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Abstract. The recent advances of low-cost and mobile depth sensors
dramatically extend the potential of 3D shape retrieval and analysis.
While the traditional research of 3D retrieval mainly focused on search-
ing by a rough 2D sketch or with a high-quality CAD model, we tackle
a novel and challenging problem of cross-domain 3D shape retrieval, in
which users can use 3D scans from low-cost depth sensors like Kinect as
queries to search CAD models in the database. To cope with the imper-
fection of user-captured models such as model noise and occlusion, we
propose a cross-domain shape retrieval framework, which minimizes the
potential function of a Conditional Random Field to efficiently gener-
ate the retrieval scores. In particular, the potential function consists of
two critical components: one unary potential term provides robust cross-
domain partial matching and the other pairwise potential term embeds
spatial structures to alleviate the instability from model noise. Both po-
tential components are efficiently estimated using random forests with
3D local features, forming a Regression Tree Field framework. We con-
duct extensive experiments on two recently released user-captured 3D
shape datasets and compare with several state-of-the-art approaches on
the cross-domain shape retrieval task. The experimental results demon-
strate that our proposed method outperforms the competing methods
with a significant performance gain.

1 Introduction

Shape-based retrieval and analysis of 3D models is an important research topic
in computer vision, graphics, and computational geometry due to the wide appli-
cations in many domains such as archeology, architecture, medical imaging, and
computer-aided design (CAD). In the past two decades, extensive efforts have
been made to design effective 3D shape retrieval algorithms [1]. The existing
work is mainly focused on two search scenarios, i.e., search by sketch [2][3] (Fig-
ure 1(a)) and search with CAD models as query input [1] (Figure 1(b)).Along
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CAD Model Database

(a) Search by sketch (c) Search with 
user-captured models

(b) Search with CAD

Fig. 1. Different 3D shape retrieval scenarios: (a) search by sketch; (b) search with
CAD; and (c) cross-domain search with user-captured models from low-cost sensors

with the advances of low-cost depth sensors such as Microsoft Kinect, Prime-
Sense sensors, and the newly revealed mobile depth sensor from Google [4], there
is tremendous growth of user-generated 3D data, which promotes the study of
a new cross-domain retrieval problem, i.e., search with user-captured models,
where the users capture potentially noisy depth data and images of the object
to their interest, and then use reconstructed 3D models as queries to find similar
3D shapes from a large collection of high-quality CAD models as illustrated in
Figure 1(c). Such a cross-domain scenario also promotes new applications for 3D
shape retrieval, such as high-quality 3D scanning, manipulation and printing.

Note that the existing methods for search with CAD models are often specif-
ically designed for high resolution models with a well-controlled level of quality,
which differ from the 3D models captured with low-cost sensors in several as-
pects. First, the user-captured models often contain a significant level of noise
generated in either the capturing or the reconstruction process. Second, the gen-
erated model in uncontrolled environment is often incomplete due to various
reasons like occlusions or partial views. Hence, this new retrieval scenario with
user-captured models brings significant challenges in various aspects of shape
analysis and retrieval, including 3D shape descriptor extraction, model repre-
sentation and matching.

More specifically, existing 3D shape retrieval approaches generally follow two
popular frameworks, local feature matching with optional spatial verification
[5][6][7][8][9] and the Bag-of-Feature scheme [10][11], both of which require ef-
fective 3D local features. Although great progress has been made in 3D feature
design, such as spin-image based descriptor [6], MeshDOG/MeshHOG [7], Heat
Kernel Signature (HKS) [8][11], and Intrinsic Shape Context (ISC) descriptor [9],
these low-level shape features highly rely on the quality of the 3D models and
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Fig. 2. Framework of our cross-domain 3D shape retrieval based on Regression Tree
Fields. Best viewed in color.

tend to be sensitive to model noise that is often encountered with low-cost depth
sensors. Furthermore, neither of these two frameworks explicitly address the chal-
lenge of partial models, resulting in degenerated performance in cross-domain
3D retrieval. For instance, previous study shows that the Scale-Invariant Heat
Kernel Signature (SIHKS) achieves a high retrieval accuracy with CAD model
queries [11], but significantly degrades for user-captured model queries [12]. To
address these issues, spatial consistency checking has been used in both 2D [13]
and 3D [10] cases. But the existing spatial consistency checking approaches such
as pairwise feature quantization [10] and RANSAC [13] are still insufficient to
handle the severe challenges associated with user-generated low-quality partial
models, as observed in [12]. This is because the spatial consistency checking is of-
ten heuristic, and merely acts as a preprocessing or postprocessing, without prin-
cipled optimization considering both feature similarity and spatial constraints.

