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Abstract. Modern applications of stereo vision, such as advanced driver
assistance systems and autonomous vehicles, require highest precision
when determining the location and velocity of potential obstacles. Sub-
pixel disparity accuracy in selected image regions is therefore essential.
Evaluation benchmarks for stereo correspondence algorithms, such as
the popular Middlebury and KITTI frameworks, provide important ref-
erence values regarding dense matching performance, but do not suffi-
ciently treat local sub-pixel matching accuracy. In this paper, we explore
this important aspect in detail. We present a comprehensive statistical
evaluation of selected state-of-the-art stereo matching approaches on an
extensive dataset and establish reference values for the precision limits
actually achievable in practice. For a carefully calibrated camera setup
under real-world imaging conditions, a consistent error limit of 1/10 pixel
is determined. We present guidelines on algorithmic choices derived from
theory which turn out to be relevant to achieving this limit in practice.

1 Introduction

Stereo vision has been an area of active research for several decades and ap-
plications have found their way into a wide variety of industrial and consumer
products. Quite recently, stereo cameras have attracted renewed attention as the
central sensor module in modern driver assistance systems, and even in first fully
autonomous driving applications [7].

Part of the practicability and performance of modern stereo vision algorithms
can arguably be attributed to the seminal Middlebury benchmark study [27],
which first provided a comprehensive framework for evaluation and enabled al-
gorithm analysis and comparison. Ten years later, the KITTI project [10] pre-
sented a new realistic and more challenging benchmark with stereo imagery of
urban traffic scenes, triggering a new wave of improved stereo vision algorithms.
These major benchmark studies focus on dense stereo correspondence and are
naturally required to provide both dense and accurate ground truth data. Algo-
rithm performance is mainly judged by the percentage of pixels whose disparity
estimates fall within a given accuracy threshold. The threshold is commonly set
to several pixels (KITTI), or half pixels at best (Middlebury).
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Fig. 1. Highway driving scene with relevant objects at distances of 80 and 140 m
(left). Metric distance errors εZ increase non-linearly for given stereo disparity errors
εd(right).

However, for safety-critical applications such as environment perception in
autonomous driving, sub-pixel disparity accuracy is essential. Furthermore, not
all parts of the considered images may require the same level of attention. Ob-
stacles in the path of motion are most relevant to the driving task, and their
location and velocity have to be determined with maximum precision. Fig. 1
illustrates such critical object locations and the significant impact of sub-pixel
disparity errors on the respective distance estimates. Note that for a subsequent
estimation of relative object velocities, these errors can have an even more serious
influence. Unfortunately, this important aspect lies outside the scope of existing
major stereo benchmarks, leaving open the question of the actually achievable
disparity estimation accuracy where it matters most.

The present paper intends to fill this gap by providing an extensive statis-
tical evaluation of object stereo matching algorithms and establishing a ref-
erence for the achievable sub-pixel accuracy limits in practice. We employ a
large real-world dataset in an automotive scenario and consider various state-
of-the-art stereo matching algorithms, including local differential matching and
segmentation-based approaches as well as global optimization in both discrete
and continuous settings. Moreover, we investigate possibilities for performance
improvement rooted in signal- and estimation theory which are partly used in
other areas of computer vision such as medical or super-resolution imaging. Fi-
nally, we provide practical guidelines on which algorithmic aspects are essential
to achieving the accuracy limits and which are not, also taking into account the
trade-off between precision and computational complexity.

2 Related Work

In major dense stereo correspondence benchmarks (Middlebury [27], KITTI [10])
the number of images is kept relatively small for practical reasons, and algorithm
performance is derived from pixel-wise match evaluation, weighting each pixel
equally. To determine the percentage of erroneous matches, the KITTI bench-
mark employs a minimum threshold of two pixels. Alternatively, the average dis-
parity error on the dataset can be considered, where the top-ranking algorithms
at the time of writing achieve a value of 0.9 pixels [33]. This value however pro-
vides no information on the matching accuracy for isolated salient objects.
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Notably, all top-performing dense methods make use of generic smoothness
constraints on the disparity solution, either by global optimization in discrete
or continuous disparity space or by integrated image segmentation and para-
metric model refinement. Taking a closer look at sub-pixel matching precision,
it becomes clear that techniques in a discrete setting entail inherent difficul-
ties. Sub-pixel results are obtained by fractional sampling of the disparity space
and/or a curve fit to the computed matching cost volume [30]. Depending on
the used matching cost measure, these methods usually suffer from the so-called
pixel-locking effect, i.e. an uneven sub-pixel disparity distribution. Various ap-
proaches have been proposed to alleviate this effect, including two-stage shifted
matching [28], symmetic refinement [17], design of optimal cost interpolation
functions [11] and disparity smoothing filters [9]. In contrast, methods set in a
continuous framework [21] or based on segment model fitting [33] do not suffer
from pixel-locking and have been shown to outperform discrete techniques in
accuracy.

