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Abstract. A method for online, real-time tracking of objects is pre-
sented. Tracking is treated as a repeated detection problem where po-
tential target objects are identified with a pre-trained category detector
and object identity across frames is established by individual-specific de-
tectors. The individual detectors are (re-)trained online from a single
positive example whenever there is a coincident category detection. This
ensures that the tracker is robust to drift. Real-time operation is possi-
ble since an individual-object detector is obtained through elementary
manipulations of the thresholds of the category detector and therefore
only minimal additional computations are required. Our tracking algo-
rithm is benchmarked against nine state-of-the-art trackers on two large,
publicly available and challenging video datasets. We find that our al-
gorithm is 10% more accurate and nearly as fast as the fastest of the
competing algorithms, and it is as accurate but 20 times faster than the
most accurate of the competing algorithms.

1 Introduction

The objective of tracking is to determine the size and location of a target object
in a sequence of video frames, given the initial state of the target. It is important
for a variety of applications, including the tracking of pedestrians in railway
stations and airports; vehicles on the road for traffic monitoring and faces for
interfacing people with computers. It is a well studied problem and although
many offline tracking methods exist [2,8,9,30,33,34,36,37], the focus of this work
will be on online trackers.

We present a novel method for real-time, online, appearance-based tracking.
Tracking is treated as a detection problem where an individual-object detector
is trained online to distinguish the target-to-be-tracked from background. Ob-
jects to track are first identified with a pre-trained category detector (a face,
pedestrian or vehicle detector for example); each of the detections made by
the category detector are now identified as individual targets to be tracked; for
each of these targets an individual detector is learnt on-the-fly using IDBoost,
a category-to-individual learning algorithm [27]. During tracking, the individual
detector is updated using the currently detected sample of the target but only if
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Fig. 1. Tracking individuals across a video sequence using our proposed
tracking algorithm. (Top) a face from the Buffy dataset and (bottom) pedestrians
from Caltech Pedestrians. The appearance of the face changes over time with a full
frontal face example at initialisation (far left) to a quasi-frontal face in the final frame
(far right). Despite the change in appearance, our tracker is able to track the target since
the model for the target is updated over time (see Sec. 3). Pedestrians are also tracked
successfully even when they are subject to occlusion. The magenta target is initialised in
the first frame; is occluded by the light pole in the second and is successfully reacquired
in the third. Individual tracker outputs are colour-coded. Each image is 30 frames apart
(model update is still occurring every frame).

there is a coincident category detection. This ensures that the tracker is robust
to drift. Crucially, the algorithm runs in real-time since the individual-object
detector is obtained through elementary manipulations of the thresholds of the
category detector. We then benchmark our tracking algorithm against 9 other,
publicly available, state-of-the-art trackers on two challenging video datasets.
We make two main contributions:

1. A fast, accurate, tracking algorithm that is robust to drift.
2. A careful and reliable benchmark of state-of-the-art trackers.

2 Related Work

Appearance-based tracking algorithms typically contain the following elements:
1) an appearance model for the target object to be tracked; 2) a search strategy
to find potential candidates in subsequent frames that match the target; and 3)
a mechanism to dynamically update the appearance model of the target so that
changes in pose and illumination over time can be modelled.

A pitfall of dynamically updating the appearance model is that when trackers
make mistakes this incorrect information is then incorporated into the model.
The result is that the tracker no longer tracks the original target. This is known
as drift. Designing algorithms that are robust to noisy updates is thus essential
for good tracking performance.



Online, Real-Time Tracking Using a Category-to-Individual Detector 363

Many trackers use generative appearance models. One of the representations
used for target objects within this class of trackers are subspaces. Black and
Jepson [11] learn offline an eigenbasis to model the target object along with
particle filtering as a search mechanism. The IVT method of Ross et al. [38]
proposes an online update of the target subspace over time using incremental
PCA. Wu’s ORIA [45] tracker also includes online updates but updates only
occur if the new target is significantly different from the existing basis set.

Kernel based methods are also used to represent target objects. The influential
work of Comaniciu et al. with their Kernel-Based Object Tracker (KMS) [13]
represent the target object with a histogram in some feature space; a metric
based on the Bhattacharyya coefficient is used to match the target to potential
candidates; while the mean-shift algorithm [23] is used to efficiently search for
these candidates. In traditional histogram-based algorithms information about
the spatial distribution of features is lost; the FRAG [1] tracker of Adam et al.
represents the target using multiple histograms obtained from many different
patches in the target thus preserving some of the spatial information. Neither of
these methods update the model online.