To address the above two challenges, in this paper, we propose a robust and
effective cross-domain shape retrieval approach by encoding local geometric
structures in a Conditional Random Field (CRF), with a learned similarity mea-
surement for robust feature matching. In particular, we build a CRF on the 3D
points of the query model. Random forests are exploited to estimate rough simi-
larity efficiently, thus to determine the unary potential. The geometric structures
around each 3D point are embedded in the pairwise potential in a novel way,
formulating the overall framework as a variant of Regression Tree Field [14],
as show in Figure 2. Compared with the earlier approaches such as the Bag-
of-Feature scheme and the existing partial matching algorithms, the proposed
Regression Tree Field approach utilizes rich geometric information (instead of
traditional pairwise spatial relationship checking) to compensate ill effects from
model noise and incompletion. We evaluate our approach using two empirical
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study cases for cross-domain shape retrieval: a) the Querying with Partial Mod-
els dataset from SHREC ’09 [15]; and b) the Low-Cost Depth Sensing Camera
data from SHREC ’13 [12], both of which contain noisy 3D models reconstructed
from low-cost depth sensors. The experimental results clearly demonstrate the
superior performance of the proposed method, compared with several state-of-
the-art 3D shape retrieval approaches.

The remainder of the paper is organized as follows. Section 2 presents a brief
review of the related work. In Section 3, we give the details of the proposed
Regression Tree Field based cross-domain shape retrieval method. The experi-
mental results and comparison studies are reported in Section 4, followed by our
conclusions and discussions in Section 5.

2 Related Work

As discussed earlier, most of the 3D shape retrieval and search methods can be
grouped into the following two major categories: a) search by sketch; b) search
with CAD models. Below we briefly review the representative approaches in each
category. Detailed survey papers of shape retrial methods can be found in [1][16].

Search by Sketch: As shown in Figure 1 (a), one first sketches a 2D projection
of a 3D object and then uses the sketch as the query example to find similar
3D objects in a shape database, often containing CAD 3D models. Due to the
simplicity, various techniques have been developed to retrieve 3D models whose
2D images match the query sketch. For instance, Funkhouser et al. used a vari-
ant of the 3D sphere harmonics to develop a shape search engine that accepts
sketches as queries [2]. Yoon et al. employed suggestive contours and diffusion
tensor fields to improve the robustness against shape and pose variance that of-
ten occurs in the user sketched images [17]. More recently, Shao et al. utilized a
combination of contour-based representation and dense 2D matching to develop
a robust approach that could perform partial matching between a query sketch
and 3D models [18]. In summary, the sketch-based framework is still a popu-
lar choice for 3D shape retrieval and the influential SHape REtrieval Contest
(SHREC) specifically has a sketch-based contest track. A comprehensive review
on this topic is available in [16].

Search with CAD: The setting of search with CAD often requires the query
sample to be a complete or partial CAD model. There have been two popular
directions regarding to this task. One of them is to design powerful 3D shape
signatures that can capture the intrinsic geometric information of the CAD mod-
els, with the motivation that the query and the database samples are essentially
the same type of 3D models. To this end, various local features have been devel-
oped to describe the local geometry of 3D models, including MeshHoG as a 3D
extension of the SIFT feature [7], Heat Kernel Signature [8][11], and Intrinsic
Shape Context [9]. Realizing the sensitivity to model noise for those local descrip-
tors [15], researchers also proposed to use high-level topological features [19][20],
or aggregate low-level features to mid-level representations such as the extended
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Bag-of-Words model [10][21] and graph correspondences [22]. Another direction
is to map 3D models to a set of views, each of which can be represented using 2D
descriptors [23][24]. Although such multi-view shape descriptors can benefit from
the discriminative power of mature 2D features such as SIFT, they often over-
look the important spatial information and suffer from expensive computational
cost due to the matching of a large number of views.

