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Abstract. Many computer vision applications involve algorithms that can be de-
composed in two main steps. In a first step, events or objects are detected and,
in a second step, detections are assigned to classes. Examples of such “detection
plus classification” problems can be found in human pose classification, object
recognition or action classification among others. In this paper, we focus on a
special case: depth ordering on single images. In this problem, the detection step
consists of the image segmentation, and the classification step assigns a depth gra-
dient to each contour or a depth order to each region. We discuss the limitations
of the classical Precision-Recall evaluation framework for these kind of prob-
lems and define an extended framework called “Precision-Recall-Classfication”
(PRC). Then, we apply this framework to depth ordering problems and design
two specific PRC measures to evaluate both the local and the global depth consis-
tencies. We use these measures to evaluate precisely state of the art depth ordering
systems for monocular images. We also propose an extension to the method of
[2] applying an optimal graph cut on a hierarchical segmentation structure. The
resulting system is proven to provide better results than state of the art algorithms.

Keywords: Precision-Recall, Detection, Classification, Depth ordering.

1 Introduction

While humans are very effective at estimating the scene structure from monocular im-
ages or sequences, computers are still very limited for this task. Many systems have
been proposed but, performances of current unsupervised systems cannot compete with
human perception. The work [4] stated that low level depth cues could be used to re-
trieve a global depth order. Although humans use these cues, their reasoning is also
based on high order statistics and a priori knowledge on the type of scene. Neverthe-
less, low level cues do offer a good starting point to determine depth order. Works such
as [3,17] attempt to estimate the depth order through the explicit detection of occlusion
cues and rely on two perceptual ideas: 1) convex regions appear to be occluding and 2)
in case of T-junctions, the region forming the largest angle is the occluding region. [11]
proposes an extension of the gPb algorithm [12] to provide a figure/ground order based
on the convexity of detected contours. More recently, the work in [2] retrieves the depth
order by computing the probability of ownership of a pixel to different components.
The algorithm supposes that the image is generated by a dead leaves model [8]. The
novelty of this approach is that it does not have to explicitly deal with cue detection but
occlusion arises naturally from the image model.
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Table 1. Performance measures of [17,9,18] using figure/ground classification accuracy. All mea-
sures are extracted from the respective papers. Segmentation information is unavailable.

Method BPT+TJC [17] UCM+TJC [17] [9] [18]

Accuracy (%) 71.3 69.3 69.1 68.9

Other approaches rely on higher level features such as surface orientation or seman-
tics. In this research line, the work of [20] oversegments the image and infers depth
maps using a random field. In [6], the surface layout detector [5] and other features are
used to detect the orientation and type of surfaces present in the image to condition a
posterior inference on their spatial position. These approaches heavily rely on a training
step and suffer when the type of scene has not been observed during the training phase.

The problem is also related to figure/ground (f/g) assignment on contours. In this
field, [18,10,6,9] assign a depth gradient to each detected contour. The difference be-
tween f/g and depth ordering is that in the former, closed contours and regions are not
necessary. Depth ordering, on the other hand, produces an image partition and a global
depth interpretation. Conversion from depth ordering to f/g is possible by computing the
depth gradient of the produced partition (but the converse is in general not possible).

Assessing the performance of f/g systems is traditionally done by measuring the f/g
accuracy on detected contours. Table 1 reports the performance of several methods:
[17], [9] and [18]. The usual way to measure the performances is to decouple segmen-
tation from depth classification by providing two independent measures. Thus, the final
f/g score is the classification accuracy of the boundary recall. The main problem with
this approach is that it completely ignores the quality of the segmentation, leading to
biased results if only confident contours are detected. However, the f/g performance is
generally strongly related to the segmentation quality. As stated in [13], the f/g assign-
ment on confident contours is easier than the assignment on ambiguous ones. Therefore,
if a system only provides the most confident contours, the f/g score will be biased to-
wards high values. [18] or [10] show results on both human marked and automatically
detected contours and, precisely, much better f/g scores can be obtained with perfect
segmentations. In other words, there exists a compromise between the segmentation
quality and the f/g labeling problem which, to this day, has not been fully addressed.