Alternative representations include probability distribution fields (DFT) [39];
sparse linear combinations of target and trivial templates (L1AP) [5] and the
superpixels of (LOT) [35].

Discriminative appearance models are also widely used. Avidan’s ensemble
tracker [3] constructs a feature vector for every pixel. A classifier to separate
pixels belonging to the target from those in the background is then trained by
using an adaptive ensemble of weak classifiers. The compressive tracking (CT)
algorithm of Zhang et al. [46] generates multi-scale features for the positive and
negative samples and applies a sparse sampling matrix to reduce dimensionality.
A naive Bayes classifier with online update is then used to classify windows
as target or background. Grabner et al.’s online boosting method (OAB) [24]
adaptively selects features to discriminate the object from the background.

To avoid drift, Grabner et al. [25] propose a semi-supervised, online boosting
algorithm (SBT) where only the initial samples of the target are labelled while
all of the self-learnt samples are unlabelled. The MIL tracker of Babenko et
al. [4] uses multiple instance learning where a bag of positive samples are used
to update the model. Kalal’s [31] TLD tracker also approaches tracking as a semi-
supervised learning problem with positive and negative examples being selected
by an online classifier that has structural constraints. The BSBT tracker of
Stalder et al. [41] combine the supervised and semi-supervised approaches into
a single implementation.

For all of the approaches mentioned so far a sparse sampling strategy is used.
This means that in each frame, positive samples are collected close to the pre-
dicted target while the negative samples are further from the target’s centre.
The CSK algorithm of Henriques et al. [28] proposes a different approach where
a classifier is trained using all possible samples in a dense sampling strategy.
The circulant structure of the problem is exploited allowing for not only efficient



364 D. Hall and P. Perona

training but fast detection since all responses can be computed simultaneously
rather than using a sliding-window scheme.

There are many benchmark datasets available for a number of vision prob-
lems. For pedestrians there is INRIA [14] and Caltech Pedestrians [17]; for un-
constrained face recognition there is LFW [29]; and for person reidentification
there is VIPeR [26]. Tracking, however, still lacks a decent benchmarking dataset
although progress has been made recently to fill this gap. Wu et al. [44] have col-
lected a benchmark that contains 50 sequences commonly used in the literature
to evaluate tracking algorithms. While most algorithms have been evaluated on
a subset of these sequences by their original authors, Wu et al. provide a far more
comprehensive analysis by evaluating 29 tracking algorithms on all 50 sequences
given the initial bounding box of the target object.

While the progress that has been made by Wu et al. is appreciable, we feel
that the dataset is lacking for the following reasons: 1) The size of the dataset
is too small; 2) The difficulty of most sequences is low with a focus on tracking
only single objects; 3) About half of the sequences are unrealistic; they are
in controlled environments and 4) trackers are perfectly initialised by a ground
truth bounding box. This gives little insight into how robust trackers are to poor
initialisation. Wu et al. address this by jittering the ground truth bounding box.

3 Approach

In this section we present the details of our tracking algorithm. We treat the
tracking problem as a detection task and train an individual-object detector,
online, to distinguish the target from background. We break down the algorithm
into 5 major components: 1) identify target objects to track; 2) initialise the
tracker; 3) evaluate the tracker on a new frame; 4) update the tracker; 5) stop
the tracker. There is no assumption made about the number of objects being
tracked and our algorithm is able to handle tracking multiple objects that enter
and exit a scene. An outline of our approach is depicted in Figure 2.

3.1 Identify Target Objects to Track

Identifying new targets to track is a problem that most of the tracking literature
avoids. It is usually assumed that an initial tracking window has already been
provided either manually or by a ‘perfect’ category detector [38]. In this work,
instead of providing initial locations by hand, a category detector is used. This is
a more realistic setting under which trackers would operate since for most online
applications, having a human operator identify potential targets would not be
feasible; particularly if there are many targets to identify. This setting also allows
us to evaluate how robust tracking algorithms are to poor initialisation.

