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Abstract. Beyond recognizing the actions of individuals, activity group
localization aims to determine “who participates in each group” and
“what activity the group performs”. In this paper, we propose a latent
graphical model to group participants while inferring each group’s activ-
ity by exploring the relations among them, thus simultaneously address-
ing the problems of group localization and activity recognition. Our key
insight is to exploit the relational graph among the participants. Specif-
ically, each group is represented as a tree with an activity label while
relations among groups are modeled as a fully connected graph. Infer-
ence of such a graph is reduced into an extended minimum spanning
forest problem, which is casted into a max-margin framework. It there-
fore avoids the limitation of high-ordered hierarchical model and can be
solved efficiently. Our model is able to provide strong and discriminative
contextual cues for activity recognition and to better interpret scene in-
formation for localization. Experiments on three datasets demonstrate
that our model achieves significant improvements in activity group. lo-
calization and state-of-the-arts performance on activity recognition.
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1 Introduction

Vision-based human action and activity analysis have attracted much attention
in computer vision literature. There has been quite a lot of work focusing on
single-person action recognition [2], interactive activity between a person and
objects [14,11], or pair-activities between two persons [16]. Collective activities,
i.e. multiple persons performing activities in groups, however, is more common in
real scenarios, with typical examples like: shopper queuing in a shopping store to
get checked, pedestrians crossing a road, and friends talking together with their
kids playing around. The analysis of such collective activity is of great practical
importance for many applications such as smart video surveillance and semantic
video indexing.

In this paper, we go beyond recognizing collective activities of individuals and
focus on activity group localization in videos, which involves two distinct but re-
lated tasks: activity recognition and group localization. We seek to jointly solve
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these two tasks by grouping individuals and reasoning activities at the group
level. Noticeably, this incorporation of group information is in sharp contrast to
most recent research in collective activity recognition, in which no group informa-
tion is considered (e.g. regarding persons nearby as context for single person ac-
tivity recognition [17,18,6,7] or modeling interactions or activity co-occurrences
among some closely related persons [17,5]), leaving the whole relations among
persons unclear.

(b)(a) (c)

Fig. 1. Group helps action recognition. The green box denotes the activity group.

We argue that, instead of treating these two tasks separately, jointly address-
ing activity recognition and group localization enjoys many benefits. Firstly, it
allows us to focus on recognizing activity on a group of persons and disregard
those persons that are not discriminative or relevant. For example, in Fig. 1(a),
the person in the red box is crossing. It will be confused to find his activities if we
consider all his nearby persons as context. However, it will be much helpful if we
only take the persons in his group and disregard the irrelevant persons in other
groups. Secondly, it reduces the obscured relations of persons in the scene to
person-person relations in each group and group-group relations among groups,
thus enabling explicit modeling of such relations. In this way, by encapsulating
individuals into groups, inter-group relations can better characterize the scene
information. Take the queuing person boxed in red in Fig. 1(c) as an example,
with similar appearance to the outlined person in Fig. 1(b), it still can be disam-
biguated since a co-existed “crossing” group implies a crossroad scenario. Last
but not least, in perception, it is more sensible to discover activity groups than
recognize individuals’ actions. Group localization and activity recognition are
mutually beneficial to each other. On one hand, group localization reveals the
relations among participants in the scene, in which case more useful cues for
activity recognition are obtained. On the other hand, activity recognition assists
group localization in a more evident way, i.e., fusing activity information enables
group localization at an activity level.

We propose a latent graphical model to jointly address two problems together,
which we present in this work as a new problem called activity group localization.
In particular, we employ a tree structure to represent each group and a fully
connected graph to describe the relations among groups. Such graphical structure
is quite sensible and is capable of capturing characteristics of group activities
and co-occurrences among them. Then by dynamically inferring over this latent
structure, the groups along with their activities can be consequently obtained.
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Specifically, we treat it as an extended minimum spanning forest problem and
utilize a max-margin framework to efficiently solve it.

The contributions of our work can be summarized in three-fold. Firstly, we
advance prior work of individual activity recognition to activity group localiza-
tion by jointly addressing group localization and activity recognition. Secondly,
a relational graph is presented to model the relations among participants, which
gives an interpretable description of the scene information and thus largely as-
sists the activity recognition as well as group localization. Thirdly, we solve the
graphical model as an extended spanning forest problem, and cast it into a max-
margin framework which enables efficiently inference over the graph structure.

