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Abstract. Canonical correlation analysis (CCA) is a widely used statis-
tical technique to capture correlations between two sets of multi-variate
random variables and has found a multitude of applications in computer
vision, medical imaging and machine learning. The classical formulation
assumes that the data live in a pair of vector spaces which makes its use
in certain important scientific domains problematic. For instance, the
set of symmetric positive definite matrices (SPD), rotations and proba-
bility distributions, all belong to certain curved Riemannian manifolds
where vector-space operations are in general not applicable. Analyzing
the space of such data via the classical versions of inference models is
rather sub-optimal. But perhaps more importantly, since the algorithms
do not respect the underlying geometry of the data space, it is hard to
provide statistical guarantees (if any) on the results. Using the space of
SPD matrices as a concrete example, this paper gives a principled gen-
eralization of the well known CCA to the Riemannian setting. Our CCA
algorithm operates on the product Riemannian manifold representing
SPD matrix-valued fields to identify meaningful statistical relationships
on the product Riemannian manifold. As a proof of principle, we present
results on an Alzheimer’s disease (AD) study where the analysis task in-
volves identifying correlations across diffusion tensor images (DTI) and
Cauchy deformation tensor fields derived from T1-weighted magnetic
resonance (MR) images.

1 Introduction

Canonical correlation analysis (CCA) is a powerful statistical technique to ex-
tract linear components that capture correlations between two multi-variate ran-
dom variables [15]. CCA provides an answer to the following question: suppose
we are given data of the form, (xi ∈ X ,yi ∈ Y)Ni=1 ⊂ X × Y where xi ∈ Rm

and yi ∈ Rn, find a model that explains both of these observations. More pre-
cisely, CCA provides an answer to this question by identifying a pair of directions
where the projections (namely, u and v) of the random variables, x and y yield
maximum correlation ρu,v = COV(u, v)/σuσv. Here, COV(u, v) denotes the co-
variance function and σ· gives the standard deviation. During the last decade,
the CCA formulation has been broadly applied to various unsupervised learning
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problems in computer vision and machine learning including image retrieval [11],
face/gait recognition [38], super-resolution [19] and action classification [24].

Beyond the applications described above, a number of works have recently
investigated the use of CCA in analyzing neuroimaging data [3], which is a main
focus of this paper. Here, for each participant in a clinical study, we acquire
different types of images such as Magnetic Resonance (MRI), Computed To-
mography (CT) and functional MRI. It is expected that each imaging modality
captures a unique aspect of the underlying disease pathology. Therefore, given
a group of N subjects and their corresponding brain images, we may want to
identify strong relationships (e.g., anatomical/functional correlations) across dif-
ferent image types. When performed across different diseases, such an analysis
will reveal insights into what is similar and what is different across diseases even
when their symptomatic presentation may be similar. Alternatively, CCA may
serve a feature extraction role. That is, the brain regions found to be strongly
correlated can be used directly in downstream statistical analysis. In a study
of a large number of subjects, rather than performing a hypothesis test on all
brain voxels independently for each imaging modality, restricting the number of
tests only to the set of ‘relevant’ voxels (found via CCA) is known to improve
statistical power (since the False Discovery Rate correction will be less severe).

The classical version of CCA described above concurrently seeks two linear
subspaces (straight lines) in vector spaces Rm and Rn for the two multi-variate
random variables x and y. The projection on to the straight line (linear sub-
space) is obtained by an inner product. This formulation is broadly applicable
but encounters problems for manifold-valued data that are becoming increas-
ingly important in present day research. For example, diffusion tensor magnetic
resonance images (DTI) allow one to infer the diffusion tensor characterizing the
anisotropy of water diffusion at each voxel in an image volume. This tensorial
feature can be visualized as an ellipsoid and represented by a 3 × 3 symmetric
positive definite (SPD) matrix at each voxel in the acquired image volume. Nei-
ther the individual SPD matrices nor the field of these SPD matrices lie in a
vector space but instead are elements of a negatively curved Riemannian mani-
fold where standard vector space operations are not valid. Hence, classical CCA
is not applicable in this setting. For T1-weighted Magnetic resonance images
(MRIs), we are frequently interested in analyzing not just the 3D intensity im-
age on its own, but rather a quantity that captures the deformation field between
each image and a population template. A registration between the image and the
template yields the deformation field required to align the image pairs and the
determinant of the Jacobian J of this deformation at each voxel is a commonly
used feature that captures local volume changes [6,17]. Quantities such as the