A new target is identified if the category detector makes a detection and there
is no coincident individual detection as shown in Figure 2.
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Fig. 2. Tracking Algorithm Outline. (a) A new target (2) is identified by a non-
coincident category detection (green). There is also a category detection that coincides
with an individual detection (blue) which indicates that this target (1) is already being
tracked. (b) An individual detector (red) for target 2 is initialised using the category-
to-individual learning algorithm in [27]. The only two pieces of information required
to initialise the individual detector is a single positive example of the target and the
category detector itself. (c) The individual detector is then evaluated on subsequent
frames using a sliding window scheme. The location with the maximal score is identified
as the new location of the target object. If a detection made by the individual detector is
coincident with a detection made by the category detector then the individual detector
is re-initialised with the current example of the target. If there is no coincident category
detection the individual detector is not updated. If this occurs for more than a fixed
number of frames tracking of that target stops.

Category detectors are trained offline using AdaBoost [22]. A boosted classifier
takes feature vector x ∈ R

D as input and outputs a binary decision:

H(x) = sign

(
M∑

m=1

αmhm(x)− τ

)
(1)

where hm(x) is a weak classifier; αm its weight and the threshold τ is chosen to
produce the desired trade-off between false reject rate and false alarm rate.

The family of weak classifiers used are stumps. This means that given an
input x ∈ R

D, the decision only depends on the j-th dimension of x, a threshold
θ ∈ R and a polarity p ∈ {±1}

hm(x) =

{
1, pmxjm > pmθm

−1, otherwise
(2)

Note that any boosting method and decision trees of any depth could be used to
train the category detector; our proposed method is agnostic to these choices.
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3.2 Initialise Tracker

Once a new target has been identified; a tracker can now be initialised to track
the object. In this section we briefly outline IDBoost, the category-to-individual
learning algorithm (see [27] for details) which allows us to efficiently train the
individual detector that only detects the target object.

The approach for learning an individual detector from a category detector has
four elements:

The individual detector is a boosted cascade of classifiers
Cascades are fast and their performance is state-of-the-art [7,16,18,42,43],
making the individual detector suitable for real-time operation.

The individual detector is learnt from a single sample
The object identified by the category detector, which we will denote by
u0 ∈ R

D, is used as the single positive training example to train the indi-
vidual detector. Costly computations are avoided by using a single positive
sample and by not mining negative samples.

The individual detector uses the same M features that were selected
by AdaBoost for the category detector
We will denote this set of features by J = (j1, . . . , jM ) where jm ∈ {1, . . . , D}
and the importance of each feature through the weights α = (α1, . . . , αM ).
Computational cost is reduced since there is no need to compute extra fea-
tures (this has already been done for the category detector). There is also
no cost for selecting which features to use since they are fixed.

Only the thresholds for a single weak classifier in the boosted cascade
of the individual detector are modified
Selecting the thresholds for a single weak classifier h′(x′), which depends on
a single feature x′ ∈ R, can be achieved at almost zero computational cost.

Consider the target that has been detected by the category detector and
call u′ the value of feature x′. An interval, centred at u′, can now be defined.
The width of this interval is determined offline, from a small validation set
that contains tracks of a few individuals. The standard deviation of feature
x′ for a single individual across its track is calculated; the median standard
deviation or spread σ′ is then computed across the set of individuals. The
spread σ′ gives an estimate of the width of the interval.

Formally, the interval is (u′ − βσ′, u′ + βσ′) where β is a free param-
eter that can be tuned experimentally. If the appearance of the individual
is changing slowly over time, which is a reasonable assumption to make for
video (since the difference from frame-to-frame is small), this interval repre-
sents the most likely values that the feature x′ will take for that individual.

The weak classifier h′(x′) can thus be obtained from one training exam-
ple and by only setting two thresholds (making the computational cost near
zero):
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h′(x′;u′, σ′) =

{
1 u′ − βσ′ < x′ < u′ + βσ′

−1 otherwise.
(3)

This weak classifier provides evidence for an individual being present (ab-
sent) if the feature x′ lies inside (outside) the interval (u′ − βσ′, u′ + βσ′).

An individual detector in the form of a cascaded boosted classifier can now be
constructed. Given the set of features J and weights α that were selected for the
category detector, the single positive example u0 of the target, and an estimate
of the spread σ = (σ1, . . . , σM ) of the features J, a classifier F (x) for the target
can be defined by:

F (x;u0,σ) =

M∑
m=1

αmh′(xjm ;ujm , σm) (4)

3.3 Evaluate Tracker

Given the next frame in the video the individual detector F (x;u0,σ) is evaluated
using a sliding-window scheme. The location with the maximal classification
score is identified as the new location of the target object. Since the individual
detector is a cascade of boosted classifiers, sliding window detection is very
efficient. It would also be possible to use a motion model to reduce the number
of sub-windows evaluated (we have not done this).