Finally, the recent rapid growth of consumer 3D models promotes the study
of a new shape search scheme, i.e, search with consumer models, which explores
cross-domain shape retrieval using models generated from low-cost depth sensors
to query CAD model database. Representative efforts include the “Querying with
Partial Models” track in SHREC ’09 [15] and “Low-Cost Depth Sensing Camera”
track in SHREC ’13 [12]. However, the evaluation of existing shape retrieval
methods on these two test benchmarks shows unsatisfactory performance due to
the challenging issues of model noise and incompletion. Therefore, it motivates
us to design robust and accurate cross-domain shape retrieval techniques which
can compensate the low quality of the consumer models.

3 Approach

To address the partial matching problem for 3D shape retrieval using noisy
models captured by low-cost depth sensors, we here propose to use a potential
minimization formulation on a Conditional Random Field (CRF) defined on the
query model, where the potential functions are efficiently estimated through ran-
dom forest prediction. This forms a variant of Regression Tree Field [14], with
a difference that the potential is not learned fully jointly, resulting in more af-
fordable training and testing time for larger-scale shape retrieval. Below, we will
first introduce the notations, and then illustrate the potential function design,
followed by our efficient method to determine the potential functions.

3.1 Background and Notations

Assume we are given a database consisting of N 3D mesh models {Mn}Nn=1 with
n as the index of models, and a possibly incomplete and noisy user-captured
model Mq as the query. The goal of a cross-domain shape retrieval engine is
to return a ranked list of the 3D models in the database, such that the models
ranked higher are more similar to the query.

In our formulation, we first construct a conditional random field on Mq with
an undirected graph representation G = (V , E). Here we specifically use the 3D

points in Mq as the vertices V = {vi}|V|
i=1 with |V| being the cardinality, and

the edges E are the connections between nearby 3D points in an ε-ball manner.
For a 3D point vi in Mq, we compute the Scale-Invariant Spin Image (SISI) [25]
to represent the local geometry of a 3D patch centered at vi. The calculated
128-dimensional SISI descriptor is used as the observation xi of the CRF. Be-
sides the observation xi, each vertex is also associated with a continuous vector
yi ∈ R

N as the output variable conditioned on x, where the n-th element (yi)n
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denotes the partial matching score between the i-th patch of the query model
Mq and the n-th CAD model in the database. Compared to the standard CRF
setting that often has a scalar as the output variable, in our CRF construction
process, we have the output variable as a N -dimensional vector indicating the
partial similarity between the 3D patch and each CAD model in the database.
In the following, by designing the objective potential function to encode both
the shape similarity and geometric consistency, we expect the inferred y to be a
discriminant indicator for measuring the partial similarity between 3D patches
and CAD models, while being robust to model noise and model incompletion in
the cross-domain shape retrieval task.

3.2 Formulation

With the undirected graph model (V , E) and the associated random variables
x,y, we can model the conditional distribution of the CRF. In particular, the
optimal similarity scores y can be derived through minimizing the following
potential function in a logarithmic form as

y∗ = argmin
y

logΨ
(
y | x). (1)

With the assumption that the conditional distribution obeys the Markov prop-
erty with respect to the graph, the potential function Ψ

(
y | x) can be further

decomposed as a unary term Ψu defined on each vertex and a pairwise term Ψp

defined on each pair of connected vertices,

logΨ(y | x) = λ
∑
vi∈V

logΨu(yi | xi) + (1−λ)
∑

(vi,vj)∈E
logΨp(yi,yj | xi,xj), (2)

where the coefficient λ is a parameter weighting contributions from these two
terms. Note that the above two terms reflect important properties for shape
retrieval. The unary term Ψu provides an robust estimation of similarity scores
solely considering the local shape of the individual 3D patches, namely shape
similarity. The pairwise term Ψp aims to further refine the scores by enforcing
geometric consistency among neighbor patches. Through combining these two
terms, our method can handle cross-domain partial matching with the unary
term, while being less sensitive to model noise and incompletion due to the
embedded geometric consistency in the pairwise term.

A natural concern of this formulation is the scalability, especially given that
the optimization in Equation (1) may involve hundreds of variables with thou-
sands of dimensions. But as we will show shortly, by exploring the sparsity of
the problem and use discriminative random forests, inference on such CRFs can
be very efficient and scalable to large-scale datasets.

Unary Potential. Following the standard practice of CRFs, the unary potential
is used to penalize the variable x being far away from a rough estimation ỹ =
f(x). In particular, the unary potential is defined as a quadratic loss,

logΨu(yi | xi) =
1

2
(yi − f(xi))

T (yi − f(xi)). (3)
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Here the function f : x ∈ R
128 → y ∈ R

N is a discriminative regressor which
efficiently estimates similarity scores between a 3D patch in Mq and a database
model Mn, n = 1, · · · , N . We employ random forests as an ensemble learning
method to build an efficient regression process, as discussed in Section 3.3.

