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Abstract. Investigations of biological ultrastructure, such as compre-
hensive mapping of connections within a nervous system, increasingly
rely on large, high-resolution electron microscopy (EM) image volumes.
However, discontinuities between the registered section images from
which these volumes are assembled, due to variations in imaging con-
ditions and section thickness, among other artifacts, impede truly 3-
D analysis of these volumes. We propose an optimization procedure,
called EMISAC (EM Image Stack Artifact Correction), to correct these
discontinuities. EMISAC optimizes the parameters of spatially varying
linear transformations of the data in order to minimize the squared
norm of the gradient along the section axis, subject to detail-preserving
regularization.

Assessment on a mouse cortex dataset demonstrates the effectiveness
of our approach. Relative to the original data, EMISAC produces a large
improvement both in NIQE score, a measure of statistical similarity be-
tween orthogonal cross-sections and the original image sections, as well as
in accuracy of neurite segmentation, a critical task for this type of data.
Compared to a recent independently-developed gradient-domain algo-
rithm, EMISAC achieves significantly better NIQE image quality scores,
and equivalent segmentation accuracy; future segmentation algorithms
may be able to take advantage of the higher image quality.

In addition, on several time-lapse videos, EMISAC significantly re-
duces lighting artifacts, resulting in greatly improved video quality.

A software release is available at http://rll.berkeley.edu/2014
ECCV EMISAC.

Keywords: Denoising, Volume Electron Microscopy, Connectomics,
Optimization, Segmentation.

1 Introduction

Recent technological developments in automated volume electron microscopy
(EM) enable the acquisition of multi-terravoxel volumes at near isotropic res-
olution in the range of 3–30 nm [12,14,24,31,26]. These high-resolution image
volumes are critical to fields such as connectomics, which aims to comprehen-
sively map neuronal circuits by densely reconstructing neuron morphology and
identifying synaptic connections between neurons [16,15,6].
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Fig. 1. Representative cross-sectional views of a 6× 6× 30 nm ATUM-based SEM [31]
image volume of mouse cortex. First row: The original, registered dataset clearly show-
ing discontinuities along the Z (section) axis. Second row: Corrected data using our
EMISAC algorithm.

All methods for volume electron microscopy, aside from tomography, which is
only suitable for samples less than 1 micron in thickness, assemble the volume by
spatially aligning a stack of two-dimensional images. Consequently, there can be
substantial artifacts in the image volume, most notably serious discontinuities
along the section axis. These are the result of variations in section thickness,
sample deformations, and variations in imaging conditions. These artifacts are
particularly a problem with ATUM-based SEM (Automated Tape Collecting
Ultramicrotome-based Scanning Electron Microscopy) [31], a method that cur-
rently achieves the highest throughput and also has the advantage of preserving
tissue sections, in contrast to the one-shot destructive imaging process of Se-
rial Block Electron Microscopy (SBEM) [12] and Focused Ion Beam Scanning
Electron Microscopy (FIBSEM) [24].

Figure 1 shows the artifacts typical in ATUM-based SEM volumes. In
other imaging domains, improved imaging techniques and mathematical cor-
rections have been devised for reducing artifacts in MRI and echo-planar im-
ages [13,2,1,11], and in 2-D electron microscopy images [21], but there has been
less focus on three-dimensional EM volumes. [23]

When present, these artifacts prevent automated and manual analysis of vol-
umes except as a series of 2-D images along the original sectioning axis, prevent-
ing in particular the extraction of truly 3-D image features. Given that structures,
such as neurites in cortex, may have arbitrary 3-D orientations relative to the
original sectioning axis, this limitation is a serious impediment. On SBEM and
FIBSEM volumes without these artifacts, the ability to view cross sections along
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arbitrary axes has aided humans tasked with manually tracing neurites and de-
tecting synapses [16,15], and automated algorithms for reconstructing neuritemor-
phology (via segmentation) have depended on 3-D features. [18,33,17,19,4,3].

To eliminate these artifacts and enable truly 3-D analysis of such image vol-
umes, we propose a coarse-to-fine optimization-based procedure EMISAC (EM
Image Stack Artifact Correction). We note that a single per-section brightness
and contrast adjustment (i.e. linear transform of intensity values) is inadequate
on typical datasets for correcting discontinuities except very locally. EMISAC
optimizes the parameters of spatially varying linear transformations of the data
in order to minimize the squared norm of the gradient along the section axis,
subject to detail-preserving regularization, as described in Section 2.