Fig. 2. System overview. First detect and associate the persons in the video, then a
relational graph is constructed and inferred with respect to activities as well as groups.

2 Related Work

Many recent works on human action recognition model the context explicitly to
assist recognition. For example, the contextual information is exploited by means
of scenes[20], objects [14,11], or interactions between two or more objects[16].
The scene or role interactions are explored by many researchers using sophisti-
cated models like dynamic Bayesian networks [23], CASE natural language rep-
resentations [13], AND-OR graphs [12], and probabilistic first-order logic [21,3].

In group activity or collective activity recognition, context generally means
what others are doing. Some methods attempt to provide contextual informa-
tion for single person activity classification by concatenating the action scores
of all the neighbor persons [17,18] or extracting spatiotemporal distributions of
surroundings persons [6,7]. Some mid-level atomic interactions are captured to
encode the relation between a pair of persons [5]. Unfortunately, such kind of in-
teractions only provide useful information for interactive activities such as “talk-
ing” but rarely occur in other casual activities such as “crossing”, and “waiting”.
Besides, involving the atomic interactions also complicates the problem. Rather
than recognizing individual’s activity in isolation, some approaches [17,18,5] at-
tempt to jointly classify all people in a scene. In this case, a hierarchical model
is often used to model the compatibility of the activities among person-person
and person-group. To the best of our knowledge, none of previous approaches
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explicitly captures the overall relations among participants, which we believe is
of critical importance for activity recognition. Another related issue in collec-
tive activity recognition is using the tracking information [19], e.g., to formulate
multi-target tracking and action recognition into a constrained minimum cost
flow problem [15], or to integrate tracking, atomic activities, interactions and
collective activities together to form a hierarchical model, and infers them by
combining belief propagation and branch and bound [5].

There is not much work about grouping activity groups. They typically focus
on one aspect of this problem, e.g., to determine the group location by developing
contextual spatial pyramid descriptor while neglecting individual activity [22],
or to infer the individual activity by a chain model [1]. Some other approaches [4]
attempt to cluster individual with specific scenarios and strict rules, which is not
suitable for collective activity.

Our work is to some extent related to the model in [17,18], where a hierarchi-
cal model is proposed to model the compatibility of image, action and activity.
They also attempt to implicitly infer the person-person relations using sparse
loopy graph structure. However, such a sparse structure does not completely
characterize the relations. Our work here emphasizes on the structure of rela-
tions among participants, which leverages visual patterns, motions and activity
compatibility in terms of intra-group relations and inter-group relations.

3 System Overview

The proposed framework is illustrated in Fig. 2. Our main objective is to localize
activity groups in a video. Haven the persons detected and associated, for each
single image, we construct a relational graph, which is then inferred with respect
to groups as well as their activity labels. Notice that there are some reference
groups participated in the relational graph. Such groups, coming from previous
frames of the video, are often those that have been identified as reliable activity
groups. In this case, They play a role of authority for further verification. We
each time select one reference group to participate in the graph inference and
take the relational graph with the highest score as the final result.

Here we emphasize on how to model and solve the relational graph, which
attempts to encode the relations among persons and groups. We assume that in
each group every person closely coordinates with only one another, i.e. a tree
structure. As for inter-group relations, we remain groups fully connected (Fig.
3(a)). Notice that, solving this relational graph is reduced to a clustering prob-
lem if no activity recognition is required, and such clustering can efficiently be
modeled as a minimum spanning forest problem. Therefore, we seek to solve our
activity localization problem tailoring an extended version of minimum spanning
forest problem, of which the difference is that each tree is with an extra activity
label and is connected to every other one. In the next, we start by explaining
how to model such a graph in Section 4, then describe the learning of the model
in Section 5 and model inference in Section 6.
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4 Modeling Activity Group Localization

4.1 Model Formulation

Given a set of detected persons x={x1, x2, ..., xm} in the image and a reference
group (xr, gr, ar), the objective is to find the groups g={g1, g2, ..., gn} with activ-
ity labels a={a1, a2, ..., an}, where gi=(gi1, gi2, ..., gim) with gik∈{0, 1} indicating
whether the kth person belongs to the group gi or not (