In [13], a first step is proposed by evaluating the f/g score versus the boundary recall
for video frames, showing that, effectively, there exists a compromise between these
two values. However, this approach loses the precision information and thus does not
provide a complete evaluation. For instance, Fig. 1 shows an image with its ground-
truth depth order along with four possible outcomes of four different depth ordering
systems. Which one is the best? The answer is not simple, as the user may sacrifice some
segmentation quality so as to obtain correct depth relations or vice versa. Therefore,
the question that naturally arises is to know whether it is possible to evaluate at the
same time precision, recall and classification accuracy. We show that using a precision-
recall-classification (PRC) framework, it is possible to provide both contour detection
and depth gradient classification in a single plot and provide a complete view of the
algorithm performances.
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Fig. 1. From left to right: original image, ground-truth depth order and four depth order results.
A part from the second result, deciding which is the best result is a difficult task.

“Detection plus classification” problems arise in many fields. For example, struc-
tured prediction with latent variables [7] classifies objects into classes without knowing
their localization. In these problems, latent variables (which correspond to the detection
step) are not explicitly modeled but they are key to the performance of the system. In
[7], the latent variable is a bounding box indicating the object localization. The sys-
tem output is the classification of the detected objects into specific classes (human,
animal...). Therefore, as for depth ordering, the problem involves the same two steps:
1) detection of object localization and 2) object classification. Most of the time, the
better the object localization is, the better will the classifier perform. As detection and
classification performance are not independent, it is interesting to have an evaluation
framework capable of capturing all the information.

To this end, a Precision-Recall-Classification (PRC) framework is proposed in this
paper and two particular instantiations for depth ordering are discussed. The main idea
is to combine the detection problem (segmentation quality) and the classification (f/g
accuracy) into a single evaluation framework, showing that it is a more accurate and
appropriate way of assessing performances than relying on two different measures on
segmentation and classification. Besides this contribution, we also propose a new depth
ordering system extending the work of [2] to integrate high quality regions. Further-
more, we also publish new annotations of the BSDS500 Dataset [1] involving depth
order ground-truth (available at http://imatge.upc.edu).

The paper is organized as follows. Sec. 2 discusses the detection plus classification
evaluation problem and defines the PRC framework. Sec. 3 proposes two measures to
evaluate depth ordered partitions and, in Sec. 4, an extension of the method of [2] is
discussed. The new depth ordering annotations for the BSDS500 dataset along with the
experimental results are discussed in Sec. 5. Finally, conclusions are reported in Sec. 6.

2 The PRC Evaluation Framework

2.1 Detection Performance Measures

In detection problems, systems are designed to decide whether a given event or feature
is present or absent in a given space. Given a ground-truth annotation, the ideal system
behavior is to detect all possible entities without giving any false alarms. Quantifying a
system performance is normally done by combining True/False Positives/Negatives to
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Fig. 2. Operating regions or points of two algorithms (red and blue) for the classic Precision-
Recall (left) and the Precision-Recall-Classification (right) frameworks. Gray lines indicate points
with the same F measure.

measure the Precision and Recall. Precision measures the rate of true positives among
all detections, while Recall measures the percentage of detected ground truth annota-
tions. They are defined by:

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
(1)

The ideal system corresponds to precision and recall equal to one. In practice, a com-
promise between these two quantities exists: a system with a high recall is likely to
have false positives, and a system with high precision is likely to miss some true anno-
tations. Often, the two quantities are summarized into a single number, F , defined as
the harmonic mean of precision and recall: F = 2PR

P+R .
Generally, the system performance is plotted on a precision-recall plane. As most

systems depend on a given set of parameters θ, the precision and recall values also
depend on θ: P (θ) and R(θ). This generates a set of points on the precision recall plane
which are generally represented as a curve, see Fig. 2.

2.2 Combining Detection and Classification

In classification problems, results are often represented with confusion matrices, where
the miss-classification rate is observed among different classes. If ground-truth results
are available, the classifier performance can easily be computed. However, if classified
objects should be first detected by an algorithm, it is likely that the classification score
will depend on the operating point of the detection system. For instance, if only con-
fident detections are considered (low recall, high precision), a high classification score
is likely to be obtained. On the contrary, if many detections are retrieved, (low preci-
sion, high recall), the classification performance is likely to be worse. To integrate the
detection and classification problems, we introduce two concepts:

– Inconsistent Detection ID: a correct detection that has been erroneously classified.
– Consistent Detection CD: a correct detection that has been properly classified.
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Table 2. Confusion matrix of the proposed PRC framework. ∅ indicates no detection, while 1
indicates a detection. A and not A are the possible outcomes of the classifier. TN , MD and FD
stand for true negatives and missed detections. The other concepts are defined in the text.