WeappliedEMISACto a publicly availableATUM-basedSEMvolume ofmouse
cortex aswell as to a serial sectionTransmissionElectronMicroscopy (ssTEM) vol-
ume of Drosophila larva ventral nerve cord. Figure 1 shows several cross-sectional
views of the output of our algorithm. Qualitatively, EMISAC appears to com-
pletely eliminate all discontinuity artifacts while preserving all of the original de-
tail.1 (We did not attempt to address the problem of lower Z resolution than X-Y
resolution.) Quantitatively, an evaluation based on the NIQE blind image quality
metric [28] confirms the qualitative results. More importantly, we evaluated the
effect of EMISAC as a preprocessing step on the accuracy of automated segmen-
tation of neurites, a key challenge for this type of data; consistent with the NIQE
scores, EMISAC dramatically improved segmentation accuracy.

After developing our approach independently, we became aware of a recent
method [23] for addressing the same problem. Like our approach, this alterna-
tive method involves a quadratic optimization to minimize the squared norm of
the gradient along the section axis, but uses a different parameterization and a
different form of regularization and post-processing to preserve the intra-slice de-
tail. We included this alternate method in our evaluations, and found EMISAC
matches or outperforms it. In addition, we evaluated several other generic cor-
rection methods on the raw datasets including histogram equalization, contrast-
limited adaptive histogram equalization [38], and local normalization, and found
that EMISAC significantly outperforms all of them.

Furthermore, while designed primarily for electron microscopy image stacks,
EMISAC is also applicable to lighting correction in time-lapse photography. Raw
time-lapse image sequences typically have serious inter-frame lighting discontinu-
ities. Although a few tools such as LRTimelapse2 are designed to edit time-lapse
sequences and correct these artifacts, our method does not require manual edit-
ing and can make local corrections to lighting as well. We evaluated EMISAC
on several time-lapse videos exhibiting lighting problems; compared to the orig-
inal videos, EMISAC produced a large qualitative improvement, and eliminated
essentially all lighting discontinuities

1 Our qualitative assessment was based on only a random subset of the cross-sections;
we did not scrutinize every single cross-sectional view. Our quantitative assessment is
more comprehensive.

2 http://lrtimelapse.com

http://lrtimelapse.com
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Fig. 2. Schematic of our approach. (A) An aligned EM image stack of 2-D slices.
(B) The volume is optionally partitioned into a grid, which can be distributed across
multiple processors; only limited communication is required between neighboring pro-
cessors. (C) A coarse-to-fine procedure, in which both the data as well as the parameters
are initially downsampled, speeds up the optimization of the objective in Eq. (3). From
right to left: downsampled x-y slices and downsampled parameters (larger block size);
downsampled parameters only; full parameters (small block size). (D) The parame-
ters are spatially smoothed within each x-y slice to remove the blocking effect. Four
blocks are shown for illustration purposes, but in practice there are many more blocks.
(E) Corrected output image.

2 Artifact Correction Algorithm

In order to maximize the applicability of our approach, and avoid introducing
a model bias3 that could harm the accuracy of later stages of processing, we
designed our approach to make as few and as simple assumptions as possible:

1. the true (undistorted) image volume is mostly continuous along the section
axis;

2. the distortions in the volume can be expressed as local linear transformations
of the intensity values, where the parameters of the linear transforms vary
smoothly within each section (but are not smooth between sections).

The detailed formulation of our method is explained in the following sections.
A summary of our approach is illustrated in Fig. 2.

3 A denoising method based on a learned sparse-coding dictionary, for instance, could
potentially introduce patterns that were not present in the original data.
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Fig. 3. EM image stack as a set of smaller blocks. The total number of blocks in the
x-direction, y-direction, and z-direction are given by r, c, and s, respectively, resulting
in a total of r · c · s blocks. We have unique β and α parameters for each block.

2.1 Problem Formulation

As shown in Fig. 3, we partition each slice of the 3-D EM volume into small
fixed-size two-dimensional blocks. Voxel intensity values are corrected by a linear
transformation given by:

I ′x,y,z = β�x/wx�,�y/wy�,z · Ix,y,z + α�x/wx�,�y/wy�,z (1)

where I(x, y, z) refers to the scalar intensity value at position (x, y, z) of the
volume, and (wx, wy) is the block size. The smaller the block size, the larger the
number of parameters. Note that β and α correspond to correction of contrast
and brightness, respectively. This block-based scheme effectively captures the
local similarities within each slice and reduces the computational complexity.