Pairwise Potential. As a key difference from standard CRF formulation, the
pairwise potential in our approach utilizes all the models in the database to help
embed the local geometric structures. Intuitively, for a pair of neighbor vertices
(vi, vj) ∈ E from the query model Mq, their corresponding vertices vni ′, vnj ′ in a
similar database model Mn should also be close by. Otherwise it indicates the
spatial proximity of the neighbor vertices (vi, vj) is violated in the process of
matching against the model Mn, and therefore Mn is not a spatially consistent
candidate to the query. We define the pairwise term as

logΨp(yi,yj |xi,xj) =
N∑

n=1

‖vn
i ′(xi)− vn

j ′(xj)‖2 · (yi)n(yj)n. (4)

Recall that yi and yj are the retrieval scores of the 3D patches xi,xj in the
query against all database models, with (yi)n, (yj)n being the similarity scores
against a database model Mn. Here, v

n
i ′(xi) and vn

j ′(xj) are the 3D coordinates
of the matched vertices in model Mn corresponding to 3D patches xi and xj , re-
spectively. Thus ‖vn

i ′(xi)− vn
j ′(xj)‖2 measures the Euclidean distance between

two matched vertices in the model Mn. For well matched vertices vn
i ′(xi) and

vn
j ′(xj), they are nearby with a small Euclidean distance, which indicates their

similarity scores to the query patches will be less penalized recall we wish to min-
imize the potential function. On the contrary, if the matched vertices vn

i ′(xi) and
vn
j ′(xj) are not spatially close to each other, indicating a large spatial distance,

their similarity scores (yi)n, (yj)n to the query patches will be suppressed since
our objective is to minimize the above potential function. It is also worth noting
that each model in the database is checked separately in the pairwise term com-
putation, which does not require any pose estimation or calibration, thus being
more reliable against sensor noise and incomplete models.

In practice, the straightforward local feature matching to find the correspond-
ing vertices vn

i ′,vn
j ′ is unreliable under sensor noise. Therefore we further use

random forests to robustly determine the vertex correspondences, as will be
introduced in Section 3.3.

Inference. Let us define a matrix V ∈ R
N×N with its element Vij calculated

as Vij =
∑N

n=1

(‖vn
i ′ − vn

j ′‖2
)
. Then, the pairwise potential can be written in a

compact matrix form as

logΨp(yi,yj) = yT
i Vijyj . (5)

Hence, the overall log pairwise potential is represented as∑
(vi,vj)∈E

logΨp(yi,yj) = yTV y, (6)

where y ∈ R
N |V| is the concatenation of all the column vectors yi, and V is

a blockwise matrix with |V| × |V| blocks, each as Vij . Substituting Ψu and Ψp
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in Equation 2 by the above derivations, we can derive the objective potential
function in a quadratic form as,

y∗ = argmin
y

log Ψ(y | x) = argmin
y

(1
2
yTHy − cTy

)
, (7)

where we have

H = λI + (1− λ)V

c = λỹ = λf(x).

y and ỹ are the column concatenation of yi and ỹi (c.f. Unary Potential above)
respectively. However, the above quadratic problem is not necessary to be con-
vex since H might not be positive semi-definite in practice. Therefore we use
the stationary point that gives the solution to the linear system Hy = c as
an approximate solution. Because H is high dimensional, it is computationally
prohibitive to directly compute the analytical solution to the linear system. Fol-
lowing Regression Tree Fields [14], we use the conjugate gradient descent to
obtain the solution efficiently in an iterative manner. In addition, since H is
often sparse, the inference procedure is fairly efficient, which usually ends in 10
iterations within 0.1 seconds on a desktop i7 CPU.

After computing the locally optimal solution y∗ = {(y∗
i )n} (1 ≤ i ≤ |V|, 1 ≤

n ≤ N), we can derive the final ranking score to a query model as sn =∑|V|
i=1(y

∗
i )n, which will be used for reranking.

However, in order to make this framework fast enough for real applications,
two critical problems remain unresolved: a) to efficiently obtain the rough es-
timation of the similarity scores {ỹi = f(xi)} for the unary term; and b) to
perform efficient matching of (vi, vj) against every model in the database to
determine the pairwise potential term. Below we present our choice by using
random forests to accomplish these tasks in a sub-linear testing time.