Detection: ∅ Detection: 1
Class: A Class: not A

Detection: ∅ TN MD MD

Detection: 1
Class: A FD CD ID

Class: not A FD ID CD

All possible combinations of system output and ground-truth annotations are shown in
Table 2. Similarly to pure detection scores, these measures are combined to provide
precision-recall measures. CD and ID should be interpreted with care. Note that IDs,
although not desirable, are in some way “better” than miss-detections MD or false de-
tections FD since a correct detection is present and a post-processing step may correct
the classification. Let us consider two extreme cases of evaluation:

Pure Detection System. In this scenario, we ignore the classification and consider an
outcome to be correct if the detection is correct. In this approach CD and ID are
equivalent and TP = CD + ID, FP = FD and FN = MD.

Pure Classification System. This scenario considers that an outcome is correct if and
only if detection and classification are correct. Hence, one should consider that TP are
only correctly detected events with the same classification as the ground-truth. In this
context, TP = CD while ID should be interpreted in two ways:

– Detecting an incorrect class is equivalent to detect an event/object that does not
exist. Therefore FP = FD + ID.

– Detecting an incorrect class leaves a ground-truth result without correct detection.
Therefore FN = MD + ID.

To consider a scenario in-between these two extremes, a parameter 0 ≤ β ≤ 1 is
introduced to define the compromise between segmentation and classification qualities.
In this way, it is possible to redefine:

TP (β) = CD + βID (2)

FP (β) = FD + (1 − β)ID (3)

FN(β) = MD + (1− β)ID (4)

Precision (P ) can be redefined using (1), (2) and (3):

P (β) =
CD + βID

CD + βID + FD + (1− β)ID
=

CD + βID

CD + ID + FD
= Cp + βIp (5)

With Cp = CD
CD+ID+FD and Ip = ID

CD+ID+FP which are the consistent and inconsis-
tent precision respectively. Similarly, the recall (R) can be redefined as:

R(β) =
CD + βID

CD + ID +MD
= Cr + βIr (6)
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Fig. 3. Left: Depth partition with one contour. The green (red) overlay indicates the figure
(ground) side. Center: Contour normals are estimated by averaging local orientations. Right:
Bipartite matching of the ground-truth contour (right) and detected contours (left). Consistent
(green) and inconsistent (yellow) matchings are shown.

Cr and Ir are the consistent and inconsistent recalls. Therefore, as shown in Fig. 2, each
operating point establishes a line segment on the precision-recall (PR) plane depending
on β. If the algorithm depends on a set of parameters θ, the evaluation produces a region
in the PR plane. To differentiate these measures with respect to a classical detection
approach, we will refer to them as Precision-Recall-Classification (PRC) framework.

The PRC plot of Fig. 2 gives insight about the system performance. Ideally, a system
should reach P (β) = R(β) = 1 for all β values. Real systems however present a
compromise between precision and recall. In the PRC framework, there is an additional
compromise corresponding to the width of the operating region. A wide region indicates
poor system performance in classification (Ip, Ir � 0), while a thin region (Ip, Ir ≈ 0)
indicates that the system is a good classifier. Moreover, as the operating point of the
detection system detects only confident event/objects (low recall), the region width is
expected to decrease, as classification is easier. Based on this framework, concrete PRC
measures are proposed in the next section.

3 PRC Depth Measures

Equations (5), (6) defines the abstract PRC framework without specifying CD and ID
for a specific problem. In this section, we show how the PRC framework suits a depth
ordering evaluation task by proposing two measures.

