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Abstract. Large motions remain a challenge for current optical flow algorithms.
Traditionally, large motions are addressed using multi-resolution representations
like Gaussian pyramids. To deal with large displacements, many pyramid levels
are needed and, if an object is small, it may be invisible at the highest levels. To
address this we decompose images using a channel representation (CR) and re-
place the standard brightness constancy assumption with a descriptor constancy
assumption. CRs can be seen as an over-segmentation of the scene into layers
based on some image feature. If the appearance of a foreground object differs
from the background then its descriptor will be different and they will be repre-
sented in different layers. We create a pyramid by smoothing these layers, without
mixing foreground and background or losing small objects. Our method estimates
more accurate flow than the baseline on the MPI-Sintel benchmark, especially for
fast motions and near motion boundaries.
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1 Introduction

Small, fast moving objects are easy for humans to see and track. Their motion is impor-
tant for biological tasks such as obstacle avoidance, catching, and predator detection.
Figure 1(a) shows an example in which a small animated character is viewed from
above, running through a bamboo forest [7]. In contrast to biological vision, current
optical flow algorithms perform badly in such cases (Fig. 1(e)). We find that this is
particularly true for small or thin regions.

The issue stems from the basic assumptions of most current flow methods. Most
techniques estimate dense optical flow using two constraints: brightness constancy and
spatial smoothness of the flow field [28]. Brightness constancy assumes that the inten-
sity value of a small region remains constant despite its change in location. The bright-
ness term is a non-linear function of the flow and, in gradient-based formulations, is
typically linearized for optimization. This linearization is valid only in the case that the
displacement is small. In order to capture longer range motion, a coarse-to-fine method
is employed [3,5], typically using a Gaussian pyramid [6]. The pyramid is built by suc-
cessively smoothing and downsampling the images. The problem with this approach is
that, for scenes with multiple moving objects, this blurs the pixel values across object
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(a) (b) (c) (d) (e) (f)

Fig. 1. Problems with Gaussian pyramids: (a) Image from [7] (b) Detail of a small, fast object
(c) Ground truth (d) Blurred image patch from high pyramid level (e) Flow using a Gaussian
pyramid [27] (f) CR of the same patch blurred with same kernel size (g) Flow using a CR pyramid
and our method

boundaries. For small or thin objects this means that at coarse (high) levels of the pyra-
mid, the object may completely disappear; see Fig. 1(d-e) for an example of a blurred
image region and the flow of the Classic+NL algorithm, which uses a pyramid [27].

Instead, if one could segment the scene into objects, then the objects could be
matched across large displacements. But since object segmentation is itself an unsolved
problem, we need an alternative. In this work we replace the brightness constancy as-
sumption with a descriptor constancy assumption. For this we represent an image using
a channel representation (CR). This representation contains a descriptor at each pixel
location. This descriptor is a locally weighted histogram.

The advantage of this representation is that performing blurring in CR space does
not introduce mixing of the brightness values of the pixels. Instead, the image is de-
composed into several different channels, according to the pixel intensities (or other
image property). Each of these channels is then blurred separately (Fig. 1(f)). This pro-
cess allows spreading the information about the pixel values spatially. This smooths the
optimization landscape, but prevents the averaging of pixel values that one sees in a
Gaussian pyramid. An example of the effect of blurring using CRs in the optimization
landscape is shown in Fig. 2. This descriptor constancy assumption is also linearized,
to fit in the traditional approach of flow estimation. We then apply the standard coarse-
to-fine framework, creating a CR-pyramid by blurring each CR and downsampling it.
This prevents losing some small objects at the coarse levels and oversmoothing motion
boundaries.