We express our assumption of continuity in I ′ along z as a penalty on the
squared norm of the gradient with respect to z. Likewise, the smoothness as-
sumption on the the affine transforms is expressed as a penalty on the squared
norms of the gradients of α and β with respect to the in-slice block positions.
Thus, we formulate the optimization problem as follows:

min
β,α

∑

x

∑

y

∑

z

(I ′x,y,z+1 − I ′x,y,z)
2

+ γ
∑

i

∑

j

∑

z

[
(βi+1,j,z − βi,j,z)

2 + (βi,j+1,z − βi,j,z)
2 (2)

+ (αi+1,j,z − αi,j,z)
2 + (αi,j+1,z − αi,j,z)

2
]

s.t. βi,j,z ≥ 1, ∀i, j, z.

The β parameters must be bounded to avoid the trivial null solution.
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We reformulate the optimization problem given in Eq. (2) as the convex
quadratic problem

min
X

‖DzX‖22 + γ(‖DxX‖22 + ‖DyX‖22) s.t. β ≥ 1, (3)

where X=[β, α], Dz = GzA, Dx = Gx, Dy = Gy, A is a matrix that maps
the parameters X to a vector expressing I ′, and Ga is a matrix that maps a
vectorized volume to a vector containing the finite-differences approximation of
its gradient along axis a.

We use L-BFGS-B [37] to solve the optimization problem in Eq. (3). The
optimization is stopped when the fractional decrease in objective between con-
secutive iterations falls below ε · f , where ε = 2−52 is the machine precision.
To speed up the optimization process, we employ a coarse to fine estimation
procedure detailed below.

2.2 Coarse-to-Fine Procedure

Rather than solving Eq. (3) with the final desired block size directly, we solve a
sequence of optimization problems of the form shown in Eq. (3) with increasing
image resolution in the x-y plane and/or decreasing block size. Each optimization
after the first is initialized with the (appropriately upsampled) parameters that
solved the previous optimization. In practice, we used (a single succession of)
the following three steps:

1. The image resolution is reduced by a factor of 2 in x and y (using 2 × 2
averaging), as are the number of blocks.

2. The full image resolution is used, but the number of blocks remains reduced
by a factor 2 in x and y.

3. The number of blocks is increased by a factor of 2 in x and y to its final size.

As the optimization is convex, the final solution obtained is unaffected by this
procedure, but typically the running time is greatly reduced.

2.3 Removing the Blocking Effects

Ideally, the coarse-to-fine procedure is continued all the way down to a block
size of (1, 1). However, to reduce running time, it may be desirable to stop the
procedure at a non-trivial block size. To avoid introducing artifacts from the
blocking, after performing the final optimization, we upsample the α and β
parameters to a block size of 1 using linear interpolation (rather than nearest
neighbor interpolation).

2.4 Parallelization

For large image volumes, we can partition the volume into a grid along the x
and y axes, which can be distributed across multiple processors or machines.



Optimization-Based Artifact Correction for EM Image Stacks 225

For simplicity, the grid cell boundaries should be aligned to block boundaries.
Only the parameter gradients for blocks on the border of each grid cell must
be communicated, at each iteration of the optimization, to the processors re-
sponsible for neighboring grid cells, which is in general a very small amount of
data relative to the size of the image volume. As a simplifying approximation,
we could even ignore the regularization term between neighboring grid cells and
thereby require no communication between machines. In practice this may not
significantly affect the result provided that the grid cells are large enough. In
our experiments, we observed no loss of accuracy (in NIQE score) from using no
communication between blocks, except for the final upsampling step.

3 Evaluation on Electron Microscopy Data

We tested EMISAC on a publicly available ATUM-based SEM volume of mouse
cortex released by Kasthuri et al. [20] For a 1024× 1024× 100 voxel portion of
this dataset, a dense segmentation of neurites traced by a human expert is also
publicly available as part of the SNEMI3D neurite segmentation challenge [5],
which enabled us to evaluate the effect of EMISAC on segmentation accuracy.
The dataset was acquired at a resolution of 3×3×30 nm, but as the human-traced
segmentation is provided only at the downsampled resolution of 6× 6× 30 nm,
we used the same downsampled resolution for all of our experiments. In addition,
we tested EMISAC on another publicly available dataset, Cardona et al. 2010,
collecting using a different imaging technique, ssTEM rather than ATUM-SEM,
and of Drosophila larva ventral nerve cord rather than mouse cortex, with a
resolution of 4× 4× 50 nm [7,8].