3.1 Local Depth Consistency

We extend here the original bipartite matching for contour detection evaluation [14] to
include the classification step: when a contour is correctly detected, it may be consis-
tent (CD) with the ground-truth depth order (correct f/g assignment to both sides) or
inconsistent (ID). Originally proposed in [18], the performance of a f/g classification
algorithm is to simply measure fg = CD

CD+ID . The original matching scheme [14] is
therefore modified to measure inconsistent matchings as follows (see Fig. 3):

1. From the depth partition, figure and ground sides are identified by examining the
depth of each region.
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2. The orientation of the depth gradient is estimated by averaging contour normals
within a local window.

3. Bipartite matching of ground-truth and detected contours: CD and ID are marked
with green and yellow lines respectively. A matching is inconsistent if the orienta-
tion of the depth gradient exceeds a specified threshold (15o).

Once CD and ID are defined, Equations 5 and 6 define the so-called Local Depth
Consistency (LDC) as it measures local depth relations on contours.

F/G over Random Index. As previously mentioned, precision and recall curves are
sometimes summarized by a single number, F . Here we define a similar number for the
PRC framework. According to equations (5) and (6), precision and recall are divided
into their consistent and inconsistent subparts. Consider a contour detection system S
and two classification systems on the detections of S: Si and Sr. Suppose that for Si,
depth gradients are assigned using some sort of reasoning; while, for Sr, the depth gra-
dient is randomly assigned. Therefore, the classification performance of Si is expected
to be better than the one of Sr at every detection operating point.

Assume the operating point of Si has a total of D detections with a given set of CDi

and IDi with D = CDi + IDi. Sr uses the same detection system S so, detections
are the same. If Sr assigns randomly the depth gradient on a contour, and as the depth
gradient can have two directions, the chance of assigning a correct depth gradient is
50%. Therefore, CDr = IDr = D

2 = CDi+IDi

2 . It is possible to show with (5) and (6)
that the precision, recall and F measure (Pr, Rr, Fr) of a random classification system
are related to their counterparts of an “intelligent” classification system (Pi, Ri, Fi)
with the same detection score by:

Pr = (1 + β)Pi/2 Pr = (1 + β)Pi/2 Fr = (1 + β)Fi/2 (7)

When β = 1, no misclassification is considered wrong, so all measures are essen-
tially the same. On the contrary, when β = 0, only correct contours count for precision
and recall. So in a random system, there is a 50% chance of getting a consistent detec-
tion. We have found that this is a reasonable assumption for partitions with no severe
oversegmentation, as matched detected contours follow ground-truth boundary orienta-
tion. However, when a highly oversegmented partition is evaluated, contour orientation
cannot be easily estimated and thus the accuracy ratio fg = CD

CD+ID can be lower than
50%. See the results section for more details.

Therefore, assuming this baseline, precision, recall and F-measure are reduced to
half with respect to an intelligent classification system. It is expected that a real system
will behave better than pure random guesses, so this can represent a lower bound of
the system performance. If the system depends on a set of parameters, the F measure
is a function of two variables F (β, θ). Define θmax = argmaxF (1, θ) and use it to
find Fmax = F (1, θmax) and Fmin = F (0, θmax). It is then possible to define an
over-random-index (ORI) as:

ORI = max(0,
Fmin − Fmax/2

Fmax/2
) (8)
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Fig. 4. Region matching example. Each detected region is matched to a ground-truth region. In
case of subsegmentation, some ground-truth regions may not be matched. In case of oversegmen-
tation, the same region may be matched multiple times.

When ORI = 0 the system behaves randomly, while when ORI = 1 the systems
performs without misclassifications. Since ORI summarizes a whole region in the
precision-recall plane into a single number, it only gives a rough indication of the sys-
tem performance. The maximum operator is used to ensure positive ORI scores.

3.2 Global Depth Consistency

When estimating depth maps or figure/ground, it is important that the whole depth map
is consistent with respect to a ground-truth. That is, the global depth image structure
should be the same for the estimation and the ground-truth, even if the contours do
not perfectly match. Therefore, a non local measure that quantifies the global depth
consistency is desirable. To this end, similarly to the LDC, we have designed a region
based precision-recall framework called Global Depth Consistency (GDC).