In this paper we start with the original Classic+NL technique, and simply replace
the brightness-constancy data term by our descriptor-constancy data term, leaving the
rest of the system, including the parameter values, untouched. We call this data term
Channel constancy or descriptor constancy. The only parameter that we change is the
weight of the smoothness term, since the statistics of the values of an image and a
CR are slightly different. We compare the performance of both systems in a synthetic
setting as well as on the standard benchmark for large displacements, which is the MPI-
Sintel dataset [7]. We find that this simple change improves results overall, especially in
long range motions and at motion boundaries. This suggests that replacing brightness
constancy with channel constancy may also improve other optical flow algorithms.
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Fig. 2. Pyramid versus CR pyramid. Computing the sum of squared difference between the
hand in the white region in (a) and pixels in the yellow region gives the error surface in (b)
with many local minima. The global optimum is near the center. Using a Gaussian pyramid
oversmooths the energy (c) and the minimum is less clear. Decomposing the image into a CR
and blurring each channel using the same kernel as in (c) yields the energy in (d), which smooths
the surface but maintains the global optimum. The error increases from cold (blue) to warm (red)
color.

2 Previous Work

The problem of recovering long range motion has previously been addressed [4,25,31],
but results on the MPI-Sintel dataset [7] show that current methods still fail to capture
really large motions, especially of small objects.

Many of the top performing algorithms on the standard datasets are based on the tra-
ditional approach of Horn and Schunck [14]. This method minimizes an energy function
that is the sum of two terms: the smoothness term that encourages neighboring flow vec-
tors to be similar, and the data term that encourages corresponding pixels to have the
same brightness. These classical methods often use a coarse-to-fine approach [6] for
computing optical flow. These methods smooth the images and, as a consequence, the
optimization landscape, so that motions larger than 1 pixel can be estimated. However,
smoothing the images enough to capture large motions makes it nearly impossible to
recover the motion of small objects with large displacements.

In principle, this approach fails because each pixel is not discriminative enough. If
we consider estimating optical flow as finding correspondences between image pixels,
we would like each pixel to be uniquely identifiable so that the correspondence can be
found easily. In the traditional approach, these correspondences cannot be found be-
cause the blurring makes pixels indistinguishable from each other. One way of avoiding
this is adding additional features at each pixel. Estimating the flow becomes finding
correspondences where not only the pixel value matches, but also other pixel fea-
tures like linear filter responses, edges and information about the neighboring pix-
els [18,25,26,30,31]. This is typically done by including additional feature matching
terms in the original energy function.

However, including these terms in the classical approach is not trivial, because it
makes the optimization of the energy function difficult. For these terms to be inte-
grated in the framework, they need to be differentiable and increase away from the
global optimum, which is often not the case. Therefore, this family of methods that
try to incorporate additional features are difficult to optimize, and suffer from increased
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computational cost, or in some cases they restrict the solutions to a discretized space
that does not reach sub-pixel accuracy.

Brox and Malik [4] take an important step towards incorporating additional features
in the energy function. They precompute a descriptor at each pixel, and find the best
match at the next frame for each pixel. Then they include a term in the energy function
that encourages the estimated flow to be similar to the precomputed best feature match.
While this is a step in the right direction, it does not directly include the similarity be-
tween descriptors in the global optimization. Our method fully integrates the descriptor
matching in the global optimization of the energy function.

The descriptor used in this work and its variants have been successfully applied to a
variety of problems in the vision literature [2,17,20,21,24,29]. Representing an image
using this descriptor at each pixel has received several names, but here we use the most
common: channel representation. The descriptor has been extensively used for image
denoising [9,10,11,12,16] and pose estimation [15]. It has also been used for affine
image alignment [19]. In object tracking, Sevilla-Lara and Learned-Miller [23] use a
distribution over grayscale values at each pixel to create an object template that can
be smoothed, to reach long displacements. The success with tracking suggests that the
descriptor may also be useful for optical flow. No previous work has considered this and
we show that the channel representation helps recover the motion of small, fast moving
objects.

3 Methods

In this section we first explain the proposed energy function and its relationship to the
traditional approach. We then describe how to compute the image descriptor used in
this energy function.