3.4 Update Tracker

If at the new location of the target object (the one identified by the individual
detector) there is also a coincident detection made by the category detector, then
the individual detector is updated with the new sample, u1, of the target. The
update procedure is then as simple as reinitialising the individual detector with
the new sample which results in F (x;u1,σ). The updated individual detector is
then applied to the next frame and so on. If there fails to be a coincident category
detection then the individual detector is not updated at all and is simply applied
to the next frame. Figure 2 outlines this update procedure. Drift is avoided by
only updating the model when the individual detector and category detector are
coincident. This strategy ensures that only “good” positive samples are used to
update the model. A category detection and individual detection are coincident
if their overlap is greater than 50%.

3.5 Stop Tracker

There are two conditions, either of which can be met, for tracking of the target
object to cease. The first is that there are no detections made by the individ-
ual detector for T1 consecutive frames. This condition is usually met when the
target object leaves the frame. The second is that the detections made by the
individual detector fail to coincide with those made by the category detector for
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T2 consecutive frames. This condition is usually met when a tracker is initialised
by a false detection made by the category detector. In this work we set both of
these quantities to five frames.

4 Datasets

To benchmark the performance of our tracking algorithm we use two publicly
available video datasets.

The first dataset is the Caltech Pedestrians [17,19] dataset. It contains 250,000
frames of video, at a resolution of 640x480, taken from a vehicle driving through
regular traffic in an urban environment. The dataset is labelled with a total of
350,000 bounding boxes and around 1900 unique individual pedestrians. Around
30% of the frames have two or more pedestrians. Pedestrians are visible for 150
frames on average. The dataset is divided into 11 sets; 6 are used for training
(S0-S5) and 5 are used for testing (S6-S10). This division is provided by the au-
thors. The training set contains 192,000 bounding boxes and the test set contains
155,000. The authors also refer to experiments conducted on pedestrians over
50 pixels tall, with no or partial occlusion as the reasonable evaluation setting.
There are 73,256 labelled bounding boxes and 769 unique individuals that meet
these requirements in the test set. All of our experiments are conducted using
the reasonable evaluation setting.

The second dataset used is the Buffy dataset [40]. It has been regularly used
for the automatic labelling of faces of TV characters using subtitle and script
text [40,21]. In this work we use the publicly available, ground truth labels of [6].
The dataset contains episodes 1–6 from season 5 of Buffy the Vampire Slayer
with around 64,000 frames per episode. The faces are labelled using an automatic
algorithm rather than by a human operator. This means that the ground truth
labels are noisy. In total there are 317,831 labelled bounding boxes and 5513
unique face tracks across the six episodes. There is also a wide variety in the
appearance of individuals in this dataset with many shots set outdoors and at
night time; there are also a number of close-up shots.

Examples of the different individuals and how their appearance changes over
time for both datasets are displayed in Figure 3.

The reason we benchmark tracking performance on these datasets is 1) be-
cause of their size and 2) because of their complexity. The benchmarking pro-
cedure of Wu et al. [44] only evaluates tracking performance on 50 different
individuals. In this work we make this evaluation on around 6000 individuals;
a 120-fold increase. The datasets here are also more complex. Having to track
multiple objects of a similar appearance is a far more difficult task than the
tracking of a single object, particularly when the target objects interact with
each other, which may lead to trackers swapping identities. These datasets are
also less biased since they were collected independently of the authors of any the
trackers mentioned in section 1. They are also more realistic in the sense that
the sequences haven’t been generated in a lab as around half of the sequences
in [44] are.
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Fig. 3. Dataset Examples. (Left) Face tracks from the Buffy dataset. (Right) pedes-
trian tracks from Caltech Pedestrians. The ground-truth trajectories were sampled
randomly from a video in each of the datasets. There are frontal and profile faces; the
lighting can change considerably across a face track; facial expressions are varied. The
pedestrians are low resolution; they change scale as the car mounted camera approaches
and there is occlusion. The datasets are large with a combined total of 7500 individual
tracks and 800,000 bounding boxes. They are also difficult due to the variety in pose,
lighting, background and scale across a track as well as having multiple objects present
at any one time. To the best of our knowledge this is one of the largest datasets that
appearance-based tracking algorithms have been evaluated on.