Assume the system output is a partition PS formed by a set of regions S = {Si}
and the ground-truth data is also a partition PG with regions G = {Gi}. Unlike con-
tours, regions by themselves do not incorporate the notion of relative order. However, if
we consider pairs of regions, the notion of depth transition naturally arises. Since these
pairs of regions do not necessarily need to be adjacent (unlike contours, which delimit
two adjacent regions), evaluating all pairs of region order leads to a global depth in-
terpretation of the estimated PS with respect to PG. Let ΔS

i , Δ
G
i denote the depth of

regions Si, Gi. Prior to the evaluation, each region Si is matched with a ground-truth
region by finding its maximum Jaccard index (See Fig. 4):

m(Si) = ˜Gi = argmax
Gi

Si

⋂

Gj

Si

⋃

Gj
∀Si, Gj (9)

When matchings are available, FD (False Detection) is the number of detected pairs of
regions matched to the same ground-truth region with different depth (See Fig. 5):

FD =
∑

Si,Sj∈S

(

1− δ
(

ΔS
i , Δ

S
j

))

δ
(

˜Gi, ˜Gj

)

(10)

where δ(a, b) = 1 if a = b and 0 otherwise. MD (Missed Detection) is the total number
of missed transitions due to the region matching process (9). If the set of unmatched
ground-truth regions is ˜G, the formal expression of MD is:

MD = |G| (|G| − 1)/2− | ˜G|(| ˜G| − 1)/2 (11)
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Fig. 5. Tables showing all possible ground-truth pairs (left) and detected region pairs (right). Red
squares count as MD, blue count as FD, green as CD and yellow as ID. See the text for an
extended explanation.

where | · | denotes the set cardinality. CD and ID are found by examining each pair
Gi, Gj and averaging the pairs of detected regions with the same and different depth
order respectively. This is done to avoid counting the same ground-truth transition twice
for two different pairs of Si, Sj . Intuitively, CD and ID for a pair Gi, Gj measures how,
in average, the detections are consistent with the ground-truth depth. Define αij and
βij the number of consistent and inconsistent matches for a pair Gi, Gj respectively.
γG,S
ij = sgn(ΔG,S

i − ΔG,S
j ) is an indicator of the order of the regions i, j in the sets

G,S. Then, αij , βij are given by:

αij =
∑

δ
(

γS
kl, γ

G
ij

)

, βij =
∑

1− δ
(

γS
kl, γ

G
ij

)

(12)

Both summations are performed over the regions Sk, Sl fulfilling m(Sk) = ˜Gi and
m(Sl) = ˜Gj . The final consistent and inconsistent measures are given by:

CD =
∑

Gi,Gj

αij

αij + βij
ID =

∑

Gi,Gj

βij

αij + βij
(13)

The GDC is more restrictive than LDC because it considers not only local relations
but also non-adjacent depth transitions. Therefore it is expected that precision-recall
values be lower than in the LDC measure as a global consistency is harder to attain
than a local one. These two measures will be used in Sec. 5 to evaluate state of the
art algorithms plus a new one that is presented in the following section and that is an
extension of [2].

4 Depth through Probability of Ownership

The method of [2] estimates the relative depth by measuring the likelihood of a pixel
to belong to different connected components, named Probability of Ownership (PO).
The algorithm does not explicitly detect low level cues, but estimates the likelihood
that a pixel p belongs to the connected components formed by a dead leaves model [8].
In this model, the image is assumed to be a superposition of objects of different sizes
and depths. When objects are projected into the image plane, they are occluded by other
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objects of lower relative depth. If no occlusions were present, the projection of an object
Oi would create a region Xi. When multiple objects occlude each other, the visible part
of Oi becomes Ai (Ai ⊂ Xi) and the union of the visible parts Ai forms the image.

Although a pixel p belongs only to a visible component Ai, it may correspond to
multiple (and occluded) Xi. The algorithm [2] exploits shape, distance and color fea-
tures of Ai to determine a membership function, Z(p), which estimates for each pixel
p its probability to belong to several connected components of the image.

