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Abstract. The aim of computational color constancy is to estimate the
actual surface color in an acquired scene disregarding its illuminant.
Many solutions try to first estimate the illuminant and then correct the
image with the illuminant estimate. Based on the linear image formation
model, we propose in this work a new strategy to estimate the illuminant.
Inspired by the feedback modulation from horizontal cells to the cones
in the retina, we first normalize each local patch with its local maximum
to obtain the so-called locally normalized reflectance estimate (LNRE).
Then, we experimentally found that the ratio of the global summation
of true surface reflectance to the global summation of LNRE in a scene
is approximately achromatic for both indoor and outdoor scenes. Based
on this substantial observation, we estimate the illuminant by comput-
ing the ratio of the global summation of the intensities to the global
summation of the locally normalized intensities of the color-biased im-
age. The proposed model has only one free parameter and requires no
explicit training with learning-based approach. Experimental results on
four commonly used datasets show that our model can produce compet-
itive or even better results compared to the state-of-the-art approaches
with low computational cost.
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1 Introduction

To some extent, our visual system can constantly perceive the actual color of
an object in a scene disregarding the large differences in illumination, which is
called the ability of color constancy [17]. In contrast, the physical color of scenes
captured with regular digital cameras or videos may be shifted by the varying
external illuminant. Thus, for a robust color-based computer vision, removing
the effect of light source color from the color-biased image is of very importance
for many applications [1]. To solve this problem, one of the general ways is to
estimate the scene illuminant and then utilize it to map the color-biased image
to the so-called canonical image under white light source. According to the two
steps mentioned above, many computational color constancy algorithms have
been proposed (see [17,25,27] for recent overviews). For example, the classical
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gamut mapping theory assumes that the distribution of RGB color values of an
image captured under a canonical illuminant is a limited set, which is called
canonical gamut [16]. So, for a color-biased image taken under an unknown
illuminant will produce another gamut too, which is called observed gamut.
The aim of gamut mapping is to compute the transformation that maps the
observed gamut to the canonical gamut, and finally, the estimated illuminant
could be derived from this transformation. Lately, the derivative structure of
image was brought into the gamut mapping theory and achieved more robust
color constancy performance than the standard gamut mapping algorithm [24].

Although the gamut mapping based methods have the elegant underlying the-
ory to solve the problem of computational color constancy, the inherent draw-
backs of these methods include their complication in implementation and the
requirement of appropriate pre-processing [25]. Other typical approaches include
learning-based methods [7,12,19], the bayesian color constancy [5,21], exemplar-
based method [36], biologically-inspired methods [20,33], high level information-
based methods [4,38], and physics-based methods [26,29,34].

Like most computer vision tasks, the problem of color constancy is ill-posed,
and in general, most of the existing approaches mentioned above introduce
specific assumptions based on, for example, the color distribution of per-pixel
[16], filter-based structure of image [8,37], empirical prior distribution of light
source color [5,13], etc, to estimate the illuminant. Based on the linear model
f(x) =

∫
ω S(λ)I(λ)C(x, λ)dλ [25], most existing methods put more emphasis on

the relationship between the information of illuminant I(λ) and the structure of
image f(x). In addition, though almost all the existing models employ various
sort of a prior on distribution of reflectance in natural scenes, they generally
suffer from certain assumption.

For example, the grey-world theory based models assume that the average
surface reflectance (or the edge) of natural scenes is statistically achromatic
[6,15,37]. This assumption is too strong to well match the statistic diversity of
surface reflectance distribution in indoor and outdoor scenes of natural world
[10]. As another typical model, white patch [28] assumes that there are points
with perfect reflection in natural scenes and those points can be used to esti-
mate the illuminant of environment. Similarly to the gray-world assumption,
this hypothesis also can’t satisfy the statistic diversity of surface reflectance.
For example, it is not always easy to retrieve points with perfect reflection in
scenes [25]. The bayesian color constancy usually assumes that the distribution
of surface reflectance is independent identically distributed and is normally im-
itated using Gaussian models. Although the Gaussian distribution is simple for
calculating, it does not always accord with the actual situations [21,30,35].