∑
i gi=1m,∀i, j, gigTj=0),

and ai∈A with A being the set of all possible activity labels. Let h denote the
relational graph structure, as shown in Fig. 3(a). It consists of n trees, h={tn},
each representing one activity group (g, a). We use Fw(x, h,g, a) to measure the
compatibility among activity groups (g, a), graph structure h and persons x.
And by maximizing such a potential function, the optimum assignment of (g, a)
for x can be obtained. Note that we include the reference group (xr, gr, ar) into
the current notation (x,g, a) for simplicity, which will be discussed in detail in
the following.

Two kinds of potentials are developed to measure the compatibility func-
tion. The first regards to intra-group potential, which we attempts to model
the compatibility of a pair of individuals’ belonging to one activity group, while
the second, inter-group potential, characterizes the compatibility of a pair of
activity groups belonging to the same scene. Therefore, the potential function
Fw(x, h,g, a) is formulated as

Fw(x, h,g, a) = wT
p ψp(x, h,g, a) +wT

g ψg(x, h,g, a), (1)

where wT
p ψp(x, h,g, a) measures intra-group compatibility, wT

g ψg(x, h,g, a)
scores inter-group compatibility. The model parameters are the combination of
wT

p and wT
g , w = [wT

p wT
g ]

T . The details of Eq. 1 are described in the following.
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Fig. 3. (a) shows the relational graph. Grey node in (b) denote observable variants.

Intra-Group Potential wT
p ψp(x, h,g, a): This function encodes the relation

among a pair of persons and their belonged group. It is parameterized as:

wT
p ψp(x, h,g, a) =

∑

t⊆h

∑

(xi,xj)∈t

∑

b∈A

wT
pbφ(xi, xj)1(at = b), (2)
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where 1(.) is the indicator function, and φ(xi, xj) denotes the person-person
descriptor (Sec. 4.2). The parameter wp is simply the concatenation of wpb for
all b ∈ A.

Inter-Group Potential wT
g ψg(x, h,g, a): This function characterizes the rela-

tion between all pairs of groups. It is parameterized as:

wT
g ψg(x, h,g, a) =

∑

(ti,tj)∈h

∑

b,c∈A

wT
gbcϕ(ti, tj)1(ati = b)1(atj = c), (3)

where ϕ(ti, tj) denotes the group-group descriptor (Sec. 4.2). By adding refer-
ence group in this term, additional group pairs are modeled with knowledge of
reference group’s activity label.

K

2K

K

( 2)K K

...
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...

...
( 2)K K

...
( 2)K K
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Fig. 4. Activity pair descriptor

4.2 Activity Pair Descriptor

We build this descriptor in two stages. Firstly, we train a multi-class SVM clas-
sifier (unary SVM) based on the person descriptors (e.g. HOG [8]) and their as-
sociated action labels, then each person can be represented as a K-dimensional
vector, where K is the number of activity classes. Secondly, we train a multi-
class SVM classifier (pair SVM) on a pair of persons and their activity labels.
Each person pair is represented as an K2-dimensional vector. Our activity pair
descriptor is computed by concatenating two person’s action descriptor and the
pairwise action descriptor, which ends up with a K(K + 2)-dimensional vector,
as shown in Fig. 4. The feature used to train the pair SVM for a person pair
(xi, xj) is denoted as

f(xi,xj)=[dxi dxj dxi−dxj dxi⊗dxj c], (4)

where dxi , dxj are the person descriptors of the person xi and xj , respectively.
The operator ⊗ means element-wise multiplication. c is the bag-of-words repre-
sentation of the scene’s context.