When shifting the focus from dense disparity maps to isolated objects, the
properties of local area-based matching techniques have to be investigated.
Within the context of image registration, Robinson and Milanfar [22] presented a
comprehensive analysis of the fundamental accuracy limits under simple transla-
tory motion. In low noise conditions, iterative differential matching methods [15]
were shown to reach errors of below 1/100 pixels. The corresponding Cramer-
Rao Lower Bound (CRLB) for registration errors turns out to be a combination
of noise and bias terms, with bias being caused by suboptimal methods for image
derivative estimation and image interpolation as well as mathematical approx-
imations. Similar results were reported in [29] for stereoscopic high-precision
strain analysis applications. The optimal design of derivative filters and inter-
polation kernels was also identified as an essential issue in optical flow [26],
super-resolution [3], and medical imaging [5,31] literature.

Perhaps most relevant to the present work is a recent study on local stereo
block matching accuracy by Sabater et al. [24]. In contrast to the work
mentioned above, realistic noise conditions were investigated and a theoretical
formulation for the expected disparity error was derived. Results from a phase-
correlation local matching algorithm were shown to agree with the presented
theory, demonstrating an accuracy of down to 1/20 pixel on pre-selected pixel
locations. However, experiments were performed only on a set of three synthetic
stereo pairs and the four classic Middlebury images. Finally, aiming at a more
practical automotive setting, in [19] we proposed a joint differential matching
and object segmentation approach, yielding errors of 1/10 pixel on actual real-
world data. However, our evaluation was also restricted to a very limited amount
of sequences.

An important aspect, but outside the scope of the present object-based sta-
tistical evaluation, is the data-driven pre-selection of reliable matching points.
For local differential methods, matching accuracy can be predicted based on the
local image structure [6]. Point selection methods based on various confidence
measures have been explored for local [25] as well as global methods [18].
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3 Long Range Object Stereo: Algorithm Overview

All algorithms in the present evaluation assume a calibrated stereo camera setup
and rectified image pairs. For each relevant object in the scene, a single represen-
tative disparity value is determined. This makes sense in the considered scenario,
where it is sufficient to model the visible relevant objects as fronto-parallel planes.
Note that at large distances, where accurate disparity estimation is actually most
important, this model is also valid for more general scenarios.

For the purpose of this study, approximate image locations and sizes of objects
are given in advance. Corresponding rectangular patches in the left stereo images
are provided as input to the matching algorithms (cf. Fig. 1). Details on the
generation of these object patches can be found in Sect. 4.1.

We first define a general stereo matching model by considering the discrete
left and right image patch values Il(x, y) and Ir(x, y) as noisy samples of the
observed continuous image signal f at positions (x, y). In this simplified model,
ηl(x, y) and ηr(x, y) represent additive Gaussian noise with variance σ2, while
the shift d denotes the object stereo disparity.

Il(x, y) = f(x, y) + ηl(x, y) (1)

Ir(x, y) = f(x+ d, y) + ηr(x, y) (2)

3.1 Local Differential Matching (LDM)

Iterative local differential matching methods, originally proposed by Lucas and
Kanade [15], have proven to perform exceptionally well at high-accuracy dis-
placement estimation [22,29,19]. The image difference IS(x, y) = Ir(x, y) −
Il(x, y) is approximated by linearization and Taylor expansion of f around d = 0,
with f ′

x denoting the signal derivative in direction x. Following (1), η now rep-
resents Gaussian noise with variance σs

2 = 2σ2:

IS(x, y) = f(x+ d, y)− f(x, y) + η(x, y) (3)

= d · f ′
x(x, y) +Rres(x, y, d) + η(x, y). (4)