Different from the traditional models mentioned above that directly estimate
the illuminant by probing into the relationship between the illuminant and the
derivative structure of images (e.g., the edges), or the prior information of illumi-
nant combining with pixel color distribution (e.g., the gamut), we introduce an
efficient and simple method for color constancy based on the retinal mechanism
and the suitable modeling of the distribution of surface reflectance. Inspired by
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the feedback modulation from horizontal cells to the cones in the retina [31], we
first normalize each local patch of the image with its local maximum to obtain
the so-called locally normalized reflectance estimate (LNRE). We then experi-
mentally find that the global statistics of surface reflectances in an image could
be well approached by the global statistics of LNRE. Based on this observation,
we do not need to make any assumption about the distribution of the surface
reflectances or the property of illuminant. Instead, the illuminant can be directly
derived from the ratio between the global summation of per-pixels and the statis-
tic summation of estimated surface reflectance in local regions according to the
linear model of image formation [25]. We will also demonstrate that both the
grey-world and white patch algorithms can be integrated into the proposed color
constancy framework.

The rest of this paper is organized as follows. In section 2, the proposed model
is described in details. Section 3 provides extensive performance evaluations of
the proposed algorithm on four commonly used datasets. Finally, some discussion
and concluding remarks are given in Section 4. The source codes of the work are
available at http://www.neuro.uestc.edu.cn/vccl/home.html

2 Color Constancy with Local Surface Reflectance
Estimation

Suppose that the scene is illuminated by a single light source, e.g., the outdoor
daylight illuminant. Based on the common form of the linear imaging equation,
The captured image values f(x) = [fR(x), fG(x), fB(x)]

T depend on the color of
the light source I(λ), the surface reflectance C(x, λ) and the camera sensitivity
function S(λ) = [SR(λ), SG(λ), SB(λ)]

T , where x is the spatial coordinate and
λ is the wavelength of the light (e.g., [25]):

fc(x) =

∫

ω

Sc(λ)I(λ)C(x, λ)dλ (1)

where the integral is taken over the visible spectrum ω and c ∈ {R,G,B} are
sensor channels.

Among various color constancy algorithms, the color transform of image in-
duced by the illuminant can be well approximated by a diagonal transform
[11,14,25,27]. Thus, based on the diagonal transform assumption in color con-
stancy, Eq (1) can be simplified as

fc(x) = IcCc(x) (2)

The aim of the color constancy method proposed in this work is to estimate
the color of the light source Ic, c ∈ {R,G,B}. Given the color-biased image
values of fc(x) and the illuminant estimate Ic, color constancy can be achieved
by a transformation of fc(x) to the one appearing to be taken under a canonical
(often white) light source. In general, Ic and Cc(x) in Eq (2) are unknown and
hence, given only the image values of fc(x), the estimation of Ic is an ill-posed
inverse problem that cannot be solved without further assumptions [25].

http://www.neuro.uestc.edu.cn/vccl/home.html
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Fig. 1. The flowchart explaining the computational steps of the proposed algorithm

According to the linear multiplication relationship between the illuminant
Ic and surface reflectance Cc(x) in Eq (2), if we can first obtain the rough
estimate of Cc(x), the illuminant Ic could be simply derived by dividing fc(x)
by the reflectance estimate Cc(x) [25]. In this work, we are not to estimate the
illuminant directly as did in most of the linear model based color constancy
algorithms; in contrast, our philosophy is that we first estimate the reflectance
Cc(x) roughly based on certain appropriate assumption.

Fig. 1 shows the general flowchart of the proposed method, and the details
will be described in the following sections.

2.1 Surface Reflectance Estimation in Local Region

The reflected lights entering into the eyes are first processed by the photorecep-
tors like cones (for color) and rods (for luminance). Then, at each spatial location,
a horizontal cell (with large receptive field) pools a population of cones outputs
within a relatively large region and then modulates the cones sensitivities via
feedback [31]. In the following we simplify this retinal processing mechanism to
modulate each local region by dividing by its local maximum.

