sequences

Distractor dollar, basketball, liquor, football, bolt

Rotation cliffbar, face2, girl, surfer, board, shaking

Illumination tiger1, tiger2, coke, david, trellis, basketball,sylv, car4 , singer1, singer2, skating1, shaking

Occlusion box, football, coke, face1, face2, girl, skating2, tiger1, tiger2, basketball, lemming, liquor, woman

Scaling cliffbar, david, girl, singer1, singer2, car4, lemming, board, liquor, skating1, skating2, trellis

DET DDCTDIT

Fig. 2. Qualitative analysis of components. From left to right are tiger2, woman, box
and basketball.

either the descriptive or the discriminative component, named as DET and DIT,
respectively. For DET, we set C3=0 excluding the influence from discriminative
support vectors. For DIT, we set C1 = 3, C2 = 0 to preserve the initial object
to collaborate with discriminative support vectors. Together with DDCT, we
run the three trackers over all sequences. We analyze their average VORs over
different datasets and challenges in Fig. 3(a). The overall performance and the
detailed quantitative results are provided in Fig. 5 and Tab. 3, respectively.

DDCT significantly outperforms the other two on the overall performance, as
shown in Fig. 3, 5 and Tab. 3. The results confirm the effectiveness of Description-
Discrimination collaboration, which enables the two components to benefit from
each other. DDCT performs most stably over different challenges, although the
overall performance fluctuates a bit over different datasets. This demonstrates
the robustness of our tracker, and at the same time verifies the degree of difficulty
for each individual dataset.

DET performs better than DIT on sequences in the MIL dataset and the
additional video sequences as shown in Fig. 3. In these Datasets, the change of the
object’s appearance is relatively small and mild, so that the major characteristic
of objects can be well captured by the descriptive component. Typical examples
are sequences tiger2 and woman ( Fig. 2). In tiger2, the target moves across the
leaves, DET tolerates the interruption caused by occlusion, while DIT updates
its appearance to the leaves. In woman, the pedestrian goes out of the occlusion
by the car, and both DET and DIT fail on the abrupt appearance change, but
when the target recovers its usual appearance, DET can re-track the object.



356 D. Chen et al.

(a) (b)

Fig. 3. Quantitative analysis of (a) different components, (b) different parameters over
15 sequences

DIT performs better than DET on the sequences in PROST dataset and VTD
dataset as shown in Fig. 3. The object’s appearance changes drastically in VTD
dataset, and there exists similar objects in PROST dataset. The superiorities
of DIT are demonstrated in sequences box and basketball ( Fig. 2). In box, DIT
can distinguish the target from a similar black box. In basketball, the pose of
the player frequently changes, and DIT can adapt to the changing appearance
rather than drift to a distracter that is similar to its previous appearance.

Parameter analysis. We study the effect of two important trade-off parameters
including the parameter C1 and the iteration number nR. The evaluations are
implemented on randomly selected 15 sequences.

Parameter C1 reflects the descriptive ability of descriptive support vectors.
Fixing other parameters, we observe how C1 influences the tracking performance
as shown in Fig. 3(b). It can be seen that C1 should be neither too small nor too
large. If C1 is too small, C2 in Eq.7 can not effectively constrain the coefficients
α. Therefore the descriptive support vectors tend to overfit the samples at the
initial stage, and are reluctant to adapt to newly coming samples (Fig. 4, in
black dash). On the contrary, if C1 is too large, it will drive more samples to
become support vectors, and the descriptive support vectors become redundant
and increase the risk of incorporating outliers (Fig. 4, in blue dash). We set a
moderate C1 to balance between the two situations, which is flexible to capture
distinctive poses without redundancy.

Parameter nR is related to appearance model updating. It balances the two
blocks UPDATE and RETRIEVE as described in Alg. 2. Different from the con-
ventional learning rates that significantly influence the tracking performance, nR

is relative mild. However, we can still observe trade-off phenomena in Fig. 3 (b),
a smaller nR leads to an adaptive tracker where small error accumulate quickly
and cause the track to drift, while a larger nR generates a conservative tracker
which may not be able to respond to the changes in the appearance.

Discussion. Through the above analysis, we find that the tracking performance
of DDCT is not very sensitive to the parameters C1, C2 and C3. Among them,
C1 easily achieves stable performance in its range (in Fig. 3(b)). C2 and C3

balance influence of the two components, even independent trackers DET and
DIT perform reasonably well(Fig. 3(a)). The robustness to the parameters lies in
the online optimization stage, where the updating the of model is more dependent
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Fig. 4. The comparison of different C1 configurations on sequence basketball. Top: The
descriptive support vectors selected by different C1, ranked in descending order of sv
coefficients α. Bottom: The distribution of support vectors over time with different
C1. We display these support vectors when the tracker arrives at # 510.