The disparity d is estimated as the least squares solution to (d · f ′
x(x, y) −

IS(x, y))
2 !
= 0, using all pixels of the input image patch. Applying this concept

iteratively, the image patch Ir is successively warped by the current estimate of
d, and additive parameter updates Δd are computed as described above. This
effectively minimizes the influence of the residual Rres of the Taylor expansion,
and the solution in fact converges to the Maximum Likelihood (ML) estimate. A
good initial value for d is required and is commonly provided by a pyramidal im-
plementation. In our sequences, we use a robust global stereo method (Sect. 3.4)
for initialization or, if available, the estimation result from the previous frame.
In most cases the algorithm converges in less than five iterations. To minimize
errors due to global intensity offsets, image patches are mean-corrected before
computation.
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Table 1. Separable pre-smoothing (left) and derivative filter kernels (right). Comple-
ment symmetric and antisymmetric values respectively.

Scharr 3× 3 [. . . , 0.5450, 0.2275] [. . . , 0, 0.5]

Scharr 5× 5 [. . . , 0.4260, 0.2493, 0.0377] [. . . , 0, 0.2767, 0.1117]

Central Diff. 5× 5 [. . . , 0.4026 0.2442, 0.0545] 1
12
[1,−8, 0, 8,−1]

Image Derivative Estimation. In practice, the signal derivatives f ′
x in (4)

are not known and have to be approximated from Ir using discrete derivative
filters. However, inexact derivatives lead to matching bias [22,3], requiring the
use of optimal filter kernels. Jähne [13] derived an optimized second order central
differences kernel which requires a separate smoothing step for signal bandwidth
limitation. Simoncelli and Scharr [5,26] on the other hand proposed the joint op-
timization of pairs of signal pre-smoothing and derivative filters. We investigate
both methods, using 3 × 3 and 5 × 5 Scharr kernels as well as a 5 × 5 central
difference kernel with a 5× 5/σ = 1 Gaussian pre-smoother, cf. Table 1.

Inverse Compositional Algorithm (IC). In [2], Baker et al. presented the
so-called inverse compositional algorithm, reversing the roles of the input images
and introducing compositional parameter updates to the differential matching
framework. This not only lowers the amount of required computations per it-
eration, but according to [29] also reduces matching bias. The estimated signal
derivatives do not have to be warped in each iteration but are computed just
once and only at integer pixel positions in Il, which avoids errors from interpo-
lating derivative kernel responses. In our evaluations, the IC variant is therefore
used as the default LDM implementation.

Image Interpolation. Even when using the IC matching algorithm, the itera-
tive nature of the approach still requires warping the image patch Ir in each iter-
ation. Naturally, this step involves the evaluation of intensity values at sub-pixel
positions and therefore makes a suitable image interpolation method necessary.
In previous studies on image interpolation [31], approaches based on B-Spline
representations clearly outperformed simpler methods such as cubic convolution
[14] and bilinear interpolation. We investigate the impact of interpolation on
disparity accuracy, with cubic B-Splines as the reference method [32].

Estimation-Theoretic Approach (LDM+). Looking at the derivation of the
common LDM approach (cf. [15], Sect. 3.1), it can be seen that the algorithm
actually computes the ML estimate for the model defined in (3), and not for the
original measurement model from (1) and (2). In fact, only (2) depends on the
parameter d, leading to the corresponding ML estimate

dML ← arg mind(Ir(x, y)− f(x+ d, y))2, (5)
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which involves the unknown signal f . However, a recent theoretic study [16]
argued that for the optimal solution of the correspondence problem both dis-
placement and the unknown signal should be estimated at the same time. We
follow this idea and implement a practical algorithm that performs a joint opti-
mization (LDM+). The disparity is computed according to (5), while the signal
f is re-estimated in each iteration as the mean of the respectively aligned input
image patches. The signal derivatives are computed by applying derivative filters
to the current estimate of f . Note that in this case the modifications used in the
IC algorithm do not apply.

3.2 Joint Matching and Segmentation (SEG)

Common local matching techniques, such as the LDM algorithm, inherently
make the assumption that all pixels in the input image patches conform to a
single simple displacement model. Outliers corresponding to a different model
can significantly distort estimation results. The approach presented in [19] han-
dles this problem by jointly optimizing the patch shape and the corresponding
parametric displacement model. A probabilistic multi-cue formulation integrat-
ing disparity, optical flow and pixel intensity is proposed to reliably segment the
relevant object from its surroundings. At the same time the iterative approach
refines disparity and optical flow parameters in an LDM manner.