We divide the full two dimensional (2D) area of the image fc(x) into K non-
overlapped patches with equal size. Let

Lc,k(x) =
fc,k(x)

fc,k(xk,max)
(3)

where xk,max is the spatial coordinate of the maximum intensity pixel within
the k-th local region:

xk,max = arg max{fc,k(x), x = 1, 2, · · ·n} (4)

Clearly, Lc,k(x) is the intensity value of the pixel at x normalized by the local
maximum of the intensity values within the k-th local region. Considering

Lc,k(x)=
IcCc,k(x)

IcCc,k(xk,max)
=

Cc,k(x)

Cc,k(xk,max)
(5)
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we call Lc,k(x) the locally normalized reflectance estimate (LNRE) of the pixel
at x in channel c ∈ {R,G,B}. Note that Eq (3) will be used to compute Lc,k(x)
for the next step of illuminant estimation, since the true values of Cc(x) in Eq
(5) are unknown.

2.2 Illuminant Estimation

In this section, we will show that under certain assumption, the estimate of
illuminant Ic could be accurately derived by computing the ratio of

∫
Ω
fc(x)dx

to
∫ K

1

∫
η
Lc,k(x)dxdk, where Ω denotes the full area of the image, K is the total

number of the local regions within the image. η represents the area of the k-th
local region. Note that in our model, K is the only one free parameter, since
for a given image with certain size, the value of η is determined by K. Let FRc

represent the ratio given by

FRc =

∫
Ω
fc(x)dx

∫ K

1

∫
η Lc,k(x)dxdk

(6)

For a given color-biased image fc(x), we can easily obtain FRc, c ∈ {R,G,B}.
To exploit what information could be derived from FRc, let us substitute Eq (2)
into Eq (6), and we obtain:

FRc = Ic

∫
Ω Cc(x)dx

∫ K

1

∫
η
Lc,k(x)dxdk

= Ic
Tc

Ec
(7)

where

Tc =

∫

Ω

Cc(x)dx (8)

Ec =

∫ K

1

∫

η

Lc,k(x)dxdk (9)

where Tc represents the global summation of the true surface reflectance, and Ec

denotes the global summation of locally normalized reflectance estimate (LNRE)
computed with Eq (3).

To exploit the relationship of these two global summation measures, we used
the Gehler-Shi dataset containing 568 linear images [32], the SFU indoor dataset
including 321 linear images [2], the SFU HDR dataset contaning 105 linear im-
ages [12,18], and the SFU grey ball dataset contaning 11346 nonlinear images
[9] for quantitative analysis. The known illuminant of each color-biased image
provided in the datasets was used to correct the color-biased image to obtain
the ground truth image, and the values of the ground truth image are equivalent
to Cc(x), which were then used to compute Tc.

The first column of Fig. 2 plots in three separate channels the 568 ratios of
these two global summation measures, i.e., Tc

Ec
with c ∈ {R,G,B}, and each

scatter point corresponds to one image in Gehler-Shi dataset. Similarly, the
second column plots the 321 ratios for SFU indoor dataset, the third column
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Fig. 2. Each point in the scatter plots represents the ratio of the statistic summation
of real surface reflectance of an image (e.g. TB) to the statistic summation of estimated
surface reflectance in local regions of the image (e.g. EB) in three separate color chan-
nels. These plots indicate that most of these scatter points in the three channels are
closely aligned along the diagonal lines (the solid line).

plots the 105 ratios for SFU HDR dataset, and the fourth column plots the
11346 ratios for SFU grey ball dataset. Quite interestingly, from Fig. 2 we can
clearly find that statistically, these scatter points are linearly correlated between
any two channels of Tc

Ec
, c ∈ {R,G,B}. More importantly, we can also obviously

see that most of these scatter points in the three channels are closely aligned
along the diagonal lines. These indicate that for most of the images, we have

TR

ER
≈ TG

EG
≈ TB

EB
≈ ρ (10)

where ρ is a constant, which may be different for different images.
Equation (10) indicates that by choosing appropriate value of free parame-

ter K involved in Ec, c ∈ {R,G,B}, we have great chance to get an accurate
estimate of the direction of vector [TR, TG, TB] denoting the global statistics
(i.e., summation) of true surface reflectance of a scene from the easily computed
[ER, EG, EB] denoting the summation of surface reflectance estimate in local re-
gions, with a scaling factor (i.e., ρ) between the magnitudes of the two vectors.