We compared EMISAC against the original aligned but uncorrected image
volume. We are aware of only one other method designed to address this same
problem (of which we only became aware after independently developing our own
algorithm), which we refer to as Kazhdan2013 [23]. As the authors of that method
made publicly available their output [22] on the same mouse cortex volume on
which we tested EMISAC, we were able to include the Kazhdan2013 algorithm
in our evaluations without having to reimplement it. We also compared EMISAC
against histogram equalization, contrast-limited adaptive histogram equalization
(CLAHE) [38], and local normalization [30].

For EMISAC, we set the affine transform regularization parameter γ =
0.4

wxwy

dxdy
for all electron microscopy datasets, where dx and dy are the image

downsampling factors in x and y respectively (relative to the 6 × 6 × 30 and
4 × 4 × 30 nm resolution data). The coefficient was selected to minimize NIQE
score, which does not depend on any labeled data. Furthermore, results were
fairly insensitive to several orders of magnitude change in γ.

3.1 Image Quality Evaluation

Although any corrected version of the data is only useful in so far as it aids an
image analysis task of interest, such as neurite segmentation, it is convenient to
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be able to directly quantify the image quality independent of any particular later
analysis step. A visual assessment by humans would be inherently subjective
(and also inconvenient), and it is impossible to obtain a “ground truth” version of
the data without any imaging artifacts, against which the corrected version might
be compared. Furthermore, we have no way of knowing the true distortion model.
We therefore rely on the “completely blind” Natural Image Quality Evaluator
(NIQE) [28], which requires neither a model of expected distortions nor human
assessments of distorted images as training data, but merely a set of high quality
images from which to estimate a model of natural image statistics. On natural
image benchmarks, this method is comparable to the best methods that do rely
on human assessments as training data.

We trained a NIQE model on a random set of x-y sections from the dataset
that were not part of any of the volumes on which we tested our approach. Thus,
the NIQE score of a y-z or x-z cross section represents the statistical similarity
of the orthogonal cross sections to the original image sections, a very reasonable
metric given that the ultimate goal is to be able to analyze the 3-D volume
without regard to a preferred orientation.

3.2 Segmentation Accuracy Evaluation

As one of the primary goals of our work on the artifact correction is the im-
provement of automated segmentation results for neural circuit reconstruction,
we directly evaluated the impact of EMISAC on 3-D segmentation accuracy.
The training of our machine-learning-based segmentation algorithm, as well as
the evaluation of segmentation accuracy, were based on the SNEMI3D human
expert-traced segmentation, which we treat as “ground truth.”

Although the focus of this work is not on segmentation algorithms, for com-
pleteness we describe the three-step segmentation procedure that we used:

1. We use an unsupervised procedure to transform each position in the image
volume into a 1-of-k binary feature vector, with k = 624 · 16. We cluster
16×16×4 patches of the image volume using k-means based on L1 distance;
the binary feature vector for each position is obtained by vector quantizing
the image patch centered at that location. We take advantage of the assumed
rotational covariance of the data (namely transposition and reflection in the
x-y plane, and reflection along the z axis), which reduces the effective number
of parameters by a factor of 16.

2. To predict the presence of a cell boundary between two adjacent voxels along
the x, y, or z axes, we train a logistic regression classifier for each of the 3 axes.
The feature vector for classification is obtained by concatenating all of the 1-
of-k binary feature vectors within a 16×16×16 window around the boundary
(producing a very high-dimensional feature vector). We extracted boundary
information for training examples directly from the human-provided ground-
truth segmentation, and ensured that equal total weight was given to positive
and negative training examples. We optimized the classification model using
L-BFGS, using a quadratic approximation to dropout [35] (with p = 0.5) for
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regularization. As for the unsupervised feature learning, we take advantage
of the assumed rotational covariance to reduce the number of parameters to
be learned by a factor of 16.