Cauchy deformation tensor defined as
√
JTJ have been reported in literature

for use in morphometric analysis [18]. The input to the statistical analysis is a

3D image of voxels, where each voxel corresponds to a matrix
√
JTJ � 0 (the

Cauchy deformation tensor). Another example of manifold-valued fields is de-
rived from high angular resolution diffusion images (HARDI) and can be used
to compute the ensemble average propagators (EAPs) at each voxel of the given
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HARDI data. The EAP is a probability density function that is related to the
diffusion sensitized MR signal via the Fourier transform [5]. Since an EAP is
a probability density function, by using a square root parameterization of this
density function, it is possible to identify it with a point on the unit Hilbert
Sphere. Once again, to perform any statistical analysis of these data derived fea-
tures, we cannot apply standard vector-space operations since the unit Hilbert
sphere is a positively curved manifold. When analyzing real brain imaging data,
it is entirely possible that no meaningful correlations exist in the data. The key
difficulty is that we do not know whether the experiment (i.e., inference) failed
because there is in fact no statistically meaningful signal in the dataset or if the
algorithms being used are sub-optimal.

Related Work. There are two somewhat distinct bodies of work that are re-
lated to and motivate this work. The first one relates to the extensive study
of the classical CCA and its non-linear variants. These include various inter-
esting results based on kernelization [1,4,12], neural networks [25,16], and deep
architectures [2]. Most, if not all of these strategies extend CCA to arbitrary
nonlinear spaces. However, this flexibility brings with it the associated issues of
model selection (and thereby, regularization), controlling the complexity of the
neural network structure, choosing an appropriate activation function and so on.
It is an interesting question though not completely clear to us what type of a reg-
ularizer should be used if one were to explicitly impose a Riemannian structure
on the objectives described in the works above. As opposed to regularization,
the second line of work incorporates the specific geometry of the data directly
within the estimation problem. Various statistical constructs have been gener-
alized to Riemannian manifolds: these include regression [39,31], classification
[36], kernel methods [21], margin-based and boosting classifiers [26], interpola-
tion, convolution, filtering [10] and dictionary learning [14,27]. Among the most
closely related are ideas related to projective dimensionality reduction methods.
For instance, the generalization of Principal Components analysis (PCA) via
the so-called Principal Geodesic Analysis (PGA) [9], Geodesic PCA [20], Exact
PGA [33], Horizontal Dimension Reduction [32] with frame bundles, and an ex-
tension of PGA to the product space of Riemannian manifolds, namely, tensor
fields [36]. It is important to note that except the non-parametric method of [34],
most of these strategies focus on one rather than two sets of random variables
(as is the case in CCA). Even in this setting, the first results on successful gener-
alization of parametric regression models to Riemannian manifolds is relatively
recent: geodesic regression [8,29] and polynomial regression [13] (note that the
adaptive CCA formulation in [37] seems related to our work but is not designed
for manifold-valued data).

This paper provides a parametric model between two different tensor fields on
a Riemannian manifold, which is a significant step beyond these recent works.
The CCA formulation we present requires the optimization of functions over
either a single product manifold or a pair of product manifolds (of different
dimensions) concurrently. The latter problem involving product manifolds of
different dimensions will not be addressed in this paper. Note that in general,
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on manifolds the projection operation does not have a nice closed form solu-
tion. So, we need to perform projections via an optimization scheme on the two
manifolds and find the best pair of geodesic subspaces. We provide a precise
solution to this problem. To our knowledge, this is the first extension of CCA
to Riemannian manifolds. Our approach has two advantages relative to other
non-linear extensions of CCA. The first advantage is that no model selection
is required. Also our method incorporates the known geometry of data space.
Our key contributions are: a) A principled generalization of CCA for Rie-
mannian manifolds; b) First, a numerical optimization scheme for identifying
the subspaces and later, single path algorithms with approximate projections
(both these ideas may be applicable beyond the CCA formulation). c) Provid-
ing experimental evidence how the Riemannian CCA formulation expands the
operating range of statistical analysis of neuroimaging data.