Substituting Eq (10) into (7), we now have:

FRc ≈ ρIc (11)

Based on this equation, we can estimate the color of the illuminant as

Ic ≈ 1

ρ
FRc (12)
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Given a color-biased image fc(x), c ∈ {R,G,B} as input, FRc can be easily
computed using Eq (6). ρ acts as a scaling factor that depends on the scene
viewed. Considering that ρ is identical for three color channels c ∈ {R,G,B}
according to Eq (10), we do not need to know the exact value of ρ, since ρ will
be cancelled by taking the normalized form of Ic as the final estimate of the
illuminant.

Equation (10) describes the key idea underlying the method proposed in this
work, which will be discussed in details in Section 4. Note that basically, Ec is
equivalent to the white-patch estimate of reflectance in a local region. However,
our model is far more than a robust version of white patch, since we just use
it as a rough reflectance estimate to further compute illuminant color using our
empirical observation based rule.

3 Experimental Results

The proposed model was compared with various methods on foure typical
datasets [2,9,18,32]. The methods considered for comparison include: Do Noth-
ing (DN), inverse-intensity chromaticity space (IICS) [34], Grey World (GW) [6],
White Patch (WP) [28], 1st-Grey Edge (GE1) and 2nd-Grey Edge (GE2) [37],
Shades of Grey (SG) [15], general Grey World (GG), Bayesian (Bayes) [21], Re-
gression (SVR) [19], automatic color constancy algorithm selection (AAS) [3],
using natural image statistics (NIS) [23], spatial correlations (SC)[25], spatio-
spectral statistics (SS (with reg.)) [8], pixel-based gamut mapping (GM(pixel))
[16], edge-based gamut mapping (GM(edge)) [24,25], Exemplar-based [36],
Corrected-moment based (CM) [12]. Recently, the standard survey paper [25]
reported the results for most of the methods mentioned above, here we directly
use the result data from [22,25] for analysis and comparison except that results
of SS and CM are from Ref [8] and [12], respectively.

The generally employed angular error is chosen as error metric [25].

ε = cos−1
((

Ie · Ig
)
/
(∥∥Ie

∥
∥ · ∥∥Ig

∥
∥)

)
(13)

Where Ie · Ig is the dot product of the estimated illuminant Ie and the ground
truth illuminant Ig,

∥
∥·∥∥ is the Euclidean norm of a vector. Besides the commonly

used measure of median angular error, we also reported the measure of mean,
trimean, best-25%, and worst-25% for more comprehensive comparison.

3.1 Real-World Image Set

Gehler-Shi dataset [21,32] contains 568 high dynamic range linear images, in-
cluding a variety of indoor and outdoor scenes, captured using a high-quality
digital SLR camera in RAW format and therefore free of any color correction.
In this study, the color-checker patch in each image used for computing ground
truth illuminant was masked out in order to fully evaluate the performance of a
specific model.
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Table 1. Performance statistics of various methods on the Gehler-Shi dataset [32]