5 Performance Metrics

There are a variety of methods [44,32,10] to measure the performance of a track-
ing algorithm. In this work we use three simple and intuitive measures to capture
tracking performance (refer to Figure 4).

In a multiple-object tracking scenario, given a single frame, there are a number
of options for determining whether a tracked target and ground-truth location
match. The centre location error which is the Euclidean distance between the
centre’s of the two locations is one option [4,44,10]. This measure is not very
robust to labelling error and relies heavily on the fact that the ground-truth is
perfect. A more robust method to use is the bounding box overlap. Using the
PASCAL criteria [20] a tracked object matches a ground-truth object if the area
of overlap between their respective bounding boxes exceeds 50%.

In addition to bounding box overlap we also include another criterion for
matching to occur. A tracked object matches a ground-truth object if the tracker
was initialised by a target that has the same identity as the ground-truth object.
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Fig. 4. A graphical example of the performance measures. The performance
measures used are precision, recall and continuity/fragmentation of a trajectory.
Tracker 1 (pink squares) is initialised to track the ground-truth target A (pink cir-
cles). Tracker 1 has 3 matches since it is only ever matched with target A and has a
track length of 3. Tracker 2 (solid blue squares) only has 3 matches with a length of 6.
This is because it is initialised to track the ground-truth target B (blue circles), how-
ever, it’s last three detections coincide with ground-truth target A which is incorrect.
Tracker 3 (dotted blue squares) is also initialised to track ground-truth target B and
has 3 matches with a length of 3. The precision is then 9/12. Ground-truth target A has
3 matches with a length of 6. The last three ground-truth targets are unmatched due
to tracker 2 being initialised to track target B. Ground-truth target B has 6 matches
and a length of 7 since all of the corresponding trackers were initialised to track target
B. The recall is 9/13. Target A is only covered by tracker 1 (tracker 2 is not included
since it has not been initialised to track A) while target B is covered by trackers 2 and
3. The fragmentation is thus 3/2 and so the continuity is 2/3.

This is a reasonable condition to enforce since a tracker initialised by target A
should not be tracking target B.

Now that single frame matching has been defined, performance across trajec-
tories can be measured. If there are a total of N tracking trajectories and M
ground truth trajectories then three quantities can be defined: precision, recall
and continuity.

If lntracker is the length of tracking trajectory n and dntracker is the number of
matches in trajectory n then the precision P across all tracking trajectories is
defined as:

P =

∑N
n=1 d

n
tracker∑N

n=1 l
n
tracker

(5)

This measure is similar to the MOTP metric proposed by Bernardin and Stiefel-
hagen [10]. Precision gives a measure of how well a tracker initialised on target
A tracks target A. If the tracker drifts or there is an identity swap precision will
be low.
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If lmgt is the length of ground truth trajectory m and dmgt is the number of
matches in ground truth trajectory m then the recall R across all ground-truth
trajectories is defined as:

R =

∑M
m=1 d

m
gt∑M

m=1 l
m
gt

(6)

Let fm be the number of trackers that are required to cover ground truth
trajectory m. The continuity C is then defined as:

C =

∑M
m=1 �(f

m > 0)∑M
m=1 f

m
(7)

where � is the indicator function. Continuity is the inverse of the mean num-
ber of trackers needed to cover a ground truth trajectory. This is described as
fragmentation in [32]. Trajectories that have no trackers covering them are not
included in this calculation. The reason continuity is used instead of fragmenta-
tion is that continuity is easier to compare to precision and recall since a value
of 1 for all three of these measures indicates perfect performance.

Recall and continuity give a measure of how well targets are tracked. If the
tracker does not adapt to the appearance of the target, continuity will be low.

The overall performance of a tracking algorithm is given as the mean of the
precision, recall and continuity. We feel that this is a reasonable metric to com-
pare algorithms on since all three quantities are equally as important.

6 Experiments

For the remainder of this paper we will refer to our proposed tracking algo-
rithm as the Category-to-Individual Tracker (CIT). To assess the performance
of CIT we conduct experiments using the Buffy and Caltech Pedestrian datasets
(refer to Sec 4). To the best of our knowledge, this is one of the largest perfor-
mance evaluations for appearance-based tracking. The most important findings
are reported here in this manuscript; the remainder is included as supplementary
material.