Person-PersonDescriptor φ(xi, xj): To compute the person-person descriptor
for a person pair (xi, xj),we do not only consider the visual appearance in the
current frame, but also take advantage of association which locates the persons
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in the neighbor frames. Let N(x) be the set of tracked human across neighbor
frames for person x, then we compute activity pair descriptors of all possible
person pairs P (xi, xj), of which the first is from N(xi) and the second is from
N(xj). Note that, only reliable tracklets are used in our work, so if none of the
tracklets coveres the person x, N(x) will only have one element x. Finally we
calculate the person-person descriptor as follows

φ(xi, xj)=[ max
p∈P (xi,xj)

Sp,1, ..., max
p∈P (xi,xj)

Sp,K(K+2), lx, ly], (5)

where Sp,k denotes the kth value of the activity pair descriptor, lx and ly are the
average relative deviations of all pairs at the x and y coordinates, respectively.

Group-Group Descriptor ϕ(ti.tj): For all person pairs (xm, xn), where xm
comes from one group ti and xn comes from the other group tj , we compute
the person-person descriptors φ(xm, xn). The final group-group descriptor is
obtained using the following equation

ϕ(ti, tj)=[ max
xm∈ti,xn∈tj

φ(xm, xn)1, ..., max
xm∈ti,xn∈tj

φ(xm, xn)K(K+2), lx, ly], (6)

where φ(xm, xn)k is the kth value in the person-person descriptor, lx and ly are
the average relative deviations of all pairs at the x and y coordinates, respectively.

4.3 Reference Groups

Reference groups are those that have been identified as reliable activity groups in
the previous frames. They, in a sense, serves as some explicit scene information.
Given a crossing group in the scene, it is more likely to tell a group of standing
persons to be a waiting group rather than a talking group. Specifically, the
activity groups with confidence that exceeds a threshold (set empirically) are
pushed into a reference group pool. And concerning the computation, we select
a subset of reference groups with little overlap with the current groups’ region
(the total number of reference groups is discussed in Section 7.2). Such strategy
is reasonable since our model favors seeing complete relational graph located in
various regions.

5 Model Learning

Our scoring function can be converted into an inner product 〈w, ψ(x, h,g, a)〉 ,
where w=[wT

p wT
g ]

T , ψ(x, h,g, a)=[ψp(x, h,g, a) ψg(x, h,g, a)].
Given a set of N training examples (xn,gn, an) (n=1, 2, ..., N), we train the

model parameter w to produce the correct groups g and activity labels a. Note
that the groups and activity labels can be observed on training data, but the
graph structure h is unobserved. We adopt the latent SVM [10] formulation to
train this model, which in our case can be written as follows
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w∗ = argmin
w

{ 1
2 ||w||2 − C

N∑

i=1

wTψ(xi, hi,gi, ai)

+C
N∑

i=1

max
(ĝ,ĥ,â)

[wTψ(xi, ĥi, ĝi, âi) +Δ(g, ĝ, ĥ, a, â)]},
(7)

where C controls the tradeoff betwen the errors in the training model and margin
maximization and Δ(g, ĝ, ĥ, a, â) is the loss function. Naturally, this function
need penalize both incorrect groups and incorrect activity labels. We define it
as follows

Δ(g, ĝ, ĥ, a, â)=n(g)−
∑

(xi,xj)∈ĥ

l(g, a, â, (xi, xj)), (8)

where n(g) is the difference of the number of nodes and the number of groups.
The function l(g, a, â, (xi, xj)) returns 1 if (xi, xj) belongs to the same group
with the correct activity, returns 0 if (xi, xj) belongs to different groups but
with the correct activity, and -1 otherwise. It is easy to show that such a loss
function equals zero if and only if the individuals are clustered into correct groups
and with correct activities.

6 Model Inference

Given the model parameter w, the inference problem is to find the best group
locations g along with the corresponding activity label a for each input x. Using
the latent SVM formulation, it can be written as:

Fw(x,g, a) = max
a

max
g,h

Fw(x, h,g, a). (9)

Since groups g, graph structure h and activities a are not independent with
each other, the optimization of Eq. 10 is NP-hard. When the number of persons
and activities are small and some spatial restrictions can be incorporated, we
encourage a combinatorial search to generate exactly inference. In other cases,
we approximately solve it by iterating the following three steps:

– Holding activities a and groups g fixed, optimize the graph structure h, using
a standard spanning tree algorithm such as Kruskal’s algorithm.

– Holding graph structure h and groups g fixed, optimize the activities a by
enumerating all possible activities.

– Holding activities a fixed, generate new optimal groups g by merging two
trees or splitting one tree with the same activity in the current structure h.