2 Canonical Correlation in Euclidean Space

First, we will briefly review the classical CCA in Euclidean space to motivate
the rest of our presentation. Recall that Pearson’s product-moment correlation
coefficient is a quantity to measure the relationship of two random variables,
x ∈ R and y ∈ R. For one dimensional random variables,

ρx,y =
COV(x, y)

σxσy
=

E[(x− μx)(y − μy)]

σxσy
=

∑N
i=1(xi − μx)(yi − μy)

√∑N
i=1(xi − μx)2

√∑N
i=1(yi − μy)2

(1)

For high dimensional data, x ∈ R
m and y ∈ R

n, we cannot however perform a
direct calculation as above. So, we need to project each set of variables on to a
special axis in each space X and Y. CCA generalizes the concept of correlation
to random vectors (potentially of different dimensions). It is convenient to think
of CCA as a measure of correlation between two multivariate data based on the
best projection which maximizes their mutual correlation.

Canonical Correlation for x ∈ R
m and y ∈ R

n is given by

max
wx,wy

corr(πwx (x), πwy (y)) = max
wx,wy

∑N
i=1 wT

x (xi − µx)w
T
y (yi − µy)

√∑N
i=1 (wT

x (xi − µx))
2

√
∑N

i=1

(
wT

y (yi − µy)
)2 (2)

where πwx(x) := argmint∈R d(twx,x)
2. We will call πwx(x) the projection co-

efficient for x (similarly for y). Define Swx
as the subspace which is the span

of wx. The projection of x on to Swx
is given by ΠSwx

(x). We can then verify
that the relationship between the projection and the projection coefficient is,

ΠSwx
(x) := arg min

x′∈Swx

d(x,x′)2 =
wT

xx

‖wx‖
wx

‖wx‖ =
wT

xx

‖wx‖2wx = πwx(x)wx (3)

In the Euclidean space, ΠSwx
(x) has a closed form solution. In fact, it is

obtained by an inner product, wT
xx. Hence, by replacing the projection coeffi-

cient πwx(x) with wT
xx/‖wx‖2 and after a simple calculation, one obtains the
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form in (2). Without loss of generality, assume that x,y are centered. Then the
optimization problem can be written as,

max
wx,wy

wT
xX

TYwy subject to wT
xX

TXwx = wT
y Y

TYwy = 1 (4)

where x,wx ∈ R
m, y,wy ∈ R

n, X = [x1 . . .xN ]T and Y = [y1 . . .yN ]T . The
only difference here is that we remove the denominator. Instead, we have two
equality constraints (note that correlation is scale-invariant).

3 Mathematical Preliminaries

We now briefly summarize certain basic concepts [7] which we will use later.

Riemannian Manifolds. A differentiable manifold [7] of dimension n is a set
M and a family of injective mappings ϕi : Ui ⊂ Rn → M of open sets Ui of R

n

intoM such that: (1) ∪i ϕi(Ui) = M; (2) for any pair i, j with ϕi(Ui)∩ϕj(Uj) =
W 
= φ, the sets ϕ−1

i (W ) and ϕ−1
j (W ) are open sets in Rn and the mappings

ϕ−1
j ◦ϕi are differentiable, where ◦ denotes function composition. In other words,

a differentiable manifold M is a topological space that is locally similar to an
Euclidean space and has a globally defined differential structure. The tangent
space at a point p on the manifold, TpM, is a vector space that consists of the
tangent vectors of all possible curves passing through p.