We apply the method of [19] but do not make use of the optical flow cue
for segmentation. As in the basic LDM algorithm, the results of our SEG algo-
rithm thus depend only on the most recent image pair. After two segmentation
iterations, the LDM+ approach as described above is applied for final disparity
refinement.

Scene Flow Matching and Segmentation (SEG+). In order to investigate
the impact of exploiting the full data from two consecutive stereo pairs, we again
follow the approach of [19], but extend it by introducing an additional scene flow
segmentation constraint and using all four images for disparity refinement.

In the original formulation, a Gaussian noise model is applied directly to
the disparity d and optical flow vectors v, which allows for the formulation of
probabilistic segmentation criteria by regarding the degraded versions d̃ and ṽ
as conditionally independent random variables given �, I. Here I denotes the
stereo image data and � the pixel labeling due to the segmentation result.

The scene flow constraint now couples the disparity displacements d between
left and right stereo images at time t with the optical flow vectors v between
consecutive left images, while the respective degradations due to noise are still
considered to be conditionally independent. The constraint is expressed as

Il,t−1(x+ ṽx, y + ṽy, ) = Ir,t(x − d̃, y). (6)

Linearization and Taylor expansion as in (4) and [19] yields

Il,t−1(x+ ṽx, y + ṽy, )− Ir,t(x − d̃, y) (7)

= df ′
x(x, y)− vf ′

v(x, y) + η(x, y), (8)



102 P. Pinggera et al.

where the noise term η(x, y) with variance f ′2
x · σ2

d + f ′2
v · σ2

v stems from the

assumed degradation models of d̃ and ṽ. Following [19], the additional random
variable w representing the scene flow constraint can be derived from (8). The
optimized patch shape is then computed by assigning optimal segment models
for pixel intensity i, disparity d and optical flow v under the scene flow constraint
w, thus maximizing the segmentation likelihood p(�|I,v, d,w, i).

Having obtained an optimized patch shape, for the final disparity refinement
step we again resort to the LDM+ algorithm, but now aligning all four input
images to estimate the unknown signal f .

3.3 Total Variation Stereo (TV)

As a representative for global stereo matching approaches in a continuous set-
ting, we investigate a differential matching algorithm with variational optimiza-
tion. Total Variation (TV) based algorithms, originally designed for optical flow
estimation [35,34], have been shown to perform very well in stereo applica-
tions [21]. Specifically, we use a total variation Huber-L1 stereo implementa-
tion [20] adapted from [35]. The algorithm uses an iterative pyramidal approach
to globally optimize an energy of the form

E =

∫ ∫
λ|Ir(x− d, y)− Il(x, y)|+

2∑
k=1

|∇dk|ε dy dx, (9)

where the regularization term |∇dk|ε penalizes the spatial variation of disparity
values, using the robust Huber norm with threshold ε. For algorithm details
we refer to [35]. We set ε = 0.01, λ = 25 and use five image pyramid levels.
For robustness with regard to changes in illumination, the structure-texture
decomposition of [34] is applied.

Estimation-Theoretic Approach (TV+). Since the variational approach
makes use of the same differential matching principle as the local LDM method
on a pixel-wise basis, the estimation-theoretic considerations of the LDM+ algo-
rithm can also be applied. We include a TV+ variant which performs the joint
estimation of both displacement and unknown image signal at each iteration. To
estimate the required image derivatives, a 3× 3 Scharr kernel is used.

Object Measurement. While the resulting dense disparity map provided by
the global algorithm is useful for many applications, an additional processing
step is needed to arrive at representative disparity values for isolated objects.
We compute the interquartile mean of the pixel disparities within the input
image patch to obtain a robust object disparity estimate for evaluation.

3.4 Semi-Global Matching (SGM)

Finally, we evaluate the discrete Semi-Global Matching (SGM) algorithm of [12].
The method approximates a two-dimensional optimization with truly global
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constraints by first computing pixel-wise matching costs and then applying one-
dimensional regularization along paths from eight directions at each pixel. The
nature of the approach allows for efficient computation, and a fast implementa-
tion on specialized hardware has been presented in [8].