The results of CIT are compared to 9 other, publicly available, appearance-
based tracking algorithms. The source code for each of the algorithms was down-
loaded from the original author’s website. Minor modifications were then made
so that each tracker would operate in our multi-target, automatic initialisation
framework (as opposed to single target; human initialised frameworks that these
algorithms were originally tested on). If an algorithm had parameters to set then
those that were recommended by the original authors were used.

For all of the experiments we use the multi-scale ACF detector of Dollar et
al. [18,15] for the category detector. The code was downloaded from the website1.

The category detector used for the Buffy dataset was trained using 882 faces
from a separate dataset [12] which was also downloaded from the web. Due to

1 http://vision.ucsd.edu/~pdollar/toolbox/doc/

http://vision.ucsd.edu/~pdollar/toolbox/doc/
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recall, precision and continuity. The average performance is the mean of the precision,
recall and continuity. The precision calculation ignores trajectories that have been
initialised by false category detections. A tracker with perfect performance would have
a value of 1 for each of the measurements. The results indicate that our method CIT
is one of the best performers, however, most of the methods have similar performance
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the ground-truth for Buffy being noisy, an external dataset was used to train the
face detector to ensure detection results were reasonable. The category detector
used for the Caltech Pedestrians dataset was trained using the recommended
training sets S0-S4 (refer to Sec.4).

Each category detector was then calibrated to operate at a specific recall
by using a validation set. Episode 1 was used for Buffy and set S5 for Caltech
Pedestrians. By operating the category detectors at different recall rates different
targets are identified thus having an impact on the initialisation and update
stages of tracking. We only include the results for a category detector recall of
0.5. Refer to the supplementary material for other values.

The validation sets were also used to calibrate each of the tracking methods.
Each of the tracking methods have a confidence score associated with their pre-
dictions; in our regime, individuals enter and exit the scene so it is important
to stop tracking a target when the confidence of the tracker is below a certain
threshold otherwise the trackers will update their target model with background.
To choose this threshold we evaluated each algorithm on the validation set for
each dataset and selected the threshold that gave the best average performance.
For the CIT tracker we selected the value of β (refer to Eqn. 3) during validation
rather than the confidence threshold which was set to zero.

Each tracking algorithm was then evaluated on the test set for Buffy (episodes
2-5) and for Caltech Pedestrians (sets S6-S10) with trackers being initialised by
non-coincident category detections (refer to Fig. 2). The resulting trajectories
were used to compute precision, recall and continuity for each algorithm. The
results for both datasets are in Figure 5 which includes the average performance
which is the mean of the precision, recall and continuity. The precision calcula-
tion ignores trajectories that have been initialised by false category detections.

The speed at which each of these algorithms operate at is also important. To
compute the average frame rate of a tracking algorithm we need to decouple
the computation time due to the tracker and the computation time due to the
category detector. The time it takes for the category detector to run without
tracking is subtracted from the time it takes a tracker to run. The results are
in Figure 6. We only include the results for Buffy since the results on Caltech
Pedestrians (in the supplementary material) are similar. The average frame rates
were computed using the first 10,000 frames of episode 3 of Buffy on an Intel i5,
3.20 GHz machine.

Qualitative examples of how our tracking method works on both Buffy and
Caltech Pedestrians can be found in Figure 1. The sequences give an indication
of how tracking of a target is successful despite occlusion and changes in pose.

7 Discussion and Conclusions

We have presented a novel tracking method which is designed to track objects
belonging to a specific category. The method makes use of a category detector
to identify target objects to track and of an individual-specific detector to track
the target in subsequent video frames. The individual-specific detector is trained
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on-the-fly at almost no extra cost, making it possible for the tracker to oper-
ate in real-time. The well-known problem of drift is addressed by updating the
individual-specific detector only when there are coincident category detections.

We compare the performance of our scheme to 9 state-of-the-art trackers and
find that it is as accurate as the most accurate competitor, but 20x faster. It is
only slightly slower than the fastest competitor, but 10% more accurate.

In order to carry out our benchmark comparison we developed a method-
ology based on considering four metrics: precision, recall, fragmentation and
computational cost. Our experiments were carried out on two large (hundreds
of thousands of detections), challenging and heterogeneous datasets of faces and
pedestrians; we observe identical rankings of the various algorithms on the two
datasets, which gives us the confidence that our findings are general and may
be expected to carry over to a variety of datasets and tasks. We believe that
our benchmark surpasses, both in method and set size, any such comparative
evaluation in the literature.
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