3.3 Efficient Estimation of Potential Functions

To achieve fast estimation of the similarity score {ỹi = f(xi)}|V|
i=1 in the unary

potential term, we propose to use the random forest method to carry out a
regression process. The training data contains all the extracted features of 3D
patches from the database models as inputs, and the indices of the associated
model as discrete responses. For the random forest, each decision tree is trained
recursively using the standard information gain algorithm with the linear classi-
fiers for data splitting. Finally, each leaf node in a decision tree receives a score
vector pl = [pl1, · · · , pln, · · · , plN ] measuring the frequencies of the patches of a
specific 3D model falling in that leaf with the element computed as

pln =
# of training examples from the model n

# of training examples
, n = 1, · · · , N.

Here l = 1, · · · , L is the index of the decision tree with L being the number of
decision trees in the random forest.
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Fig. 3. Illustration of the efficient estimation of the pairwise potential term using
random forests

Given a feature vector xi from a 3D patch in the query model, we first conduct
examination from the root node to leaf nodes through all the decision trees in
the trained random forest. The rough estimation of the similarity scores between
a patch in the query model xi and the CAD models are computed via averag-
ing the recomputed score pl on the retrieved leaf nodes as ỹi = 1

L

∑L
l=1 pl.

Compared to the traditional way that computes the similarity score by per-
forming exhaustive matching between features, the regression method utilizes a
discriminative decision model that can capture the underlying distributions of
the features, resulting more robust estimation against model noise. In addition,
the random forests method also benefits from the computational efficiency with
a sub-linear time complexity, that can be further sped up for handling large scale
applications through easy parallel implementations.

To estimate the pairwise potential term, it is necessary to find the best
matched patch in a CAD model Mn for a query patch xi to derive the corre-
sponding vertex vni ′. Here we propose to again employ random forests to perform
fast matching in a classification manner, with the framework shown in Figure 3.
In particular, we set 3D bounding boxes on each CAD model and partition the
model into d×d×d voxels, each of which contains a set of 3D vertices. Here d is
often set as a small value, such as d = 4 in our experiments. Then we use those
partitioned vertices as training data to build a random forest for each model with
the leaf node generating the prediction of which voxel the query patch falls into.
The random forests are trained in the same manner by using the information-
gain based algorithm. Then for a given query patch xi, we can quickly retrieve
a small voxel in Mn that could contain similar patch, and adopt the center of
that voxel as the matched vertex vni ′. Providing random forests empirically pro-
vide testing time of O(logC), in which C is the class number, the total time
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cost for matching a query patch with all the CAD models is O(N log d), sig-
nificantly faster than exhaustive matching with the time cost as O(N |V|). In
our experiments, we observe that such a random forest based matching achieves
fast yet accurate matching results in practice. For instance, for a database with
720 models and a query with 500 points, it only requires less than 0.2 second
on modern i7 CPUs to accomplish the matching procedure, where 80% of the
matched results are the nearest vertices.

In summary, we formulate the cross-domain search as a potential minimization
problem on a CRF, whose potential functions are dynamically determined from
random forests, forming a variant of Regression Tree Field. The two challenges
of sensor noise and model incompletion are resolved with the random forest
based similarity computation and pairwise geometric consistency checking, which
will be demonstrated quantitatively and qualitatively with experiments on real
consumer models.

4 Experiments

To provide quantitative performance evaluation of the proposed cross-domain
shape retrieval approach, we conduct experiments on two benchmarks from the
well-known SHape REtrieval Contest (SHREC). The first dataset is from the
Querying with the Partial Models track in the SHREC ’09 [15], which consists
of incomplete and noisy models captured from desktop 3D scanners. The second
dataset contains query 3D models generated by Microsoft Kinect sensor that
were used in the SHREC ’13 [12]. Below we describe the details of the datasets,
experimental settings, and evaluation results.

4.1 Datasets

The dataset from the Querying with Partial Models track of SHREC ’09 is
specifically designed to explore the frontier of 3D shape retrieval techniques in
handling incomplete and possibly noisy query samples. It consists of a set of
720 high-quality CAD models as the database for querying. The CAD models
are from 40 categories such as bird, fish, mug and car with 18 models for each
category. In addition, it has two query sets, including a set of high-quality in-
complete samples cropped from CAD models, and a set of user-captured models
obtained with a desktop 3D scanner. Here we use the user-captured query set
since it well represents the common challenges of cross-domain shape retrieval,
such as surface noise and model incompletion due to self-occlusion. Examples of
the physical objects used to capture the models are shown in Figure 4 (a), with
the user-captured models shown in Figure 4 (b).