3.1 Energy Function

Most optical flow formulations make assumptions about brightness constancy and spa-
tial smoothness, in one form or another. In this formulation, we minimize the following
energy function

E(u, v) = Ebrightness(u, v) + λEsmooth(u, v), (1)

where u and v represent the horizontal and vertical flow fields from the first image I1
to the second image I2 respectively.

The first (brightness) term assumes that the brightness of a pixel persists over time
and is typically formulated as

Ebrightness(u, v) =
∑

x,y

ρ
(
I1(x, y)− I2(x+ u(x,y), y + v(x,y))

)
. (2)

where u(x,y) and v(x,y) represent the flow at a pixel (x, y) and where ρ(·) is a robust
penalty function that downweights the influence of outliers (i.e. violations of the bright-
ness constancy assumption) [3].
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Fig. 3. Left: CR after exploding one of the images from MPI-Sintel (see Fig. 1). The number of
brightness levels (or layers) has been quantized to 9. Right: The same CR after smoothing the
layers spatially.

The brightness constancy term is a non-linear function of the unknown flow fields.
The traditional approach linearizes the brightness constancy term for optimization and
requires the smoothing of the optimization landscape. This is typically implemented by
blurring the image as part of a coarse-to-fine strategy. Depending on the size of certain
objects in the scene and the amount of blur, some details may be lost. To preserve the
details, we need to robustly smooth the object boundaries without mixing pixel values.
Next we describe the channel representation designed for this purpose.

3.2 Channel Representation

The channel representation (CR) allows robust smoothing over object boundaries. It
contains a probability distribution over the feature space at each pixel location. For
example, if the image is in grayscale, the probability distribution will be over values
from 0 to 255. A CR is built by “exploding” an image, which places a Kronecker delta
function at each pixel, according to Eq 3. At each pixel, this yields a distribution that is
0 for every value, except for the pixel’s intensity:

d(i, j, k) =

{
1 if � I(i,j)

� � = k,

0 otherwise,
(3)

where � is the quantization bin size, variable k ranges from 1 ≤ k ≤ K , K is the
number of bins used for quantizing the feature space, and �·� denotes the floor operation.

We can blur a CR to smooth the optimization landscape, by blurring each of the k
channels separately as

ds(k) = d(k) ∗ hσs , (4)

where h is a 2D Gaussian kernel of standard deviation σs, in each dimension and ∗ is
the convolution operator.

Figure 3 shows a visualization of the result of exploding an image and blurring its re-
sulting CR. Because the layers are blurred separately, pixel values are not mixed across
object boundaries. Hence we can preserve the fine image details, which is the main ad-
vantage of using CRs. Smoothing maintains the property that there is a distribution at
each pixel location.

Pixel intensities may change a little over time, for example due to subpixel motion or
changes in illumination. Such situations can be represented by uncertainty in the feature
space. We achieve such uncertainty by smoothing in the k direction at each pixel
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dss(i, j) = ds(i, j) ∗ hσf
, (5)

where hσf
is a 1D Gaussian kernel of standard deviation σf .

3.3 Channel Constancy Assumption

In our approach, the data term in the energy function enforces descriptor constancy,
which matches the descriptor at each pixel instead of the pixel intensity. The energy
function becomes

E(u, v) = ECR(u, v) + λEsmooth(u, v), (6)

where the descriptor constancy term enforces that each of the components in the de-
scriptors should match. Let the descriptor at each pixel have K components, and
d1(x, y, k) be the kth component (level) of the descriptor at pixel (x, y) in image I1.
Then the data term becomes

ECR(u, v) =
∑

x,y

K∑

k=1

ρ
(
d1(x, y, k)− d2(x+ u(x,y), y + v(x,y), k)

)
. (7)

Two CRs can be compared by comparing each of their corresponding components,
as in Eq. 7. In this work we use two different metrics: the L2 distance (ρ(x) = x2) and
the generalized Charbonnier (ρ(x) = (x2 + ε2)α) [8]. These choices were made based
on previous studies [27] that illustrate their advantages. Note that we apply the function
to each component of the CRs, not to the pixel values.