The three steps are iterated until converged. While this algorithm cannot
guarantee a globally optimum solution, in our experiments it works well to find
good solutions.
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7 Experiments

Datasets. We evaluate our method on two collective activity datasets from [6,7]
and a newly recorded dataset collected by ourselves. The first collective activity
dataset is composed of 44 video clips with 5 activities, crossing, walking, queu-
ing, talking and waiting. While the second is an extended dataset of the former.
It includes two more classes of dancing and jogging and removes the ill-defined
walking class, which results in 6 class of activities. We refer these two collec-
tive activity datasets as 5-class collective dataset and 6-class collective dataset,
respectively. We use the activity annotations provided by [6] and further anno-
tate the groups with bounding boxes. We also collect several 10-minute videos
from a outdoor touring environment, and we segment them into 52 video clips,
each having 800 to 1000 frames. Typical collective activities include walking,
bicycling, taking photos, standing, and talking. This new dataset is referred as
touring dataset. We annotate the activity label for each person and the groups in
every tenth frame (4560 annotated frames including 5067 walking, 3126 bicycling,
3228 taking photos, 3850 standing,3027 talking).

Evaluation Metric. We stress that our objective is to localize activity groups,
two aspects are evaluated: activity recognition and group localization. For lo-
calization, we compute a ratio of the intersection and union of detected and
ground-truth bounding boxes of people participating in activities. The activity
group is correct only if ratio > 0.5 and activity is correct.

Implementation Details. For the 5-class collective dataset and 6-class collec-
tive dataset, we apply the pedestrian detector in [9], and obtain some reliable
tracklets by simply associating the detected bounding boxes in two neighboring
frames using spatio-temporal locations and appearance similarity. For touring
dataset, however, pedestrian detectors are not enough, we additionally apply
background subtraction in [24] using Gaussian Mixture Model to obtain fore-
ground objects. Instead of using raw features (e.g. HOG), we follow the setting
in [17] to extract Action Context (AC) descriptor as the person descriptor. Also,
the c in Eq. 4 is constructed by computing the histogram of visual-words within
the persons appearing in neighbor frames. Specifically, we extract HOG feature
of persons and apply k-means to generate 200 codewords.

7.1 Activity Recognition

In this part, we concentrate on activity recognition task. First we demonstrate
the effective of our model by comparing to several baselines. Then we make
comparisons with the state-of-the-art approaches with respect to three different
validation schemes. We also analyze the behavior of our model in terms of learnt
weights and total number of reference groups.

First we construct several baselines to demonstrate the capability of our
model to interpret context in terms of a relational graph, activity pair de-
scriptor and reference groups, which largely improves activity recognition. To
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evaluate the performance of our relational structure, three baselines with dif-
ferent graph structures are considered as shown in Fig. 5. The first (unary
person) is a latent SVM model based on AC descriptor. It simply regards all
nearby persons as context and attempts to infer their activities. It can be for-
mulated as Fw(x,g, a)=

∑
i

∑
b wbxi1(ai = b), where x denotes all persons in

a euclidean distance. The second (sparse link) adopts the structure in [18]. To
our knowledge, [18] is the only work that has mentioned about the structure
of participates, and in particular, they tend to find sparse but important links
between persons by maximize the summation of all pairwise activity potential
under a maximum limitation of each vertex’s degree, which can be formulated as
Fw(x,g, a)=

∑
(i,j)

∑
(b,c)wbcψp(xi, xj)1(ai= b)1(aj= c), s.t. ∀i, d(xi) � q. d(xi)

denotes the degree of the vertex while q is a threshold. The third baseline (unary
group) ignores the pairwise group structure, which is equivalent to our model in
Eq. 1 by removing inter-group potential term.

We also evaluate the performance of our activity pair descriptor by replacing it
with a concatenated vector by two AC descriptors of a person pair in full model,
which we called 2-AC. And the performance of reference group (non-reference)
is evaluated by removing them from our full model.