A Riemannian manifold is equipped with a smoothly varying inner product.
The family of inner products on all tangent spaces is known as the Rieman-
nian metric of the manifold. The geodesic distance between two points on M is
the length of the shortest geodesic curve connecting the two points, analogous
to straight lines in Rn. The geodesic curve from xi to xj can be parameter-
ized by a tangent vector in the tangent space at yi with an exponential map
Exp(yi, ·) : TyiM → M. The inverse of the exponential map is the logarithm
map, Log(yi, ·) : M → TyiM. Separate from these notations, matrix exponential
(and logarithm) are given as exp(·) (and log(·)).
Intrinsic Mean. Let d(·, ·) define the geodesic distance between two points. The
intrinsic (or Karcher) mean of a set of points {xi} with non-negative weights {wi}
is the minimizer of,

ȳ = arg min
y∈M

N∑

i=1

wid(y, yi)
2, (5)

which may be an arithmetic, geometric or harmonic mean depending on d(·, ·).
On manifolds, the Karcher mean with distance d(yi, yj) = ‖Logyi

yj‖ is,
∑N

i=1 Logȳyi = 0. This identity implies that ȳ is a local minimum which has
a zero norm gradient [22], i.e., the sum of all tangent vectors corresponding to
geodesic curves from mean ȳ to all points yi is zero in the tangent space TȳM. On
manifolds, the existence and uniqueness of the Karcher mean is not guaranteed,
unless we assume, for uniqueness, that the data is in a small neighborhood.
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Fig. 1. CCA on Riemannian manifolds. CCA searches geodesic submanifolds (sub-
spaces), Swx and Swy at the Karcher mean of data on each manifold. Correlation
between projected points {ΠSwx

(xi)}Ni=1 and {ΠSwy
(yi)}Ni=1 is equivalent to the cor-

relation between projection coefficients {ti}Ni=1 and {ui}Ni=1. Although x and y belong
to the same manifold we show them in different plots for ease of explanation.

Geodesically Convex. A subset C of M is said to be a geodesically convex set
if there is a minimizing geodesic curve in C between any two points in C. This
assumption is commonly used [8] and essential to ensure that the Riemannian
operations such as the exponential and logarithm maps are well-defined.

4 A Model for CCA on Riemannian Manifolds

We now present a step by step derivation of our Riemannian CCA model. Clas-
sical CCA finds the mean of each data modality. Then, it maximizes correlation
between projected data on each subspace at the mean. Similarly, CCA on mani-
folds must first compute the intrinsic mean (i.e., Karcher mean) of each data set.
It must then identify a ‘generalized’ version of a subspace at each Karcher mean
to maximize the correlation of projected data. The generalized form of a sub-
space on Riemannian manifolds has been studied in the literature [33,26,20,9].
The so-called geodesic submanifold [9,36,23] which has been used for geodesic
regression serves our purpose well and is defined as S = Exp(µ, span({vi})∩U),
where U ⊂ TµM, and vi ∈ TµM [9]. When S has only one tangent vector v,
then the geodesic submanifold is simply a geodesic curve, see Figure 1.

We can now proceed to formulate the precise form of projection on to a
geodesic submanifold. Recall that when given a point, its projection on a set is
the closest point in the set. So, the projection on to a geodesic submanifold (S)
must be a function satisfying this behavior. This is given by,

ΠS(x) = arg min
x′∈S

d(x,x′)2 (6)

In Euclidean space, the projection on a convex set (e.g., subspace) is unique.
It is also unique on some manifolds under special conditions, e.g., quaternion
sphere [30]. However, the uniqueness of the projection on geodesic submanifolds
in general conditions cannot be ensured. Like other methods, we assume that
given the specific manifold and the data, the projection is well-posed.
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Finally, the correlation of points (after projection) can be measured by the
distance from the mean to the projected points. To be specific, the projection
on a geodesic submanifold corresponding to wx in classical CCA is given by

ΠSwx
(x) := arg min

x′∈Swx

‖Log(x,x′)‖2x (7)

Swx
:= Exp(µx, span{wx} ∩ U) where wx is a basis tangent vector and U ⊂

Tµx
Mx is a small neighborhood of µx. The expression for projection coefficients

can now be given as

ti = πwx(xi) := arg min
t′i∈(−ε,ε)

‖Log(Exp(µx, t
′
iwx),xi)‖2µx (8)

where xi,µx ∈ Mx, wx ∈ Tµx
Mx, ti ∈ R. The term, ui = πwy

(y) is defined
analogously. ti is a real value to obtain the point ΠSwx

(x) = Exp(µx, tiwx).
As mentioned above, x and y belong to the same manifold. Note that we are
dealing with a single manifold, however, we use two different notations Mx, and
My to show that they are differently distributed for ease of discussion.