Fig. 4. Shape of the different penalty
functions: The generalized Charbonnier and
quadratic distance functions change shape
when applied to a pair of distributions instead
of to a pair of pixels. This new shape is more
robust to outliers but it is still convex in CR
space like the quadratic function.

To understand what it means to compute the distance between two CRs, we can con-
sider a simple case in which each input image has one non-zero pixel. We then consider
the distance as a function of the difference in pixel values. The CRs blur the pixel value
across several levels and the error is computed by summing the robust error across all
K levels in Eq. 7. In Fig. 4 we plot this error as a function of pixel-value difference
and compare the CR case with the standard intensity case for both the quadratic and
Charbonnier penalty functions. The effective shape of the error function is quite differ-
ent in the case of the CR error. In fact, the error function has an interesting property of
saturating like a robust error function. This saturation happens even when the penalty
function is quadratic.
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The intuition here is simple. If there is no blurring across layers, then the difference
between two CRs will be zero only when the input pixels have the same value and will
be constant for any difference in pixel values; that is, like an inverted delta function.
Blur across layers allows different pixel values to be compared and the more smoothing
there is the wider the convex region around zero.

4 Optimization

Our goal is to isolate and evaluate the effect of channel constancy versus brightness
constancy. To that end we use the existing Classic+NL framework for flow estimation
and simply replace the data term while keeping all other elements of the method the
same.

4.1 Integration in Traditional Approach

Optimization in Classic+NL involves linearizing the brightness term as part of an incre-
mental warping strategy that gradually warps the second image towards the first image.

By replacing the images with the CR, each incremental warping step linearizes the
descriptor constancy term of the energy function (Eq. 7) around the current flow esti-
mate (u0, v0), differentiates Eq. 6 w.r.t. the flow increment (du, dv), and sets the deriva-
tives to be zero. The resultant linear equation system to solve for the flow increment are
[∑

k ρ̃(d)dx(k)
2+λL

∑
k ρ̃(d)dx(k)dy(k)∑

k ρ̃(d)dx(k)dy(k)
∑

k ρ̃(d)dy(k)
2+λL

] [
du
dv

]
=−

[∑
k dx(k)dt(k) + λLu0∑
k dy(k)dt(k) + λLv0

]
,

where the weighting function ρ̃(x) = 2(x2 + ε2)a−1 for the generalized Charbonnier
penalty ρ(x) = (x2 + ε2)a, L is the Laplacian operator, dx and dy are derivatives of the
CR w.r.t. x and y and dt is the derivative of the CR w.r.t. t. We compute the derivatives
by taking the derivative of each layer of the CR, as if they were images.

4.2 Optical Flow Estimation

We use a coarse-to-fine warping-based approach to optimize the proposed energy func-
tion. Instead of using the traditional image pyramid [5], we use a pyramid of CRs, as
shown in Fig. 5. The first level is computed by exploding the image according to Eq. 3.
Each successive level is computed from the previous one by smoothing it as in Eq. 4
and downsampling. We downsample each layer of a CR as if the layer were an image
and interpolate using bicubic interpolation.

We compute the flow at the coarsest level of the two pyramids and use the flow to
warp the second CR toward the first CR. Each layer of a CR is warped separately. At
the next level, the computation of the flow starts from the position of the previous level,
interpolating for the points where there is no estimation yet. We use a 3-stage graduated
non-convexity (GNC) scheme for the optimization [28]. The first one uses a quadratic
penalty, the last one uses a generalized Charbonnier penalty and the middle one uses
a linear combination of the two (as in [27]). In practice, since the CRs need to be
differentiated, the bottom level of the pyramid is also smoothed with a small Gaussian
filter. We call the resulting algorithm Channel Flow (CFlow).
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Fig. 5. Channel representa-
tion pyramid. Each level of
the pyramid is a CR, created
by smoothing and downsam-
pling the previous level. The
original image is also shown
here but is not part of the CR.