Methods Median Mean Trimean Best-25% Worst-25%

DN 13.6◦ 13.7◦ 13.5◦ 10.4◦ 17.2◦

Physics-based IICS 13.6◦ 13.6◦ 13.4◦ 9.5◦ 18.0◦

GW 6.3◦ 6.4◦ 6.3◦ 2.3◦ 10.6◦

(Static) WP 5.7◦ 7.5◦ 6.7◦ 1.5◦ 16.1◦

low-level GE2 4.5◦ 5.3◦ 4.9◦ 1.9◦ 10.0◦

statistics SG 4.0◦ 4.9◦ 4.4◦ 1.1◦ 10.2◦

-based GG 3.5◦ 4.7◦ 4.0◦ 1.0◦ 10.2◦

SVR 6.7◦ 8.1◦ 7.4◦ 3.3◦ 14.9◦

SC 5.1◦ 5.9◦ 5.5◦ 2.4◦ 10.8◦

Bayes 3.5◦ 4.8◦ 4.1◦ 1.3◦ 10.5◦

AAS 3.3◦ 4.5◦ 3.7◦ 0.9◦ 10.1◦

Learning NIS 3.1◦ 4.2◦ 3.5◦ 1.0◦ 9.2◦

-based SS(reg.) 3.0◦ 3.6◦ 3.2◦ 0.9◦ 7.4◦

GM(edge) 5.6◦ 6.7◦ 6.0◦ 2.0◦ 13.5◦

GM(pixel) 2.4◦ 4.2◦ 3.3◦ 0.5◦ 11.2◦

Exemplar 2.3◦ 2.9◦ 2.5◦ 0.8◦ 6.0◦

CM(19 Edge-Moments) 2.0◦ 2.8◦ − − −
Proposed 2.6◦ 3.4◦ 2.9◦ 0.8◦ 7.2◦

Table 2. Mean computation time taken to compute the illuminant for per image,
which was averaged on 100 test images for one dataset with repeated 20 times using
MATLAB codes. Here, we list the mean computation time of image from two typical
datasets: one dataset with small image size of 360 ∗ 240 pixels [9] and one dataset with
large image size of 2041 ∗ 1359 pixels [32]. Note that the time taken by GM(pixel) is
only for the process of test, without including the process of training. Computer used
here is Intel Core2, 2.53GHZ with 2.0G RAM.

Dataset GM(pixel) GE2 Proposed

SFU grey ball dataset [9] 1.44(s) 0.27(s) 0.22(s)
Gehler-Shi dataset [32] 9.21(s) 12.90(s) 1.36(s)

The results for various algorithms on this database are listed in Table 1. Fig. 3
shows examples of indoor and outdoor images corrected by different algorithms.

It can be seen from Table 1 that the performance of the proposed method
almost arrives at (in terms of median angular error and best-25%) or beyond (in
terms of other measures) the best performance of the state-of-the-art learning-
based algorithms, e.g., the GM (pixel), GM (edge), SS(reg.), NIS, Exemplar, and
CM. Note that the methods of GM (pixel), Exemplar, and CM perform better
in terms of median angular error of 2.4◦, 2.3◦, and 2.0◦ respectively. In addition,
Exemplar also performs better in terms of other measures.

However, compared to the complex implementation of the learning-based
GM(pixel), Exemplar, and CM, our model is quite simpler, which endows our
method with a remarkable advantage in saving computational cost. Table 2 shows
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Original SS (reg.)
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Fig. 3. Results of several algorithms on Gehler-Shi dataset, the angular error is given
on the lower right corner of image
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Fig. 4. The influence of parameter K of the proposed algorithm on the measure of
median and mean angular error for two datasets. Left: real world Gehler-Shi dataset
[32], Right: SFU indoor image dataset [2]. According to the two figures, for a real
world image dataset, the suitable setting of parameter is 8 ≤ K ≤ 37. For an indoor
image dataset, the suitable setting of parameter is 1.5 ≤ K ≤ 4. More discussion
about parameter setting is given in the last section. Note the patch number K =
image size/patch size, which may result in non-integer K. The curves were obtained
with a step of 5 ∗ 5 pixels for patch size and the patches have no overlap.

that our model just takes about a seventh of the time needed by GM (pixel).
Note that without the source codes of Exemplar and CM, we did not list the
computation time of per image taken by them.