Fig. 5. The success plots and the precision plots for the comparison of different algo-
rithms. We don’t include the precision plot for TLD in (b), because some results of it
are not available.

on the data – the gradients (in Eq.9). Meanwhile, parameters C1, C2 and C3

play a gentle role in updating the appearance model. Specifically, C1 controls
the global updating property, and C2 and C3 prevent over-fitting (in Eq.11).

6.2 Empirical Comparison with Other Trackers

We compare DDCT with six competing trackers, named MIL [2], TLD [14], CT
[29], ASLSA [13], LSHT [11] and Struck [10]. The tracking results are obtained
by running their publicly available codes with default parameters. For a more
intensive comparison with Struck, we equip the original version with the same
feature as ours, named Struck*. Together with independent components DET
and DIT, we quantitatively compare the 10 trackers on all the 30 sequences.
Tab. 3 reports the average VOR and average CLE of each sequence respectively.
Fig. 5 demonstrates their success plots and precision plots on all the frames to
compare the overall performance. More quantitative and qualitative results are
in the supplementary materials.
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Table 3. Results in terms of CLE and VOR, the best three results are in red, orange
and green

CT LSHT MIL TLD ASLSA Struck Struck* DET DIT DDCT
VOR CLE VOR CLE VOR. CLE VOR CLE VOR CLE VOR CLE VOR CLE VOR CLE VOR CLE VOR CLE.

tiger1 0.46 21.7 0.09 79.4 0.46 24.3 0.50 - - 0.23 36.4 0.63 7.2 0.74 4.3 0.72 4.9 0.65 7.4 0.74 4.2
tiger2 0.55 10.1 0.14 43.3 0.58 10.2 0.31 - - 0.30 31.6 0.65 6.5 0.72 4.1 0.72 4.5 0.24 31.5 0.72 4.2
coke 0.40 15.5 0.56 7.2 0.39 14.0 0.53 7.8 0.69 4.9 0.60 5.5 0.77 3.0 0.74 3.8 0.50 9.3 0.75 3.4
ciff. 0.43 18.1 0.11 66.3 0.51 12.3 0.35 - - 0.17 49.8 0.42 14.8 0.60 6.7 0.49 19.2 0.53 13.0 0.52 12.2
david 0.57 6.1 0.56 8.5 0.43 20.7 0.57 17.2 0.50 15.9 0.55 11.3 0.58 4.6 0.83 2.8 0.51 18.6 0.73 4.2
dollar 0.62 18.1 0.87 2.4 0.68 14.7 0.05 157.3 0.86 2.4 0.65 17.4 0.86 2.6 0.38 63.0 0.77 5.4 0.84 3.7
face1 0.64 25.4 0.66 28.7 0.63 24.6 0.53 27.5 0.61 43.6 0.87 5.8 0.88 4.9 0.83 8.0 0.85 5.3 0.78 8.5
face2 0.61 17.4 0.68 9.8 0.64 13.8 0.55 11.7 0.74 8.6 0.72 8.0 0.73 7.3 0.64 10.9 0.63 11.1 0.70 9.9
girl 0.54 19.4 0.26 74.5 0.49 26.1 0.51 - - 0.30 48.9 0.64 5.9 0.60 13.4 0.74 8.7 0.29 79.5 0.76 7.1
surf 0.15 28.4 0.19 28.9 0.49 9.8 0.66 3.6 0.41 23.6 0.58 6.5 0.59 5.9 0.40 40.6 0.65 5.0 0.67 4.1
sylv 0.57 12.7 0.63 15.1 0.55 15.7 0.64 12.4 0.71 7.7 0.72 6.9 0.79 4.3 0.77 5.1 0.71 8.3 0.80 4.2
twin. 0.53 12.8 0.46 20.8 0.58 9.7 0.33 - - 0.58 10.8 0.64 7.3 0.59 9.8 0.61 7.5 0.56 13.1 0.57 9.2
lem. 0.43 53.4 0.42 80.6 0.49 56.7 0.11 - - 0.14 200.7 0.52 75.4 0.79 8.1 0.59 30.3 0.66 13.2 0.72 7.6