3. To produce a segmentation, we employ Gala [29], a state-of-the-art elec-
tron microscopy image segmentation algorithm, based on agglomeration of
supervoxels, for which we use the cell boundary predictions as input.

We use half of the ground truth segmentation to train the boundary classifier,
half of the remaining portion to train Gala, and the remainder for evaluation. The
same training/testing procedures were used for the original data, the EMISAC
output, and the Kazhdan2013 output. The results are averaged over 4 splits.

We evaluate the segmentation accuracy relative to the human-labeled ground-
truth using Variation of Information (VI) [27], which has been used by recent
prior work for evaluating EM segmentations. [29,3] The variation of information
between two segmentations, S and U , is defined as the sum of two conditional
entropy terms, H(U |S) and H(S|U), where each segmentation assigns to each
voxel position a segment identifier, and the entropy terms are with respect to the
distribution over joint segment assignments (S(x), U(x)) obtained by sampling
positions x within the volume uniformly at random. Thus, H(S|U) can be seen
as a measure of false splits in S with respect to U , and H(U |S) can be seen as
a measure of false merges in S with respect to U . A lower score corresponds to
greater accuracy.

4 Electron Microscopy Results

To guide later experiments, we initially evaluated the effect of varying the block
size on running time and image quality (measured by NIQE score); the results are
shown in Fig. 4. The running times reported for this and later experiments are
based on our Python implementation running on an 8-core Intel Xeon X5570 2.93
GHz system, which consumed about 15 GB memory for each 1024× 1024× 100
volume. Based on the observed trade-off between image quality and running
time, we used a final block size of (16, 16) for later experiments. We found that
the NIQE score typically converged before reaching the threshold of f = 1010.

4.1 Comparison of NIQE Scores

Using these parameters, we evaluated the improvement in NIQE score relative to
the original data of EMISAC, Kazhdan2013, histogram equalization, contrast-
limited adaptive histogram equalization [38], and local normalization. Figure 5
shows the distribution of NIQE scores for the SNEMI3D volume. Table 1 shows
the improvement in NIQE score on both datasets. Under Welch’s t-test, EMISAC
attains a large and highly statistically significant improvement in both x-z (p <
0.0001) and y-z (p < 0.0001) NIQE score relative to Kazhdan2013 on the ATUM-
SEM volume, without any considerable loss in x-y NIQE score. The preservation
of detail is confirmed by the very high structural similarity (SS) [36] between
the original and corrected x-y cross-sections. See Fig. 6 for a visual comparison.
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Fig. 5. Histogram of NIQE scores for the SNEMI3D volume. EMISAC uses a block
size of (16, 16) and stopping criteria of f = 1010. Lower scores are better.

4.2 Comparison of Segmentation Accuracy

For the original data and each correction method, we evaluate the segmentation
accuracy on each of the 4 boundary training/agglomeration training/test splits
of the SNEMI3D volume. The Gala segmentation algorithm has a threshold
parameter that trades off between false merges and false splits, as shown in
Fig. 7; the optimal trade-off depends on the particular application, but in order to
summarize results, we simply compute the minimum VI score (which gives equal
weight to false splits and merges) over all thresholds.4 For each correction method
on each split, we compute the percent decrease in minimum VI score relative

4 In actual use, we would have to pick the threshold based on cross-validation, as there
would be no way to determine the true VI score for each threshold. However, this
added complexity is irrelevant to our evaluation of artifact correction methods.
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Fig. 6. Visual comparison of (a) the original data, and the corrected versions using
(b) Kazhdan2013 and (c) our method EMISAC. From left to right we have the (1)
x-y cross section, (2) x-z cross section, and (3) y-z cross-section. The two correction
algorithms produce visually very similar results.

to the original data. To compare methods, we compute the mean and standard
deviations of these decrease percentages. The results are shown in Table 2.

The nearly exact match in x-y NIQE scores between the original data and
Kazhdan2013, as shown in Fig. 5 and Table 1, can be explained by the fact that
Kazhdan2013 essentially copies the high-frequency content of the original x-y
slices in its final step, and NIQE scores depend only on local (high-frequency)
information.