While all algorithms described above perform matching using image intensi-
ties directly, here we employ the census transform and corresponding Hamming
distances as a matching cost. This provides a very robust algorithm suitable for
challenging real-world scenarios [8]. Sub-pixel results are computed by a symmet-
ric V-fit to three adjacent values in the regularized matching cost volume [11].
Again, we compute the interquartile mean to obtain object disparities.

Pixel Locking Compensation (SGM+PLC). As mentioned previously,
matching methods in a discrete setting suffer from the so-called pixel-locking
effect, i.e. a biased distribution of sub-pixel disparity values (cf. Fig. 7e). The
severity of this effect depends on the used cost metric. While the census transform
provides robust matching results, the associated pixel-locking effect is particu-
larly prominent. For general stereo applications, different methods to alleviate
the effect have been presented [28,11]. However, for the scenario at hand we
propose a straightforward and efficient post-processing step, which largely neu-
tralizes object-based pixel-locking errors. With ground truth data for the desired
object disparities available, the systematic sub-pixel bias can be estimated from
a set of raw measurements directly. To this end we project both expected and
measured disparity values into the sub-pixel interval [0, 1] and fit a low-order
polynomial to the resulting two-dimensional point cloud. This curve is stored
and directly provides the necessary offsets for an efficient online correction of
the object disparities.

4 Evaluation

4.1 Dataset

A central aspect of the present evaluation is the use of an extensive dataset to
allow for a meaningful statistical analysis. Furthermore, we exclusively use real-
world data to be able to draw conclusions most relevant for practical applications.

The dataset consists of 70,000 grayscale image pairs recorded from a vehicle-
mounted stereo camera system in highway scenarios at mostly sunny weather
conditions. It includes approximately 250 unique vehicles representing relevant
objects, which gives a total of more than 36,000 disparity measurements. The
setup exhibits a baseline of 38 centimeters and a focal length of 1240 pixels, with
spatial and radiometric resolutions of 1024×440 pixels and 12 bits, respectively.

We consider disparities between 9 and 3 pixels, corresponding to a distance
range of approximately 50 to 160 meters. To also analyze matching accuracy
as a function of absolute distance, we divide the overall range into intervals of
two meters and evaluate each interval separately. The respective distribution of
object observations in the dataset is visualized in Fig. 2.
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Fig. 2. Distribution of total measurements (left) and unique observed objects (right)
in the dataset

Ground truth is provided by a long range radar sensor. Owing to its underly-
ing measurement principle, radar is able to determine longitudinal distances of
isolated moving objects with high precision. The used reference sensor yields a
measurement uncertainty of 3σ ∼= 0.5 m over the full considered distance range.

Generation of Object Patches. To detect relevant objects in the images and
provide them as input to the stereo algorithm evaluation, we apply a combined
detection and tracking method. A texture-based pattern classifier using a multi-
layer neural network with local receptive field features (NN/LRF) as described
in [4] is used to first locate potential vehicles. These are then tracked over time,
accumulating confidence in the process. For evaluation we consider objects which
have been tracked for more than 15 frames. The objects are represented by a
rectangular patch in the left stereo image, two examples can be seen in Fig. 1.

Note that, before passing the patches to the stereo algorithms, we optimize
the patch fit around objects in order to minimize the amount of outlier pixels.
We exploit a precomputed dense disparity result to estimate the mean disparity
for each patch and decrease the patch size until the number of outliers falls below
a given threshold. Subsequently, we shrink the patches by another 25%, except
for the segmentation-based approaches, where we actually increase the size again
by 25%. To determine the benefit of this adapted patch fit, we also apply the
LDM+ algorithm to the unmodified patches, denoting this variant as LDM-.

4.2 Performance Measures

Disparity Error. The disparity error εd represents the deviation of the esti-
mated stereo disparity from the ground truth radar value at each frame:

εd = d− dradar. (10)

Temporal Disparity Error Variation. The disparity error εd as described
above provides an absolute accuracy measure for all object observations, com-
bining the measurements of multiple unique objects. However, it alone does not
provide sufficient information on the relative accuracy for a single tracked object
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over time. This is essential if the velocities of single objects are to be determined.
In this case, the relative accuracy between consecutive measurements of the ob-
ject of interest is just as important as e.g. a possible constant disparity bias.