4.3 Modeling the Change in Illumination

If there were no smoothing across layers in the k (vertical) direction, the CR would be
sensitive to slight changes in image intensity. Despite smoothing across layers, we find
that the descriptor constancy is still sensitive to brightness variations. Classic+NL does
not actually use brightness constancy but rather uses a texture decomposition for the
data term, which reduces the effects of illumination change. In the case of the CR, we
take a different approach and explicitly model illumination change.

Previous work [13,32] has shown the advantage of using a model of the change
in illumination for techniques that assume brightness constancy. The physics of the
natural world make the changes in illumination in a scene multiplicative. However,
many images have gamma-correction applied to them, which makes the changes in
illumination have an additive effect on the image. Therefore, a plausible model for
changes in illumination is: I(x+ u(x,y), y + v(x,y), t+ 1) = I(x, y, t) + b(x, y).

What we need, however, is the effect of brightness changes on the CR. If a pixel
changes brightness, this changes the level at which the pixel appears in the CR. Thus,
to compensate for the brightness change we want to warp the CR in the direction that
undoes this change. This warping is analogous to the warping we do in space using the
optical flow except it happens in the vertical direction of the CR.

To better understand how brightness varies, we used the Sintel training sequences.
We warped adjacent frames together using the ground truth flow and computed the
brightness difference b at every pixel. We found that the distribution of b values is
tightly peaked at zero with heavy tails.

This leads us to a simple method to compute the brightness change. Given the current
flow estimate, we warp the input images and compute their difference. We then apply
a median filter of 21 × 21 to obtain a robust estimate of b at every pixel. We can use
the flow fields and the brightness change to apply a 3D warp (in space and level) to the
CRs as follows:

1. Compute d1 and d2 from input images I1 and I2
2. Compute optical flow (u, v) using d1 and d2 as described in Sec. 4.2
3. Compute Iw2 by warping I2 according to the flow (u, v)
4. Compute the change in illumination b at each pixel as: b = I1 − Iw2
5. Filter this field b with a median filter
6. Warp d2 according to the field of 3D vectors: (u, v, b) .
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(a) (b) (c) (d)

Fig. 6. Image pyramid versus CR-pyramid. The foreground object in (a) is lost at the third level
of the image pyramid (b, top), while still distinguishable at the third level of the CR-pyramid (b,
bottom). This results in more accurate flow estimation for longer displacements (c). The his-
togram in (d) shows that in our set of images, the 20-pixel foreground object can be recovered.

We also experimented with including the variable b in the main energy function
and optimizing it as we optimize u and v. While this should be the optimal choice in
principle, in practice we find that it is computationally considerably more expensive
while presenting similar results to our approximation.

5 Experiments

We have built Channel-Flow by replacing the brightness term in Classic+NL with the
intent of isolating the contribution of this new formulation. Consequently, here we pro-
vide a detailed comparison with Classic+NL. We focus our analysis on the MPI-Sintel
dataset (both training and testing) because it contains many fast motions of small or thin
objects. Below we use mean endpoint error (MEPE) as a measure of accuracy [1].

5.1 Synthetic Experiment

First we evaluate experimentally the core contribution of our technique, which is re-
covering large motions of small objects. Since it is difficult to create a real dataset of
small objects moving fast with ground truth optical flow, we chose to create a syn-
thetic dataset with the properties we want to test. To that end, we take natural images
and create a sequence with a small (20 pixels) circular-shaped region in the foreground
(Fig. 6(a)). Then for a range of foreground displacements (0-20 pixels), we compute the
optical flow and we measure the error. We repeat this for several images.