While the NIQE scores were relatively insensitive to the stopping threshold
f , we observed that the segmentation accuracy was highly sensitive, and there-
fore computed results for f ∈ {1010, 109, 107, 106}, corresponding to increasing
segmentation accuracy. Both Kazhdan2013 and EMISAC (for f ≤ 109) achieve
a similarly large improvement in accuracy over the original data. The difference
between the two methods is not statistically significant (p = 0.87).
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Table 1. NIQE score reduction (improvement) percentage, averaged over all x-y, x-z,
and y-z cross-sections in the two EM datasets. The average structural similarity index
(SS) [36] (as a percentage) between the original and corrected x-y cross-sections is
also shown. Higher percentages are better. First column: Six 1024 × 1024 × 100 voxel
volumes of the mouse cortex ATUM-SEM volume [20] (five randomly sampled volumes
plus the SNEMI3D volume). Second column: 512 × 512 × 30 Drosophila larva ventral
nerve cord ssTEM volume [8].

Mouse cortex volume Drosophila larva ventral
nerve cord volume

x-y x-z y-z SS x-y x-z y-z SS

EMISAC 6.59 41.21 39.56 96.4 -1.15 11.04 11.82 97.4
±6.86 ±19.25 ±19.82 ±2.20 ±2.83 ±25.05 ±23.27 ±1.06

Kazhdan2013 -1.85 35.24 35.06 98.3 - - - -
±0.82 ±20.28 ±20.02 ±1.69

Histogram -4.53 -35.80 -42.31 69.5 -21.16 -68.54 -67.92 81.0
Equalization ±6.02 ±86.31 ±95.04 ±6.47 ±17.79 ±88.76 ±84.56 ±3.64

CLAHE -7.59 -39.77 -40.46 70.3 -14.02 -127 -133 80.1
±6.19 ±95.09 ±96.56 ±3.73 ±9.43 ±150 ±154 ±3.76

Local 2.51 13.04 13.79 93.3 3.05 -6.38 -8.51 97.4
Normalization ±4.91 ±27.14 ±27.20 ±3.52 ±1.93 ±26.72 ±28.85 ±1.58

Figure 4 suggests that better results may be possible by using a block size
smaller than w = (16, 16), which was chosen for convenience in running experi-
ments given the speed of our implementation.

We report running times of our Python implementation for comparison pur-
poses, but by no means expect them to be comparable to those of a highly-
optimized CPU or GPU implementation. Furthermore, L-BFGS-B is by no
means the most effective algorithm for optimizing Eq. (3). The focus of our
work was in evaluating correction models, rather than implementation speed.

Convolutional neural networks have shown good performance for neurite
boundary detection [32,17,10], and may well perform better than the bound-
ary classification method we used for our segmentation evaluation. Our choice
was motivated by the fact that the state-of-the-art 3-D convolutional neural net-
work approach for this problem is currently far from a settled matter, and we
believe our method to be similar in performance; furthermore, it would have
been highly impractical to spend the several weeks to months5 of GPU time
required to the train the network for each variant and data split that we tested.

5 State-of-the-art 2-D networks often require several weeks of GPU training [10,25];
a comparable 3-D network can be expected to take at least as long, and possibly
several times longer due to the larger number of parameters.
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single split, but results on other splits are similar. Note that the variation of information
is simply H(S|U) +H(U |S).

Table 2. Effect of artifact correction on segmentation accuracy (n = 4)

Kazhdan2013 EMISAC
1e10 1e9 1e7 1e6

VI improvement(%) 29.19 19.83 26.43 27.23 27.97
±13.12 ±11.24 ±10.03 ±2.79 ±1.88

Run Time (s) - 828 1847 3963 4874

5 Lighting Correction of Time-Lapse Photography

Raw time-lapse photography sequences typically exhibit substantial flickering
due to variations in lighting and exposure between frames [9]. Due to scene
geometry, these variations are often local, such that a global brightness and
contrast adjustment per frame is insufficient. We can directly apply EMISAC
to the problem of correcting such lighting issues by treating time as the z-axis
(taking the place of the section axis for the EM data); a separate set of α and β
parameters are used for the red, green, and blue channels.

Quantitative evaluation of these time-lapse sequences cannot be done in the
same way as for electron microscopy stacks, since the data distribution is obvi-
ously not invariant to transpositions between time and the x or y axis, as would
be implied by comparing x-z and y-z cross-sections to the original x-y frames.
In fact, we are unaware of any established method for quantitatively measuring
lighting discontinuity in time-lapse sequences; while EMISAC’s own objective
function does measure this in some sense, it cannot reasonably be used for com-
parison to other methods nor can it be aggregated across datasets. Therefore,
we are limited to qualitative assessment.
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For all time-lapse sequences, we used a final block size of (wx = 4, wy =

4) and manually set γ in the range of [
39×102wxwy

dxdy
,
39×104wxwy

dxdy
]; γ trades off

preservation of detail and temporal smoothness, and is fundamentally a matter
of user preference.