To describe the object-based relative measurement accuracy over time, we
define ∇εd as the disparity error variation using finite differences:

∇εd = εd,t − εd,t−1. (11)

We examine the distributions of εd and ∇εd both over the complete dataset
and as a function of absolute distance. In addition to robust estimates of the
mean, we compute robust estimates of the standard deviation, using the location-
invariant and statistically efficient scale estimator Sn of [23].

Runtime. Finally, as an important aspect for practical and possibly time critical
applications, we also take the runtime requirements of the various algorithms into
consideration. Timings are performed on a subset of the test data, with average
unmodified object patch dimensions of approximately 30× 30 pixels.

5 Results and Analysis

Table 2 gives an overview of the main quantitative results across the complete
dataset. Fig. 3 shows the corresponding distributions of disparity error εd and
error variation ∇εd. Examining the mean of the disparity error, it can be seen
that the value consistently lies close to -0.1 pixel, varying by less than 1/30 pixel
across all algorithms. Fig. 4 illustrates the consistency of this offset across the
full distance range. These observations suggest a constant deviation in the stereo
camera calibration, most likely caused by a minor squint angle offset.

While this fact illustrates the importance of accurate estimation and mainte-
nance of calibration parameters in practice, the location-invariant scale estimates
Sn(εd) and Sn(∇εd) provide more meaningful information regarding algorithmic
matching accuracy. Note that the mean of ∇εd is exactly zero for all algorithms,
other values would in fact imply a temporal drift of the matching results.

Overall, we observe that after optimization of the selected algorithms, the
differences in the results for Sn(εd) become very small. The best result of ap-
proximately 1/10 pixel is achieved by the TV approach, the combination of spa-
tial regularization and mean object disparity estimation performing well across
all object observations. However, TV performs worst with regard to temporal
error variation, where it does not directly benefit from regularization. The local
methods Sn(∇εd) do best in this category, yielding values as low as 1/20 pixel.

The order of the algorithms in terms of the specified performance measures is
largely consistent over the distance range, as shown in Figs. 5 and 6. Given the
properties of the used image data, the observed errors roughly agree with the
results presented in [24] on synthetic data.
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Fig. 3.Overall distributions of disparity error (left) and disparity error variation (right)
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Fig. 4. Mean of disparity error over distance range

Estimation-Theoretic Approach. Now we examine the impact of the
estimation-theoretic modifications used in LDM+ and TV+. As can be seen
from Table 2 and Figs. 3 and 6, LDM+ yields the same results as LDM for
Sn(εd), but performs slightly better in terms of error variation. TV and TV+
achieve virtually identical results, the global regularization effectively neutraliz-
ing the small differences in data terms.

Optimized Patch Fit. Optimizing the object patch fit has a relatively large
impact on the disparity error, as LDM- performs notably worse than all other

Table 2. Overview of quantitative results. See text for details.

Method SGM SGM+PLC TV TV+ LDM- LDM LDM+ SEG SEG+

mean(εd)[px] -0.104 -0.090 -0.090 -0.097 -0.110 -0.080 -0.079 -0.109 -0.102

Sn(εd) [px] 0.139 0.117 0.104 0.104 0.135 0.113 0.112 0.114 0.111

Sn(∇εd) [px] 0.061 0.063 0.077 0.076 0.054 0.056 0.049 0.049 0.053

tavg [ms] 25 25 65 65 ∼1 ∼1 ∼1 40 80
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Fig. 5. Standard deviation estimate of disparity error over distance range
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Fig. 6. Standard deviation estimate of disparity error variation over distance range

local algorithms at Sn(εd). The error variation scale Sn(∇εd) without optimized
patch fit is also slightly higher than in the otherwise equivalent LDM+ imple-
mentation. The efficient adaptation of the rectangular patch fit leads to a similar
level of accuracy as the more complex pixel-wise segmentation approaches SEG
and SEG+.