We compute the optical flow with 4 levels of the pyramid, using Classic+NL and also
using our method. Figure 6(b) shows the third level of the Gaussian pyramids for two
consecutive frames (top). Note that the foreground object is hard to be distinguished
from the background. Even though the texture of the foreground and background were
originally different, the blurring of the pyramid has eliminated much of this difference.
In the bottom half of Fig. 6(b) we show one of the channels of the CR-pyramid where
the foreground was represented, also at the third level. Note that the object is visible
as a bright spot near the center of the image in both frames. Clearly this is a trackable
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feature in the CR pyramid. This illustrates our central hypothesis, that the channel rep-
resentation pyramid keeps information about different objects separate, allowing us to
smooth within a layer and estimate long-range motions.

Of course, this effect depends on the actual image values. We generated 44 such ex-
amples with different natural images, each with the same range of displacements. Figure
6(c) plots the MEPE as a function of displacement of the foreground (the background
is stationary). As expected, the error of Channel-Flow is below that of Classic+NL, and
this is particularly pronounced for motions above 10 pixels; that is, more than half the
diameter of the foreground region.

When the methods fail, the errors are large, and these obscure what is going on.
Consequently in Fig. 6(d) we report the percentage of times that the flow is accurately
estimated (with an MEPE < 1 pixel). When the object moves a distance half its size (10
pixels), we recover the true flow twice as many times as does Classic+NL.

5.2 Constant Albedo Sequences

Experiment description: In this experiment we take the traditional Classic+NL algo-
rithm and simply substitute the traditional brightness constancy by our descriptor con-
stancy term. The hypothesis is that using a CR pyramid preserves more information
at high levels of the pyramid, thus making the recovery of large motions and motion
boundaries more accurate. In other words, we wish to test whether the basin of attrac-
tion around the true flow is wider using the CR data term than using the brightness
constancy term. Dataset: We want to isolate this question, that concerns the optimiza-
tion landscape, from that of which data term is more accurate or robust to certain phe-
nomena. For this reason we use the albedo sequence of the MPI-Sintel training dataset,
where pixel values do not change from one frame to the next1. Here we did not use the
full training set but, rather, sampled a subset at random.

Quantitative results: Numerical results are shown in Table 1. In addition to the tra-
ditional mean end point error (MEPE), we report other statistics for further analysis,
following the MPI-Sintel standard. Categories matched and unmatched group pixels ac-
cording to whether they exist in both frames or not, the s- and d- categories group pixels
based on their speed and distance to a motion boundary respectively. Further details can
be found in the original dataset publication [7]. The table shows that that Channel-Flow
produces overall better results than Classic+NL. The two columns where Channel-Flow
outperforms Classic+NL by wider margins are: closer to the boundaries (d10) and in the
large motions (s40). These are areas near motion boundaries and fast moving regions.
This provides some confirmation, on complex sequences, of our original hypothesis that
the CR should be better for these cases.

Qualitative results: Figure 7 shows some examples of the performance of the two
methods. Channel-Flow is able to recover certain details or fast motions where Clas-
sic+NL fails. On the other hand, Classic+NL produces very nice and smooth flow fields,
while Channel-Flow has a stronger tendency towards piece-wise constant fields, pre-
sumably due to the data term being very robust to outliers (see Fig. 4).

1 Here we must use the training set because the test set does not include constant albedo
sequences.
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Fig. 7. Details of results on the albedo training sequences. Top row: Ground truth. Middle
row: Flow estimation with the traditional approach often fails to capture large motions, especially
of smaller objects. Bottom row: Using CR’s to represent the image improves the accuracy of the
flow in such difficult regions. Some examples are (from left to right): Sintel’s hair, the arm and
knife, the bat’s wing, Sintel’s limbs, Sintel’s body, Sintel’s foot.

Table 1. Results on 398 non-consecutive, randomly chosen, image pairs of the albedo sequence
of MPI-Sintel. Bold letters show the best results in the category.