As another popular low-cost depth sensor, Microsoft Kinect is used to build
3D models using multiple range images [26]. Compared with single range image
based 3D models like the SHREC ’09 dataset, the Kinect-captured models tend
to be more noisy due to non-smooth surfaces, and also with lower resolutions.
In our experiments, we adopt the dataset from the Low-Cost Depth Sensing
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(a) (b) (c)

Fig. 4. Illustration of the physical objects and the user-captured 3D models from the
benchmark dataset: a) Physical objects used to generate the 3D models for the SHREC
’09 dataset (Figure cited from [15]); b) An incomplete query model of the SHREC ’09
dataset captured by a 3D desktop scanner; c) A noisy and low-resolution query model
of the SHREC ’13 dataset captured by the Microsoft Kinect.

Camera track of the SHREC ’13 [12], which contains a total of 192 Kinect models.
Note that the original test in the SHREC ’13 is designed for 3D retrieval with
both queries and database containing Kinect models. To test the cross-domain
performance, here we use the CAD models from the SHREC ’09 dataset as the
database and use the 192 Kinect models from the SHREC ’13 as the query set.
Figure 4 (c) demonstrates an example of the used Kinect models.

4.2 Experiment Settings

We conduct two types of empirical studies. On the SHREC ’09 dataset, we
provide quantitative performance evaluations and compared with several repre-
sentative 3D shape retrieval methods. Since the query dataset from the SHREC
’13 has no ground truth category information, we simply design qualitative eval-
uation by demonstrating the retrieval results.

For quantitative comparison, we compare with popular methods on CAD
model retrieval and several approaches achieving state-of-the-art performance in
the cross-domain contest track, including one 3D feature-based approach [10] and
two 2D view-based approaches [15]. For our method, we also evaluate a variant
that only uses the unary term without the pair-wise term of spatial consistency.
Below we briefly describe the settings for each compared method.

– Shape Google [10]: We implement the Shape Google’s approach [10], a
shape retrieval approach for CAD models. For a fair comparison, we use the
same Scale-Invariant Spin Image feature [25] as in our approach. A codebook
with the size 10000 is built using the Approximate KMeans method [13].

– CMVD-Depth [15]: Achieving the best precision-recall in the SHREC ’09
contest, the Compact Multi-View Descriptor (CMVD) extracts global 2D
descriptors from the depth maps rendered from different views. The retrieval
ranking is derived based on the minimum �1 distances between the signatures
of the query and that of the database model.
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Table 1. The computed MAP and
NDCG on SHREC ’09

Approach MAP NDCG

Shape Google 0.188 0.506
CMVD-Depth 0.193 0.521
CMVD-Binary 0.203 0.511
BF-GridSIFT 0.219 0.532
RTF-Unary 0.281 0.591

RTF 0.315 0.611

Fig. 5. Precision-recall curves of the evaluated ap-
proaches on the SHREC ’09 dataset

– CMVD-Binary [15]: CMVD-Binary is another approach with strong
perform on the consumer model retrieval task in the SHREC ’09 [15]. Differ-
ent with the CMVD-Depth method that renders depth images, CMVD-
Binary renders binary masks of the model to achieve computational effi-
ciency and robustness against model noise.

– BF-GridSIFT [27]: As a state-of-the-art approach for both generic and
user-captured model 3D shape retrieval, BF-GridSIFT first performs pose
normalization to the models, and then renders depth maps from uniformly
distributed views. Then the Bag-of-Feature scheme is employed to aggre-
gate the extracted 2D dense SIFT descriptors. In the retrieval stage, KL-
Divergence is used to compute a non-symmetric distance between the query
sample and a database model.

– RTF-Unary: It is a simplified version of the proposed Regression Tree Field
(RTF) based approach, which only considers the unary term by setting λ = 1
in Equation 2 and 7. Note that the RTF-Unary approach is equivalent to
only using the computed similarity score from partial matching with random
forests to perform ranking.