Image Derivative Estimation and Interpolation. Interestingly, when
comparing different derivative kernels and interpolation methods, we see only
insignificant variations in the accuracy results of the differential matching algo-
rithms. The LDM+ column of Table 2 represents our default variant, a 3 × 3
Scharr kernel and cubic B-Spline interpolation, whereas Table 3 displays the
additional configurations. Only when looking at the actual sub-pixel disparity
distributions of the different algorithms in Fig. 7, the differences between the
interpolation methods become visible. Cubic B-Spline interpolation produces a
nearly uniform distribution, while cubic convolution and bilinear interpolation
result in a very slight bias towards half pixels. These small variations are in agree-
ment with theoretical predictions presented in [29], but are not distinguishable
by our practical disparity accuracy measures at this scale.
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Table 3. Impact of derivative kernels and interpolation methods on LDM+ results

Method Scharr 5× 5 Centr. Diff. 5× 5 Bilinear Cubic Conv.

Sn(εd) [px] 0.119 0.118 0.114 0.113

Sn(∇εd)[px] 0.054 0.050 0.050 0.050
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(f) SGM+PLC: V-Fit

Fig. 7. Sub-pixel disparity distributions resulting from different matching and inter-
polation methods. Plots show the interval [−0.5, 0.5] centered on full pixel disparities

Pixel-Locking Compensation. In contrast, the systematic pixel-locking effect
of the census-based SGM algorithm is clearly visible in both the disparity sub-
pixel distribution (Fig. 7e) and in the error measures (Figs. 4, 5, 6). However,
applying the proposed compensation method considerably reduces the effect, and
SGM+PLC approaches the performance of the differential matching algorithms.

Scene Flow. Finally, our evaluation shows that utilizing the data of two con-
secutive stereo pairs for scene flow segmentation and disparity refinement as
in SEG+ does not necessarily yield a measurable improvement. This might be
due to the fact that, in order to align all images, two additional sets of two-
dimensional displacements have to be estimated, introducing errors not present
in the standard two-image computation. Also, applying a more sophisticated
imaging model for estimating the unknown signal could further improve results.

Runtime. Table 2 illustrates average algorithm runtimes, where values for local
methods represent the time taken per object, while global methods are timed
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per full image. Here, the time to compute object disparities from the dense
disparity maps is negligible. Due to the different nature of the algorithms, the
provided values are intended to serve as guidance values only. We execute the
local methods on a modern four-core CPU while we make use of custom hardware
implementations for the SGM (FPGA [8]) and TV (GPU [20]) algorithms.

For the considered patch sizes, the LDM versions vary only insignificantly
in runtime and clearly outperform the other methods. The more complex local
approaches SEG and SEG+ include an additional outer iteration loop for seg-
mentation and require a significant amount of time for graph-cut based pixel
labeling, even when using the speed-up methods of [1].

6 Conclusions

In this paper we depart from the common setting of major dense stereo bench-
marks and examine the sub-pixel matching accuracy for isolated salient objects.
This is motivated by modern safety-relevant applications of stereo vision, where
highest sub-pixel accuracy is required in selected image areas. The presented
analysis of various state-of-the-art matching approaches is based on an exten-
sive real-world dataset, enabling meaningful statistical evaluation and providing
valuable insights regarding the matching accuracy achievable in practice.

We note that the sole use of the mean absolute disparity error for evaluation
proves to be problematic in practice, as even smallest deviations in the cam-
era setup can distort results. We propose the use of robust statistical measures
of scale, and additionally introduce an object-based temporal disparity error
variation measure which is invariant to systematic disparity offsets. These ob-
servations also highlight the need for reliable online self-calibration algorithms.

Appropriate optimization of each selected stereo algorithm minimizes the ob-
servable differences in matching accuracy and yields consistent disparity error
scale estimates of close to 1/10 pixel. While global variational approaches achieve
lowest values here, they perform worst in terms of temporal error variation.

Local differential matching methods perform very well in all performance mea-
sures, achieving a temporal error variation scale of 1/20 pixel. Notably, the choice
of derivative filter and interpolation method does not have a significant impact
on the disparity accuracy here, while optimized patch shapes are essential. Fur-
thermore, optimizations derived from estimation-theoretic considerations can
slightly reduce the temporal error variation. Utilizing the full data of two con-
secutive stereo pairs does not necessarily yield the expected benefits, but shows
potential for use with more sophisticated imaging and estimation models.

Pixel-locking effects of discrete matching methods such as SGM, which cause
significant errors in sub-pixel disparity, can efficiently be alleviated by an object-
based correction approach, moving discrete methods close to differential match-
ing algorithms in terms of accuracy.
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