For evaluation, we used 8 publicly available time-lapse sequences that ex-
hibited lighting discontinuities between frames. For several of these sequences, a
demonstration result obtained by manual editing using the commercial LRTime-
Lapse software was also available. The corresponding video files can be found at
http://rll.berkeley.edu/2014_ECCV_EMISAC. Qualitatively, EMISAC essen-
tially eliminates all flickering without reducing the apparent quality of individual
frames. It appears to give a very similar quality result, in terms of correcting
lighting discontinuities, to that obtained by manual editing with the specialized
LRTimeLapse software.

6 Discussion

Imaging artifacts, most notably discontinuities along the section (z) axis, have so
far limited the use of image volumes acquired by ATUM-based SEM, one of the
most promising high-throughput volume electron microscopy techniques, to es-
sentially 2.5-D analysis [34,10]. Our limited assumptions about the data and dis-
tortion process lead naturally to a simple but highly effective optimization-based
procedure: our method EMISAC appears to eliminate all visible discontinuities,
without any loss of intra-section detail. On the key task of neurite segmentation,
EMISAC substantially improves accuracy relative to the original data by about
28%, matching the improvement achieved by the recent independently-developed
alternative method Kazhdan2013 [23]. In terms of NIQE score [28], our method
significantly outperforms Kazhdan2013. Furthermore, the significant qualitative
improvement in the video results demonstrates the applicability of EMISAC to
time-lapse photography.

One explanation for the superior NIQE scores attained by EMISAC compared
to Kazhdan2013 may be that EMISAC supports both local brightness as well as
local contrast correction. Kazhdan2013 solves two sequential optimization prob-
lems, both of which apply an additive correction term to the original data, and
penalize deviations in intra-slice gradients of the correction term. This implicitly
allows smooth changes in brightness, as the gradient of the correction term is
only affected by the gradient of the brightness factor. Even constant changes in
contrast, however, are penalized heavily, as they have a multiplicative effect on
the gradient of the correction term. While the lower NIQE scores of EMISAC
relative to Kazhdan2013 did not correspond to better segmentation accuracy in
our experiments, the segmentation performance may have been limited by the
quality of the feature representation, and a future segmentation algorithm may
indeed show improvement.

http://rll.berkeley.edu/2014_ECCV_EMISAC
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4. Andres, B., Köthe, U., Helmstaedter, M., Denk, W., Hamprecht, F.A.: Segmen-
tation of SBFSEM volume data of neural tissue by hierarchical classification. In:
Rigoll, G. (ed.) DAGM 2008. LNCS, vol. 5096, pp. 142–152. Springer, Heidelberg
(2008)

5. Berger, D.R., Schalek, R., Kasthuri, N., Tapia, J.C., Hayworth, K., Seung, H.S.,
Lichtman, J.W.: SNEMI3D challenge, http://brainiac2.mit.edu/SNEMI3D/home
(training volume)

6. Briggman, K.L., Bock, D.D.: Volume electron microscopy for neuronal circuit re-
construction. Current Opinion in Neurobiology 22(1), 154–161 (2012)

7. Cardona, A., Saalfeld, S., Preibisch, S., Schmid, B., Cheng, A., Pulokas, J., Toman-
cak, P., Hartenstein, V.: An integrated micro-and macroarchitectural analysis of
the Drosophila brain by computer-assisted serial section electron microscopy. PLoS
Biology 8(10), e1000502 (2010)

8. Cardona, A., Saalfeld, S., Preibisch, S., Schmid, B., Cheng, A., Pulokas, J.,
Tomancak, P., Hartenstein, V.: Segmented serial section Transmission Electron
Microscopy (ssTEM) data set of the Drosophila first instar larva ventral nerve
cord (VNC) (2010), http://www.ini.uzh.ch/~acardona/data.html

9. Chylinski, R.: Time-Lapse Photography: A Complete Guide to Shooting, Pro-
cessing and Rendering Time-Lapse Movies. Cedar Wings Creative (2012),
http://books.google.com/books?id=7fDaLPhJB5IC