Notice that we have d(μx,ΠSwx
(xi)) = ‖Log(μx,Exp(μx,wxti))‖µx

= ti‖wx‖µx
.

By inspection, this shows that the projection coefficient is proportional to the
length of the geodesic curve from the base point µx to the projection of x,
ΠSwx

(x). Correlation is scale invariant, as expected. Therefore, the correlation
between projected points {ΠSwx

(xi)}Ni=1 and {ΠSwy
(yi)}Ni=1 reduces to the cor-

relation between the quantities that serve as projection coefficients here, {ti}Ni=1

and {ui}Ni=1.
Putting these pieces together, we obtain our generalized formulation for CCA,

ρx,y = corr(πwx (x), πwy (y)) = max
wx,wy ,t,u

∑N
i=1(ti − t̄)(ui − ū)

√∑N
i=1(ti − t̄)2

√∑N
i=1(ui − ū)2

(9)

where ti = πwx
(xi), t := {ti}, ui = πwy

(yi), u := {ui}, t̄ = 1
N

∑N
i=1 ti and

ū = 1
N

∑N
i=1 ui. Expanding out components in (9) further, it takes the form,

ρx,y = max
wx,wy ,t,u

∑N
i=1(ti − t̄)(ui − ū)

√∑N
i=1(ti − t̄)2

√∑N
i=1(ui − ū)2

s.t. ti = arg min
ti∈(−ε,ε)

‖Log(Exp(μx, tiwx),xi)‖2, ∀i ∈ {1, . . . , N}

ui = arg min
ui∈(−ε,ε)

‖Log(Exp(μy, uiwy),yi)‖2,∀i ∈ {1, . . . , N}

(10)

Directly, we see that (10) is a multilevel optimization and solutions from nested
sub-optimization problems may be needed to solve the higher level problem. It
turns out that deriving the first order optimality conditions suggests a cleaner
approach.

Define f(t,u) :=
∑N

i=1(ti−t̄)(ui−ū)√∑
N
i=1(ti−t̄)2

√∑
N
i=1(ui−ū)2

, g(ti,wx) := ‖Log(Exp(µx, tiwx),xi)‖2,

and g(ui,wy) := ‖Log(Exp(μy , uiwy),yi)‖2. Then, we may replace the equality
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constraints in (10) with optimality conditions rather than another optimization
problem for each i. Using this idea, we have

ρ(wx,wy) = max
wx,wy ,t,u

f(t,u)

s.t. ∇tig(ti,wx) = 0,∇uig(ui,wy) = 0,∀i ∈ {1, . . . , N}
(11)

5 Optimization Schemes

We present two different algorithms to solve the problem of computing CCA on
Riemannian manifolds. The first algorithm is based on a numerical optimization
for (11). We only summarize the main model here and provide all technical details
in the extended version for space reasons. Subsequently, we present the second
approach which is based on an approximation for a more efficient algorithm.