1x
2x

3x
5x

4x
1x

2x

3x
5x

4x

(a) (b)

1x
2x

3x
5x

4x

(c)

Fig. 5. (a)-(c) shows the graph structure of three baselines: unary person model, sparse
link model and unary group model, respectively

Table 1. Mean average activity classification accuracy on three datasets

Dataset unary person sparse link unary group 2-AC non-reference full

5-class collective dataset 54.8% 69.4% 62.3% 72.9% 71.6% 74.8%
6-class collective dataset 67.3% 80.2% 72.1% 83.2% 82.9% 85.8%

Touring dataset 49.2% 58.4% 53.6% 67.1% 66.2% 68.3%

Table 1 summarizes the results using leave-one-video-out validation strategy.
We can see that our model significantly outperforms all baselines with respect
to all the three datasets. Consider the structural baselines, the unary person
model is almost unachievable, especially in a more complex scenario of touring
dataset. This can be attributed to the unstructured context, drawing all per-
sons nearby as context information introduces much noise as well as irrelevant
persons. Compared to the unary person model, unary group model and sparse
link model achieve a large improvement of performance, which further proves
the effect of modeling the relations among participants. We can also see that
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sparse link has a better performance by about 6% than unary group model. It
is quite reasonable, since unary group model imposes quite a few links on the
relations while sparse link model might find multiple important pairwise rela-
tions. In comparisons to these three baselines, our full model has a significant
boost in performance, showing the advantage of integrating groups into activ-
ity recognition and modeling pairwise group relations. We also observe a slight
degradation in performance occurs when a combination of AC descriptor is used
instead of activity pair descriptor, suggesting that our model is able to perform
competitively well even with “poorer” descriptors. Moreover, we find that ref-
erence groups leads to better results by comparing non-reference model to full
model. We attribute this to the complementary scene information from the video
provided by reference groups.

Then we make quantitative comparisons with other state-of-the-art approaches
on the 5-class and 6-class collective datasets, including RSTV approach in [7], a
joint tracking and recognition flow model in [15], a complex hierarchical model
in [5], a bayesian BORD method in [1] and a discriminative latent model in [17].
To be comparable to these reported results, we adopt their respective train-
ing/testing schemes and evaluation criteria.

We summarize the results using three validation schemes in Table 2. The
first scheme is the leave-one-video-out (LOO) training/testing scheme and per-
person activity classification is evaluated, which is used in [6,7,5,15]. Our model
outperforms all approaches by achieving an overall accuracy of 74.8% on the 5-
class collective dataset and 85.8% on the 6-class collective dataset. Notice that,
the model from [5] yields competitive results as our model for the first dataset.
However, it employs a complex hierarchical model, which requires additional
pose orientations of each person, 3D trajectories and some interactive atomic
actions. The second experiment is to train the model on three fourths of the
dataset while testing on the remaining fourth, and to evaluate per-scene activity
classification. We follow the same split of dataset suggested by [17], and achieve
81.2% on the 5-class collective dataset. It is superior than 79.1% and 80.4%
reported in [17] and [5]. The last experiment adopts the scheme in [1], which
merges 5-class collective dataset and 6-class collective dataset to form a 7-class
collective dataset ( walking activity is not removed). They use 2/3 and 1/3 of the
videos from each class for training and testing. Our model reports 83.7% accuracy
which is 2.2% higher than [1]. To demonstrate the effective of our model in a more
complex scenario, we re-implement the adaptive structured latent SVM method
in [18], and achieve 61.5% accuracy on touring dataset using leave-one-video-out
validation scheme, which is 6.8% lower than our performance.

Table 2. Comparisons with the state of the art on two collective datasets

Validataion Approaches RSTV [7] RSTV+MRF [7] AC+Flow[15] T.+A.+I.[5] AC+LSVM[17] BORDS[1] full model

LOO 5-class 67.2% 70.9% 70.9% 74.4% − − 74.8%
LOO 6-class 71.7% 82.0% 83.7% − − − 85.8%

one fourth 5-class − − − 80.4% 79.1% − 81.2%

one third 7-class − − − − − 81.5% 83.7%
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Fig. 6. The confusion matrixes (upper row), the learnt weights across different activity
groups and precision-reference groups curves (lower row)

At last, to give a clear insight into our model, we give the confusion matrixes
and the learnt pairwise weights across different activity groups in Fig. 6. The
learnt weights encode some scene information, which further demonstrates the
benefits of including pairwise group relations. For example, walking groups are
more likely to be co-existed with crossing groups, while queuing groups tend to
be appear alone. standing groups have high co-occurrences with taking photos
groups. Besides, the performance with different number of reference groups are
illustrated in Fig. 6. It indicates that 8 to 15 is optimal, in which case larger
causes computation issue while smaller leads to insufficient scene cues.