Z(p) =
N
∑

i=1

D(p, Ai) (14)

The density term D(p, Ai) estimates the likelihood that p belongs to Xi. It is defined
using two principles: a pixel is more likely to belong to a set Xi if 1) the pixel is close
to Ai and 2) the boundary is highly curved. The concrete expression of D(p, Ai) is
rather complex and we refer the reader to [2] for more details. The function Z(p) is an
indicator of the number of Xi that a pixel belongs to. If Z(p) = 1 the pixel belongs
to a single component, while if Z(p) > 1 the pixel belongs to more than one compo-
nent. The only reason for a pixel to belong to more than one component is occlusion.
Therefore, Z(p) is a direct indicator of local depth without explicitly detecting occlu-
sion cues. The higher Z(p) is, the closer will be the pixel to the viewer. From now on,
we will refer to Z(p) values as the Probability of Ownership (PO).

4.1 Incorporating Regions

In practice, the sets Ai are formed by pixels with no semantic information. Therefore,
the algorithm [2] is based on processing raw color pixel information. However, if higher
level information, such as regions, needs to be extracted, the values Z(p) can be used in
conjunction with segmentation hierarchies to retrieve relevant objects. Here we propose
to estimate the depth order map through an optimal graph cut applied on a hierarchical
segmentation structure represented by a Binary Partition Tree (BPT) [19] which has
been previously populated with PO values.

First, in order to construct the BPT, the ultrametric contour map (UCM) [1] of the
image is computed. Then, the BPT is created by successively merging the pair of neigh-
boring regions separated by the lowest salient contour as defined by the UCM. The
leaves of the BPT correspond to the regions belonging to the finest UCM partition and
the remaining BPT nodes represent regions obtained through the merging of pair of
neighboring regions. The BPT root corresponds to the entire image support. Finally, the
BPT edges describe the inclusion relationship between regions.

A partition can be naturally extracted from a BPT by selecting the regions repre-
sented by the tree leaves. If this is done on the original tree, the leaves correspond to the
finest UCM partition and the process is trivial. However, if we prune the tree, that is if
we cut branches at one location to reduce their length, a new tree, called a pruned BPT
is created and the leaves of the pruned tree may define useful partitions. The pruning
can be seen as a particular graph cut: Assume the tree root is connected to a source
node and that all the tree leaves are connected to a sink node. A pruning is a graph cut
that separates the tree into two connected components, one connected to the source and
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Fig. 6. Example of results using [2] and the proposed region-based approach. In raster order:
original image, original depth map of [2] and depth maps found with increasing λ in Eq. (15).
Note that the region-based system is able to resolve some error between the building and the sky.

the other to the sink, in such a way that any pair of siblings falls in the same connected
component. The connected component that includes the root node is the pruned BPT
and its leaves define a partition of the space.

To extract a depth order partition, the tree nodes, representing regions Ri, are popu-
lated by their mean PO value ̂Di and their perimeter Γi. The pruning is defined by the
graph cut minimizing a criterion inspired by the Mumford-Shah functional [15] over
the hierarchy. If {Ri}1≤i≤N denotes the set of regions corresponding to the leaves of
the pruned BPT, the criterion to optimize is given by:

N
∑

i=1

⎛

⎝

∑

p∈Ri

∣

∣

∣

̂Di −D(p)
∣

∣

∣

2

+ λ|Γ |i
⎞

⎠ (15)

where D(p) is the original estimated depth (PO) value for pixel p and λ a parameter
controlling the partition granularity. The criterion defined by Eq. (15) can be very ef-
ficiently minimized by dynamic programming [19,21,16]. Small λ values create fine
partitions with many regions, while for larger λ, coarser partitions are found. The final
depth partition is formed by regions Ri with ̂Di as depth value. Fig. 6 shows several
partitions obtained with this optimum pruning.

5 Experiments and Results

In this section, we compare the classical depth ordering evaluation with the LDC and
GDC measures. For the selection of the state of the art systems, the code of [18] and [9]
are not public, so we could not run the algorithms for evaluation. Their performances as
given in their respective papers are reported in Table 1. The LDC and GDC measures are
reported for the BPT+TJC and UCM+TJC approaches of [17], the angular embedding
(AE) of [11], the occlusion boundary detection (OB) of [6], the learning depth based
(LD) approach of [20], the PO approach of [2] and the proposed algorithm using the
region PO-based graph cut on BPT.
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Fig. 7. Accuracy of the f/g classification as a function of the boundary recall

5.1 Dataset with Depth Annotation

We have found few public datasets incorporating relative depth ordering between ob-
jects present in images. One of the most popular datasets in image segmentation, the
BSDS500 [1] incorporates figure/ground annotations for a subset of the images. Al-
though it is the classical evaluation choice for figure/ground system, it does not involve
closed contours and no global consistency is found in several cases. To solve this is-
sue, we have chosen several segmentations for each of the 500 images and have an-
notated their regions with relative depth, creating a consistent depth map. Examples
can be seen in the second column of Fig. 9. These annotations are publicly available at
http://imatge.upc.edu.