By visually comparing the performance of the proposed method with other
algorithms on some examples shown in Fig. 3, we can find that for the indoor or
outdoor scenes with various distributions of surface reflectance, it is difficult for a
certain assumption (e.g., grey-world or white-patch) based model to perform well
on all the scenes. For example, for the scene of grassland shown in the last row of
Fig. 3, the distribution of surface reflectance is obviously not achromatic, which
does not meet the grey-world assumption. In contrast, the proposed approach
achieves the more robust performance with a suitable value for the only one
parameter (i.e. K in Eq(6)) on the whole dataset.

Fig. 4 demonstrates the influence of the only one parameter K on the perfor-
mance of the proposed method on two datasets: a real world Gehler-Shi dataset
[32] and SFU indoor image dataset [2].
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Fig. 5. Angular error (median) for different algorithms on SFU indoor dataset plotted
with a 95% confidence interval

3.2 An Indoor Image Dataset in Laboratory

SFU lab dataset [2] contains 321 available images of 31 different objects cap-
tured with calibrated camera under 11 different lights in laboratory. Table 3
reports the results on this dataset for various algorithms (all methods are with
optimal parameters). Similar to the results on the first dataset, we find that in
terms of median angular error, our model performs better than both static- and
learning-based algorithms on this dataset, but slightly worse than the method
of GM(pixel) and CM. However, there is almost no significant difference be-
tween our model and GM(pixel) in terms of the measure of median angular
error (Fig. 5). Note that though CM (9 Edge-moments) obtains the best perfor-
mance, it required a special preprocessing on this dataset [12]. Fig. 6 presents
some examples of images from SFU indoor dataset. As analyzed previously, no
certain assumption can perform best on all of the scenes with various distribu-
tion of surface reflectance, even just in a simple indoor environment. However,
the proposed approach still achieved competitive performance on those images
comparing with the more complicated algorithm (Gamut (pixel)). We questioned

Table 3. Performance of various methods on the SFU indoor dataset

Methods Median Mean Trimean Best-25% Worst-25%

DN 15.6◦ 17.3◦ 16.9◦ 3.6◦ 32.4◦

IICS 8.2◦ 15.5◦ 12.0◦ 2.2◦ 40.0◦

GW 7.0◦ 9.8◦ 8.1◦ 0.9◦ 23.3◦

WP 6.5◦ 9.1◦ 7.6◦ 1.8◦ 20.9◦

SG 3.7◦ 6.4◦ 5.0◦ 0.6◦ 16.4◦

SS(with reg.) 3.5◦ 5.6◦ 4.8◦ 1.2◦ 12.8◦

GG 3.3◦ 5.4◦ 4.1◦ 0.5◦ 13.7◦

GE1 3.2◦ 5.6◦ 4.2◦ 1.0◦ 14.0◦

GM(pixel) 2.3◦ 3.7◦ 2.7◦ 0.5◦ 9.3◦

CM(9 Edge-Moments) 2.0◦ 2.6◦ − − −
Proposed 2.4◦ 5.7◦ 4.1◦ 0.5◦ 15.0◦
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Fig. 6. Results of several algorithms on SFU indoor dataset, the angular error is given
on the lower right corner of image

Table 4. Performance statistics of various methods on the SFU grey ball image dataset

Methods Median Mean Worst-25%

GW 7.0◦ 7.9◦ 15.2◦

DN 6.7◦ 8.3◦ 18.7◦

GM(pixel) 5.8◦ 7.1◦ 14.7◦

IICS 5.6◦ 6.6◦ 13.3◦

WP 5.5◦ 6.8◦ 14.7◦

GE2 4.9◦ 6.1◦ 13.2◦

Proposed 5.1◦ 6.0◦ 11.9◦

whether the high worst-25% of our model (15◦) on this set was caused by black
background of some images. To answer it, we tried to ignore the black back-
ground by using different levels of thresholding, and the performance varied as:
median: 2.4◦ → 2.3◦, mean: 5.7◦ → 5.5◦, worst-25%: still 15.0◦. This indicates
that the high worst-25% might not be mainly caused by black background.