7.2 Activity Group Localization

In this part, we evaluate our model for the task of activity group localization. To
our knowledge, there is only one work [22] about activity group localization, so we
re-implement their method (CSPM ), and compare our results with it. In order to
investigate the capability of our model to localize activity groups, we construct
two step-wise baselines: a) we estimate the activity label of each person (use the
re-implemented version of [18]), followed by a mean-shift clustering algorithm
(activity-cluster), and b) we remove the latent activity term in Eq. 1, to formulate
a clustering method based on our activity pair descriptor (no reference groups),
and then use a multi-class SVM to classify the activity of each group using the
max-pooled AC descriptors within each group (cluster-activity).

As Fig. 7 shows, our model achieves a significant improvement with respect
to all activity groups over [22] as well as two baselines. Such good performance
resides in not only explicit activity inference but also the pairwise group relations
modeling. The work in [22] proposes a contextual spatial pyramid descriptor and
attempts to localize one particular group at one time. Though it might implicitly
characterize the variations of activity, it lacks the ability to account for the
correspondences between groups. The first baseline is a conventional step-wise



Activity Group Localization by Modeling the Relations 753

cross wait queue talk dance jog Avg
0

20

40

60

80

M
ea

n 
A

ve
ra

ge
 P

re
ci

si
on full

activity-cluster
cluster-activity
CSPM[22]

cross wait queue walk talk Avg
0

10

20

30

40

50

M
ea

n 
A

ve
ra

ge
 P

re
ci

si
on

full
activity-cluster
cluster-activity
CSPM[22]

walk stand take photosbicycle talk Avg
0

20

40

60

80

M
ea

n 
A

ve
ra

ge
 P

re
ci

si
on

full
activity-cluster
cluster-activity
CSPM[22]

(a) 5-class collective dataset (b) 6-class collective dataset (c) touring dataset 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

full
activity-cluster
cluster-activity
CSPM[22]

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

full
activity-cluster
cluster-activity
CSPM[22]

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

full
activity-cluster
cluster-activity
CSPM[22]

Fig. 7. The mean average precisions and precision-recall curves of localization

Fig. 8. Results on two collective datasets (upper row) and touring dataset (lower row).
Bold rectangle denotes an activity group, with its color indicating its activity. Red line
denotes an edge in the tree structure.

method to localize activity groups. It clearly suffers from the unreliable activity
recognition. The second baseline, on the other hand, attempts to first cluster
the groups and then to recognize their respective activities, of which the poor
performance implies that clustering on visual cues is not sufficient.

We visualize the activity group localization results and the learned struc-
ture among participants in Fig. 8. Some interesting inner group tree structures
are learnt, like a chain structure which connects all people for queuing activity,
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one or two connections between people facing each other for talking and short
links between people nearby having similar standing pose for waiting. As can
be seen from Fig. 8, this kind of structure reveals some discriminative relations
and disregards irrelevant ones, and also mitigates the impact from occlusions by
only linking the overlapped person to one other person. Furthermore, our model,
unlike previous approaches that often attempts to recognize the dominant ac-
tivities, favors seeing different activity groups, thus can effectively disambiguate
non-dominant activities and is more suitable for complex scenes.

8 Conclusions

In this paper, we aim at activity group localization including two tasks: group
localization and activity recognition. A relational graph is proposed to model
the relations among participants, which is solved as an extended problem of
minimum spanning forest. We demonstrated that the incorporation of group
helps to classify collective activities, and it is especially useful for structure-rich
activities. With context structured by a relational graph, our proposed model
can achieve competitive results comparing with the state-of-the-art approaches
using three different validation schemes. In return, the activity group localization
accuracy is also significant improved by jointly inferring the activities. In future
work, we plan to exploit this group structure to mine group activity in long
surveillance videos.
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