5.2 LDC and GDC Results

Fig. 7 shows the figure/ground classification accuracy as a function of the boundary
recall1. Although this plot is an interesting step for evaluating depth ordering systems,
it is not found in the literature other than in [13] for f/g estimation in video frames.

It follows from Fig. 7 that the proposed system seems the one providing more consis-
tent depth estimates. Nevertheless, the f/g accuracy does not provide the segmentation
precision, a crucial segmentation measure. Moreover, if precision is not known, depend-
ing on the degree of recall that one may require, the proposed system can present lower
accuracy than BPT+TJC, UCM+TJC and AE. Therefore, additional measures should
be invloved to define the quality of each system.

To this purpose, these systems are evaluated with the LDC and GDC measures. Re-
sults are presented in Fig. 8. The first point to notice is that LDC gives higher scores
than GDC: a global depth consistency is much harder to achieve than estimating lo-
cal depth gradient on contour points. Second, the LDC measure does suffer for output

1 The f/g matching process can lead to different results compared to the original papers, due to
differences in contour distance and angle tolerance on the depth gradient. Following a strategy
similar to [18], we only considered contours at a 3 pixels distance for matching. A depth
gradient is considered correct if its orientation lies within 15◦ of the ground-truth orientation.
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AE [0.19-0.37] OB [0.13-0.22]
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ORI 0.12 0.13 0.18 0.03 0.00 0.00 0.32

Fig. 8. LDC and GDC measures for state of the art system. Fmax and Fmin measures for each
method are shown in brackets in both cases. The ORI is also shown in the table at the bottom.

with high recall values and low precision. The bipartite assignment for oversegmented
solutions (such as the PO and LD systems) has problems to assign the depth gradient
when many contours are potential matches. Since the assignment does not favor any
particular orientation, the ORI index approaches 0 for high recall methods.

LDC: Overall, the system proposed in this paper is the best one in terms of segmen-
tation quality and of depth ordering, as its ORI is more than 0.1 over the second best
technique. Still, there is much room for improvement both in segmentation quality and
depth ordering, since the maximum F measure is around 0.6, where the ground-truth
assignments achieve an F measure of 0.78. The ORI index indicates that monocular
depth ordering still can be improved, as the theoretical maximum ORI is 1 and the best
kown technique has a much lower score (around 0.3).

GDC: Referring to a global depth interpretation, the precision values of the systems
have much lower scores compared to LDC. Basically because small regions are missed
unless very oversegmented solutions are considered. An important point to notice is that
PO has the largest recall for classification, indicating that it is the technique detecting
most depth transitions. Again, the small width of the proposed algorithm region indi-
cates that it behaves quite well for global depth interpretation. However, techniques as
UCM+TJC or BPT+TJC seem to provide higher quality regions. Overall, we can con-
clude that proposed system should be the choice if monocular depth ordering is needed
due to its better scores in LDC, ORI and its competitive results in GDC.
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Fig. 9. From left to right. Original image, ground-truth relative depth order and results from the
proposed system, PO, AE, the UCM+TJC and OB. The proposed methods is able to reduce noisy
estimation of PO. More results can be found in the supplemental material.

6 Conclusions

We have proposed a new framework to evaluate problems encompassing detection and
classification where the complete system performance can be seen in a single plot. Two
particular applications of the PRC framework are shown for depth ordering, where local
and global depth consistency measures are presented. Depth ordering annotations of
the BSDS500 Dataset were also created for this particular problem and made public.
State of the art methods and a new proposed algorithm are evaluated using both PRC
measures. Results show that the proposed algorithmm is the one having the best results,
although human depth perception is still unreachable for fully unsupervised systems.
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