3.3 SFU Grey Ball Image Datasets

SFU grey-ball image dataset [9] contains 11346 nonlinear images. The images in
this dataset have been processed with gamma-correction, automatic white bal-
ance, and other unknown post-processing in the camera (the image is more post-
processed by camera, the more unknown factors affect the image and thus, the
harder the illuminant estimation becomes [12]). So, the images in this datasets
are no longer to meet the linear model of image formation described by Eq (1)
[25]. Before this experiment, the grey sphere in the images, which were originally
used to compute the ground truth, were masked in order to get a fair and full
evaluation to the performance of a specific model.

Table 4 reports the measures on the entire dataset for several available static
algorithms and gamut mapping algorithm (again all algorithms are with optimal
parameters). From Table 4 we can see that among the multiple methods consid-
ered, the proposed algorithm produces the as best performance as that of GE2
on this dataset, in terms of all the three measures.
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Table 5. Performance statistics for the SFU HDR image dataset. Here dash in table
means that the result for that dataset was not reported by their authors.

Methods Median Mean Worst-25%

DN 14.7◦ 15.1◦ 19.5◦

GW 7.4◦ 8.0◦ 15.1◦

MaxRGB (post-blur) 3.9◦ 6.3◦ −
SG 3.9◦ 5.7◦ 12.9◦

GE 3.8◦ 6.0◦ 13.8◦

CM(9 Edge-Moments) 2.7◦ 3.5◦ −
Proposed 2.9◦ 4.7◦ 10.8◦

However, we also notice that none of the methods can provide a very low mea-
sure of median angular error (comparing with other three linear image datasets).
One of the main possible reasons is that the unknown non-linear effects embed-
ded in this dataset may seriously degrade the performances of most linear image
formation based methods. For example, from Table 4 we observed that the me-
dian angular error of the grey world (GW) algorithm on this dataset is even
higher than that of DN (i.e., do nothing on the original color biased images).
For that reason, it could be expected that the linear image formation based
methods would produce better performance when the camera dependent images
are first transformed to the device independent raw images [25]. Note that on this
dataset, the learning-based GM(pixel) also provides relatively poor performance.

3.4 SFU HDR Dataset

The SFU HDR dataset has been recently collected by [18] and includes 105
high dynamic range linear images with indoor and outdoor scenes. Also, a color
checker were placed in the scenes for recording the overall light source color
(again the color checker was masked during testing the illuminant estimation
algorithms).

For comprehensive comparison, we also reported the results of GW, SG, and
GE on this dataset by running the matlab codes downloaded from [22,37] with
optimal parameters. The results of MaxRGB (post-blur) and Corrected-Moment
(CM) are directly from paper [12]. Table 5 reports the performance statistics for
various algorithms on this dataset.

On this dataset, our model also performed well comparing with other static-
based models in terms of various measures. Although the performance of CM is
slightly better than our method (in median angular error), CM needs to itera-
tively train a corrected matrix for every dataset with ground truth.

4 Discussion and Conclusion

We proposed in this work a new idea to estimate the illuminant of a scene,
based on the experimental finding that the ratio of the global summation of
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the true surface reflectance to the global summation of locally estimated surface
reflectance in a scene is almost achromatic. This so-called achromatic-ratio-mean
observation inspired us to estimate the illuminant just by computing the ratio of
the global summation of the observed intensities to the global summation of the
locally normalized intensities of the color-biased image. There is only one free
parameter in the proposed model, without the need for pre-learning. Extensive
experimental tests on four commonly used datasets (three datasets with linear
images and one with nonlinear images) indicated that the proposed model can
produce quite competitive or even better results compared to the state-of-the-
art approaches. In addition, our model shows significant advantage in terms of
computational efficiency.