board. 0.48 48.2 0.70 16.7 0.53 41.6 0.35 - - 0.75 19.0 0.71 18.9 0.71 18.0 0.78 12.6 0.73 19.0 0.78 10.8
box 0.47 33.1 0.31 109.4 0.15 111.3 0.56 - - 0.40 71.0 0.32 142.9 0.05 176.9 0.06 202.0 0.73 9.6 0.72 9.5
liquor 0.20 183.4 0.23 107.5 0.16 167.9 0.59 - - 0.21 238.5 0.61 51.4 0.62 56.4 0.72 31.4 0.82 4.4 0.71 30.9
animal 0.03 250.5 0.05 100.1 0.38 36.8 0.54 - - 0.62 19.7 0.85 3.1 0.79 6.4 0.85 3.2 0.84 3.6 0.84 3.4
basket. 0.19 136.1 0.56 22.1 0.22 97.0 0.06 - - 0.24 103.6 0.03 198.3 0.53 23.3 0.43 82.5 0.63 18.3 0.69 9.8
football 0.63 12.5 0.69 8.4 0.59 13.8 0.60 12.5 0.59 10.1 0.61 12.4 0.83 3.2 0.79 2.6 0.80 2.4 0.80 3.8
skate1 0.37 50.7 0.18 119.1 0.11 153.6 0.36 - - 0.50 49.3 0.29 83.9 0.38 64.6 0.43 60.8 0.27 61.0 0.46 59.5
skate2 0.06 120.8 0.49 31.9 0.11 109.1 0.04 - - 0.21 55.1 0.08 152.8 0.20 129.2 0.29 53.7 0.58 17.4 0.55 18.9
singer1 0.34 14.7 0.34 16.5 0.33 17.8 0.40 - - 0.77 3.8 0.34 15.2 0.34 25.2 0.76 6.8 0.79 5.8 0.78 6.5
singer2 0.09 124.9 0.72 11.4 0.39 33.2 0.02 - - 0.03 180.5 0.02 180.8 0.69 13.3 0.40 49.2 0.32 82.4 0.57 16.9
soccer 0.35 52.6 0.31 40.6 0.14 98.1 0.07 - - 0.12 131.2 0.18 111.4 0.19 113.0 0.17 164.6 0.21 120.2 0.42 23.3
shak. 0.65 8.2 0.53 17.7 0.58 14.5 0.51 - - 0.70 10.2 0.23 49.6 0.64 7.7 0.81 4.6 0.77 6.5 0.79 6.3
woman 0.13 112.7 0.14 123.8 0.14 120.0 0.62 - - 0.68 10.5 0.73 3.5 0.75 4.5 0.68 14.6 0.16 142.0 0.75 4.0
bolt 0.52 10.0 0.38 36.6 0.58 8.5 0.14 - - 0.70 4.7 0.17 80.7 0.51 8.2 0.05 250.7 0.06 126.0 0.60 8.3
car4 0.17 93.1 0.26 56.7 0.24 58.0 0.03 - - 0.86 3.3 0.55 6.3 0.25 80.8 0.57 16.6 0.37 77.6 0.74 3.3
trellis 0.32 38.5 0.37 52.5 0.23 56.9 0.33 - - 0.68 8.7 0.55 9.6 0.57 7.9 0.34 39.3 0.46 20.3 0.72 8.7
jump 0.77 3.5 0.23 30.8 0.78 2.8 0.80 - - 0.80 3.5 0.80 2.2 0.79 3 0.86 2.1 0.86 2.2 0.84 1.8

average 0.41 51.8 0.40 45.6 0.42 46.5 0.39 - - 0.50 46.9 0.51 43.4 0.60 27.4 0.58 40.1 0.57 31.3 0.70 10.3

Discussion. The results generally reveal the benefits of the proposed description
discrimination collaborative tracker, which achieves robustness and high accu-
racy on diverse sequences. In the experiments, the enhanced Struck* is the major
competitor (in Tab.3, Fig.5). During the 60 tests, Struck* achieved 14 bests, 9
seconds and 7 thirds, and DDCT achieved 19 bests, 22 seconds and 11 thirds.
Struck* performs well on the sequences with rigid objects and static scenes such
as tiger1, tiger2, coke and face1, etc. However, the use of obsolete background
samples makes Struck* fail in dynamic scenes such as skate1, skate2, singer1,
and trellis, etc. Compared with Struck*, the proposed DDCT uses historical
target samples to be robust to outliers and uses current background samples to
be distinctive to distractors, performing well in both static and dynamic scenes.
Besides, the different performance between Struck* and Struck also suggests
the superiority of employing a high-dimensional histogram feature, where the
“high dimension” can better characterize an object and the “histogram” is less
sensitive to the spatial alignment. In addition, from Tab. 3, we also observe
the complementary property between DET and DIT, which again confirms the
rationality of their collaboration.

7 Conclusion

In this paper, we have proposed a novel visual tracking method based on de-
scription discrimination collaboration. We integrate descriptive component and
discriminative component in a unified max-margin learning framework, and take
advantage of their complementary modeling power in both representation and
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lifespans. The collaborative model is not vulnerable to outliers like occlusion,
and it can track the target with high accuracy.

Furthermore, the adaptation of the model is more data-dependent, which
strikes for a balance between past and current appearances. To solve the whole
optimization problem, we devise a set of efficient and effective online selection
rules, which significantly accelerate the tracking process. Experiments on 30
sequences verified our hypothesis that the collaboration between the descriptive
and discriminative components would lead to better tracking performance. It is
shown that our proposed tracker generally outperforms existing methods.
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