– RTF: The proposed Regression Tree Fields (RTF) approach. In the imple-
mentation of both RTF based methods, i.e., the RTF-Unary and the RTF,
we use 128 trees with the depth 12 in the unary term. For the pairwise term
in the RTF method, we apply bounding boxes to partition each model into
64 voxels (d = 4) and build a random forest with four trees with the height
as 6. The coefficients balancing the two potential terms is set as λ = 0.9
uniformly across all the experiments.

To measure the performance, we adopt the semantic category information to
evaluate the retrieved results. In particular, we treat the models from the same
category as relevant and the models from different categories as irrelevant to
compute two quantitative measurements as the evaluation protocols. First, we
compute the Mean Average Precision (MAP) that measures the average precision



Cross-Domain 3D Shape Retrieval via Regression Tree Fields 501

Query Top retrieved models

RTF

RTF-Unary

BF-GridSIFT

RTF

RTF-Unary

BF-GridSIFT

RTF

RTF-Unary

BF-GridSIFT

Fig. 6. Examples of the top results of the cross-domain shape retrieval, where the
database contains CAD models from the SHREC ’09 dataset and the query models
are the user-captured models with the Microsoft Kinect. From the top to the bottom,
the query models are Mug, Airplane, and Quadruped. And for each query, the three
rows show the results from RTF, RTF-Unary, and BF-GridSIFT respectively. The
results highlighted by red bounding boxes indicate the irrelevant 3D models.

scores across all queries [28]. Second, we employ the popular evaluation criteria,
the Normalized Discounted Cumulative Gain (NDCG) that is defined as

NDCG =

∑N
n=1

Relevantn
log2(n+1)∑N

n=1
1

log2(n+1)

,

where Relevantn is 1 when the nth sample is relevant to the query, otherwise 0.
By assigning larger weights to the results ranked higher, the NDCG favors high-
ranked relevant instances because they are more important for user experience.
Below we report the results for both quantitative and qualitative evaluations.

4.3 Results

For the results on the SHREC ’09 dataset, we report the MAP and NDCG for
all the compared methods in Table 1, with the performance of CMVD-Depth,
CMVD-Bianry and BF-GridSIFT cited from [15].
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It is clear to see that the proposed RTF method achieves the highest per-
formance among all the compared methods. Note that the pairwise term brings
a significant performance improvement compared with RTF-Unary – a 12%
gain in MAP. Although only exploring a single unary potential term, the RTF-
Unary method achieves the second best performance in the SHREC ’09 dataset.
This is because the unary potential term derives cross-domain partial matching
based similarity retrieval, which is suitable for addressing the model incomple-
tion and noise issues on this dataset. Note that the methods adopting multiple
views such as the BF-GridSIFT and the CMVD-Depth perform stronger
than the single-view method Shape Google, which might be also due to the
model incompletion issue on this data. In addition, we also plot the precision-
recall curves for all the methods in Figure 5, which further confirms the clear
performance gain of the proposed methods. Finally in terms of computational
cost, on a desktop PC with an i7 3.0GHz CPU, the proposed method requires
less than one second to perform the retrieval process in a database containing
720 objects, significantly faster than other compared methods.

On the SHREC ’13 dataset, we present the qualitative evaluation by demon-
strating the top retrieved 3D models in Figure 6. In particular, we compared
the results of the two variants of our methods, i.e., the RTF and the RTF-
Unary, and a strong competitor method the BF-GridSIFT. From Figure 6,
it is clear to see that the RTF method outperforms the other two methods by
generating semantically consistent 3D models for both simple object like mugs
and complicated object like planes.

5 Conclusions

This paper addresses an emerging cross-domain shape retrieval problem, where
the query samples are captured by users using low-cost depth sensors and the
database contains conventional high-quality CAD models. To tackle the challeng-
ing issues like noise and incompletion of the user-captured models, we present a
novel retrieval method that explores the unique power of Regression Tree Fields.
In particular, we formulate our objective as a minimization problem of the CRF
potential function, which contains a unary term measuring the similarity of
cross-domain partial matching and a pairwise term with embedded geometric
consistency. Both of these two terms are determined using efficient random forest
algorithms. We conduct extensive empirical studies on two benchmark datasets
from the well-known SHape REtrieval Contest (SHREC). The results clearly
corroborate the superior performance of the proposed method, compared with
other representative shape retrieval algorithms. Our future directions include
introducing online random forest training algorithms [29] to avoid the necessity
of retraining when adding new models, and also extending the proposed method
to explore cross-domain 3D shape recognition and classification.
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