The main condition under which our model works well is the achromatic-
ratio-mean observation described by Fig. 2 and Eq (10). Based on the derivation
of equations, it is clear that we would obtain an accuracy of 100% if the ratio
ρ defined by Eq (10) was always a constant, which is impossibly realized due
to the complexity of scenes. Higher correlation between Tc and Ec makes ρ
closer to be constant. Extensive empirical evidence on multiple datasets with
large sizes and various scenes has already supported the visible correlation. For
a given dataset, this requirement of high correlation could be matched as much
as possible by choosing a suitable value for the only one free parameter K.
In general, the distributions of the real reflectances in outdoor scenes are more
complicated than the reflectance distributions in indoor scenes, since most of the
indoor scenes are generally composed of only several simple color regions. Thus,
based on the experimental results (Fig. 4), we suggest the bigger K values for
outdoor images, because the estimated surface reflectance from a larger number
of small local regions is able to better imitate the complex properties of surface
reflectances in natural scenes. In contrast, for indoor images in laboratory, the
model with smaller K values could work well.

Computationally, our model novelly combines the ideas of max-RGB (or
White-Patch, WP) and Grey-World (GW), i.e., estimate each pixels reflectance
in each local patch by normalizing the intensities with the local max (the idea
of WP), then sum (or average) the estimated reflectances across the whole scene
(the idea of GW). Then we estimate the light source color by computing the
ratio of summation of observed intensities to the summation of estimated re-
flectances. Such idea underlying our model is quite different from others. For
example, though the shade-of-grey (SG) also seems to balance the advantages
of WP and GW, the difference is, SG averages intensities (different from the
estimated reflectances in our model) that have been processed by emphasizing
pixels with larger intensities (different from the WP based normalizing in each
patch in our model). In addition, our achromatic-ratio-mean assumption is ba-
sically different from the GW theory assuming that the average reflectance in a
scene under a neutral light source is achromatic. However, we can mathemati-
cally demonstrate that both the GW and WP assumptions are the extreme cases
of Eq (10) (see Appendix).
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Besides the achromatic-ratio-mean observation that was substantially vali-
dated across different datasets, a deeper insight explaining the good perfor-
mance of our model is as follows. By applying the idea of WP in local patches,
the influences of the pixels unexpected for WP (e.g. bright non-specularity or
noise) could be limited within local regions, and meanwhile, the robustness of
reflectance estimates could be enhanced by utilizing more normal bright patches.

Actually, a suitable value of parameter K may build a good balance between
the gray world assumption [6] and the white patch assumption [28], which relaxes
the strong limitation to the statistics distribution of surface reflectance in natural
world assumed by these two theories, and hence, to better satisfy the diversity
of the statistics distribution of surface reflectance in natural world.

5 Appendix

In the following, we mathematically derive how both grey world and white patch
algorithms can be basically integrated into the proposed framework. When set-
ting K = 1 in Eq (9), which is equivalent to set the whole input image as the
only single local region, then Eq (9) is rewritten as

Ec =

∫ K

1

∫

η

Lc,k(x)dxdk =

∫

Ω

Lc,k(x)dx =

∫

Ω

Cc(x)

Cc(xmax)
dx (14)

c ∈ {R,G,B}, where xmax is the spatial coordinate of the maximum of the
intensity values within whole image. Thus, combining Eqs (8), (14), and (10)
together, we have

CR(xmax) ≈ CG(xmax) ≈ CB(xmax) ≈ ρ (15)

This is just equivalent to the white patch algorithm (e.g. max-RGB) [28], which
assumes the maximum reflectance in a scene is achromatic and then taking the
maximum value of every channel of image as the estimated illuminant.

Similarly, when setting K = N in Eq (9), where N is the pixel number of
the full two dimensional area (Ω) of the image. This is equivalent to shrink each
local region as small as one pixel, then Eq (9) is equal to

Ec =

∫ K

1

∫

η

Lc,k(x)dxdk =

∫

Ω

dk (16)

where
∫
η Lc,k(x)dx = 1, since each local region contains only one pixel. Similarly,

combining Eqs (8), (16), and (10) together, we get

∫
Ω CR(x)dx∫

Ω
dk

≈
∫
Ω CG(x)dx∫

Ω
dk

≈
∫
Ω CB(x)dx∫

Ω
dk

≈ ρ (17)

This is equivalent to the gray world algorithm [6], which hypothesizes that the
average surface reflectance in a scene is achromatic and then computing the
mean of every channel of image as the estimated illuminant.
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