Method MEPE all
MEPE

matched
MEPE

unmatched
d0-10 d10-60 d60-140 s10 s10-40 s40

Classic+NL 4.5297 2.6450 28.857 5.7011 3.2381 2.0382 0.7703 3.1173 18.7098
Channel-Flow 4.2178 2.1472 30.923 4.7790 2.5294 1.6181 0.6936 2.2110 15.4031

5.3 Experiments on “Final” Pass of the Sintel Training Set

Experiment description: In this section we test our method in the same set of frames
used in the previous section, but this time the frames contain complex phenomena such
as changes in illumination, motion blur, fog, etc. The purpose of this experiment is to
test the new data term under these additional phenomena. Then, for each of the problems
that we identify we propose a solution. The main disadvantage of the CR formulation
is that the penalty function is similar for pixel differences that differ by a little or a
lot. This problem can be seen in Fig. 4, where the penalty is similar for a change in
intensity of 50 and 100. This lack of gradient makes optimization unlikely to converge
to the correct solution when there are brightness changes in the scene. To address this
we use the illumination model described in Sec. 4.3.

We call the method with the illumination model C-Flow+I in Table 2. In addition,
in order to have valid derivatives, the finest level of the CR pyramid needs to be spa-
tially smoothed. Therefore, the two frames are never compared without spatial blur. To
refine the output, we use a 1-level pyramid of Classic+NL, and we call this method
C-Flow+I+C in Table 2.

Results: Qualitative results are shown in Table 2. We observe that both the illumi-
nation model and the 1-level pyramid steps improve results in all categories. Visual-
izations of the recovered change in illumination at each pixel are shown in Fig. 9. We
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Fig. 8. Results on the “final” training sequences. Top row: Ground truth. Middle row: Results
with Classic+NL. Bottom row: Results with Channel-Flow and the two additions (C-Flow+I+C).

observe that our technique often recovers successfully the low frequency changes in
illumination produced by fog, specular reflections, etc. Higher frequency changes are
not recovered due to the wide median filter used. Qualitatively, in Fig. 8 we see roughly
the same behavior as in the albedo case.

Fig. 9. Visualization of recovered change in illumination. Left: Average of the pair of input
frames. Middle: Ground truth change in illumination. Right: Estimated illumination change. The
ground truth change in illumination is estimated by warping the second frame according to the
ground truth flow field, and subtracting this from the first frame. If brightness constancy held, the
result would be a constant image of zeros. However, changes in illumination and other complex
phenomena (motion blur, smoke, fog, etc) violate this.

The runtime of the Matlab code for a 1024 × 436 MPI-Sintel image pair is about 5
hours on a standard Linux desktop. Half of the computational time is spent on solving
the linear equation system using the Matlab built-in backslash function. The parameter
values used are: σsp = 1 and σf = 1.2, λ = 100, number of bins = 32, α = 0.45, ε =
0.001.
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Table 2. Results on the same 398 non-consecutive, randomly chosen, image pairs of the final
sequence of MPI-Sintel . C-Flow+I is Channel-Flow with illumination model. C-Flow+I+C is the
same, followed by a refinement with a 1-level pyramid Classic+NL.

Method MEPE all
MEPE

matched
MEPE

unmatched
d0-10 d10-60 d60-140 s10 s10-40 s40

Channel-Flow 8.0147 6.1496 34.418 9.4287 7.0531 5.4954 1.5578 7.3484 42.2794
C-Flow+I 7.6456 5.8759 30.823 9.3090 6.7750 5.2896 1.4564 6.8913 40.9962