10. Ciresan, D.C., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Deep neural net-
works segment neuronal membranes in electron microscopy images. In: NIPS, pp.
2852–2860 (2012)

11. Craddock, R.C., Jbabdi, S., Yan, C.G., Vogelstein, J.T., Castellanos, F.X., Di
Martino, A., Kelly, C., Heberlein, K., Colcombe, S., Milham, M.P.: Imaging human
connectomes at the macroscale. Nature Methods 10(6), 524–539 (2013)

12. Denk, W., Horstmann, H.: Serial block-face scanning electron microscopy to recon-
struct three-dimensional tissue nanostructure. PLoS Biology 2(11), e329 (2004)

13. Haselgrove, J.C., Moore, J.R.: Correction for distortion of echo-planar images
used to calculate the apparent diffusion coefficient. Magnetic Resonance in
Medicine 36(6), 960–964 (1996)

14. Hayworth, K., Kasthuri, N., Schalek, R., Lichtman, J.: Automating the collection
of ultrathin serial sections for large volume tem reconstructions. Microscopy and
Microanalysis 12(S02), 86–87 (2006)

15. Helmstaedter, M.: Cellular-resolution connectomics: challenges of dense neural cir-
cuit reconstruction. Nature Methods 10(6), 501–507 (2013)

http://brainiac2.mit.edu/SNEMI3D/home
http://www.ini.uzh.ch/~acardona/data.html
http://books.google.com/books?id=7fDaLPhJB5IC


234 S. Azadi, J. Maitin-Shepard, and P. Abbeel

16. Helmstaedter, M., Briggman, K.L., Denk, W.: High-accuracy neurite reconstruc-
tion for high-throughput neuroanatomy. Nature Neuroscience 14(8), 1081–1088
(2011)

17. Jain, V., Bollmann, B., Richardson, M., Berger, D.R., Helmstaedter, M.N., Brig-
gman, K.L., Denk, W., Bowden, J.B., Mendenhall, J.M., Abraham, W.C., et al.:
Boundary learning by optimization with topological constraints. In: 2010 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2488–2495.
IEEE (2010)

18. Jain, V., Murray, J.F., Roth, F., Turaga, S., Zhigulin, V., Briggman, K.L., Helm-
staedter, M.N., Denk, W., Seung, H.S.: Supervised learning of image restoration
with convolutional networks. In: IEEE International Conference on Computer Vi-
sion, pp. 1–8 (2007)

19. Jain, V., Turaga, S.C., Briggman, K.L., Helmstaedter, M.N., Denk, W., Seung,
H.S.: Learning to agglomerate superpixel hierarchies. Advances in Neural Informa-
tion Processing Systems 2(5) (2011)

20. Kasthuri, N., Lichtman, J.W.: Mouse S1 cortex Automatic Tape-Collecting Ultra
Microtome (ATUM)-based Scanning Electron Microscopy (SEM) volume (2011),
http://www.openconnectomeproject.org

21. Kaynig, V., Fischer, B., Müller, E., Buhmann, J.M.: Fully automatic stitching
and distortion correction of transmission electron microscope images. Journal of
Structural Biology 171(2), 163–173 (2010)

22. Kazhdan, M., Burns, R., Kasthuri, B., Lichtman, J., Vogelstein, J., Vogel-
stein, J.: Color corrected mouse S1 cortex Automatic Tape-Collecting Ultra Mi-
crotome (ATUM)-based Scanning Electron Microscopy (SEM) volume (2013),
http://www.openconnectomeproject.org

23. Kazhdan, M., Burns, R., Kasthuri, B., Lichtman, J., Vogelstein, J., Vogel-
stein, J.: Gradient-domain processing for large em image stacks. arXiv preprint
arXiv:1310.0041 (2013)

24. Knott, G., Marchman, H., Wall, D., Lich, B.: Serial section scanning electron mi-
croscopy of adult brain tissue using focused ion beam milling. The Journal of
Neuroscience 28(12), 2959–2964 (2008)

25. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1106–1114 (2012)

26. Kuwajima, M., Mendenhall, J.M., Harris, K.M.: Large-volume reconstruction of
brain tissue from high-resolution serial section images acquired by sem-based scan-
ning transmission electron microscopy. In: Nanoimaging, pp. 253–273. Springer
(2013)
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