C-Flow+I+C 7.3330 5.5448 30.736 8.9132 6.3343 4.9935 1.3041 6.1424 40.1855

5.4 Experiments on the Sintel Test Set

We evaluate our method on the test set of MPI-Sintel and the results are shown in Ta-
bles 3 and 4; numbers in parentheses indicate the ranking on the Sintel site at the time
of submission. We show only a few methods here; see the MPI-Sintel website for the
full comparison and images of our results. Consistent with the experiments above, we
see a consistent improvement over the baseline Classic+NL, both in the clean and final
sets. In addition we compare with LDOF [4], a popular method for dealing with large
displacements. We see that a classical formulation with the CR data term largely outper-
forms LDOF for large displacements without the use of an external matching process.
Since our method is based on Classic+NL, it does not benefit from the latest ideas in
optical flow. Other methods like DeepFlow [31] are significantly more accurate, even
for large motions. Our results suggest, however, that switching from classical brightness
constancy to some sort of descriptor constancy may be valuable and we hypothese that
this idea will apply to other methods as well.

Table 3. Select results on the MPI-Sintel test set for the clean pass. The simple change in data
term improves results over the Classic+NL baseline. See the Sintel website for the full table.

Method
MEPE

all
MEPE

matched
MEPE

unmatched
d0-10 d10-60 d60-140 s10 s10-40 s40

DeepFlow (6) 5.377 1.771 34.751 4.519 1.534 0.837 0.960 2.730 33.701
Channel-Flow (13) 7.023 3.086 39.084 5.411 3.236 1.918 0.624 2.791 49.021

LDOF (15) 7.563 3.432 41.170 5.353 3.284 2.454 0.936 2.908 51.696
Classic+NL (16) 7.961 3.770 42.079 6.191 3.911 2.509 0.573 2.694 57.374

5.5 Experiments on the Middlebury Dataset

In order to provide a more complete comparison with existing methods, we also test
our method in the training set of the Middlebury dataset. As we do in the previous ex-
periments, we use the parameter configuration reported by Classic+NL. The MEPE of
CR-Flow is 0.287 and the MEPE of Classic+NL is 0.257. We test the statistical signifi-
cance of these two results and we find them not to be significant. Note that Middlebury
motions are small and the value of the CR term for dealing with large motions is not
evident here.
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Table 4. Select results on the MPI-Sintel test set for the final pass. Channel-Flow again improves
over the baseline. See the Sintel website for the full table.

Method
MEPE

all
MEPE

matched
MEPE

unmatched
d0-10 d10-60 d60-140 s10 s10-40 s40

DeepFlow (5) 7.212 3.336 38.781 5.650 3.144 2.208 1.284 4.107 44.118
Channel-Flow (13) 8.835 4.754 42.064 6.757 4.566 3.657 1.292 5.349 54.648

LDOF (15) 9.116 5.037 42.344 6.849 4.928 4.003 1.485 4.839 57.296
Classic+NL (16) 9.153 4.814 44.509 7.215 4.822 3.427 1.113 4.496 60.291

6 Conclusion

One of the dilemmas of optical flow is that there is a trade-off between the size of the
objects and the magnitude of motions that can be estimated. The large motions and
complexity of the MPI-Sintel optical flow database demand that such trade-offs be ad-
dressed. We have shown how to at least partially address this issue by introducing a
channel representation to replace the images used in standard methods. This represen-
tation maintains more of the image information under significant blurs.

Our paradigm works with the Classic+NL framework and changes only the data
term. This allows us to isolate the effects of this term from other properties of a flow
method. We have demonstrated quantitative improvement over the baseline method for
a controlled experiment of small regions moving quickly. We have also demonstrated
improvement over baseline for the MPI-Sintel albedo sequences where brightness con-
stancy holds (except at occlusion boundaries). Given that many of the top-performing
methods are based on the variational approach, the channel representation may be po-
tentially very useful for many other flow algorithms as well.

Finally we introduced a simple method to deal with changing brightness, which ex-
tends the Channel-Flow method to more complex sequences. This simple method could
also be used for other flow algorithms. On the difficult MPI-Sintel final test set we show
improvement over the baseline, especially in areas near motion boundaries and in fast
moving regions.
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