5.1 An Augmented Lagrangian Method

The augmented Lagrangian technique is a well known variation of the penalty
method for constrained optimization problems. Given a constrained optimization
problem max f(x) s.t. ci(x) = 0, ∀i, the augmented Lagrangian method solves a
sequence of the following models while increasing νk.

max f(x) +
∑

i

λici(x)− νk
∑

i

ci(x)
2

(12)

The augmented Lagrangian formulation for our CCA formulation is given by

max
wx,wy ,t,u

LA(wx,wy , t,u,λ
k; νk) = max

wx,wy ,t,u
f(t,u) +

N∑

i

λk
ti∇tig(ti,wx)+

N∑

i

λk
ui
∇uig(ui,wy)− νk

2

(
N∑

i=1

∇tig(ti,wx)
2 +∇uig(ui,wy)

2

) (13)

The pseudocode for our algorithm is summarized in Algorithm 1.
Remarks. Note that for Algorithm 1, we need the second derivative of g,

in particular, for d2

dwdtg,
d2

dt2 g. The literature does not provide a great deal of
guidance on second derivatives of functions involving Log(·) and Exp(·) maps on
general Riemannian manifolds. However, depending on the manifold, it can be
obtained analytically or numerically (see extended version of the paper).

Approximate strategies. It is clear that the core difficulty in deriving the algo-
rithm above was the lack of a closed form solution to projections on to geodesic
submanifolds. If however, an approximate form of the projection can lead to
significant gains in computational efficiency with little sacrifice in accuracy, it is
worthy of consideration. The simplest approximation is to use a Log-Euclidean
model. But it is well known that the Log-Euclidean is reasonable for data that are
tightly clustered on the manifold and not otherwise. Further, the Log-Euclidean
metric lacks the important property of affine invariance. We can obtain a more
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Algorithm 1. Riemannian CCA based on the Augmented Lagarangian method

1: x1, . . . ,xN ∈ Mx, y1, . . . ,yN ∈ My

2: Given ν0 > 0, τ 0 > 0, starting points (w0
x,w

0
y, t

0,u0) and λ0

3: for k = 0, 1, 2 . . . do
4: Start at (wk

x,w
k
y , t

k,uk)
5: Find an approximate minimizer (wk

x,w
k
y , t

k,uk) of LA(·,λk; νk), and terminate
when ‖∇LA(w

k
x,w

k
y , t

k,uk,λk; νk)‖ ≤ τk

6: if a convergence test for (11) is satisfied then
7: Stop with approximate feasible solution
8: end if
9: λk+1

ti
= λk

ti − νk∇tig(ti,wx),∀i
10: λk+1

ui
= λk

ui
− νk∇uig(ui,wy),∀i

11: Choose new penalty parameter νk+1 ≥ νk

12: Set starting point for the next iteration
13: Select tolerance τk+1

14: end for

Algorithm 2. CCA with approximate projection

1: Input X1, . . . , XN ∈ My , Y1, . . . , YN ∈ My

2: Compute intrinsic mean μx,μy of {Xi}, {Yi}
3: Compute X�

i = Log(μx, Xi), Y
�
i = Log(μy, Yi)

4: Transform (using group action) {X�
i}, {Y �

i } to the TIMx, TIMy

5: Perform CCA between TIMx, TIMy and get axes Wa ∈ TIMx, Wb ∈ TIMy

6: Transform (using group action) Wa,Wb to Tµx
Mx, Tµy

My

accurate projection using the submanifold expression given in [36]. The form of
projection is,

ΠS(x) ≈ Exp(μ,
d∑

i=1

vi〈vi,Log(μ,x)〉µ ) (14)

where {vi} are orthonormal basis at TµM. The CCA algorithm with this ap-
proximation for the projection is summarized as Algorithm 2.

Finally, we provide a brief remark on one remaining issue. This relates to the
question why we use group action rather than other transformations such as
parallel transport. Observe that Algorithm 2 sends the data from the tangent
space at the Karcher mean of the samples to the tangent space at Identity I.
The purpose of the transformation is to put all samples at the Identity of the
SPD manifold, to obtain a more accurate projection, which can be understood
using (14). The projection and inner product depend on the anchor point μ.
If μ is Identity, then there is no discrepancy between the Euclidean and the
Riemannian inner products. Of course, one may use a parallel transport. How-
ever, group action may be substantially more efficient than parallel transport
since the former does not require computing a geodesic curve (which is needed
for parallel transport). Interestingly, it turns out that on SPD manifolds with a
GL-invariant metric, parallel transport from an arbitrary point p to Identity I is
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equivalent to the transform using a group action. So, one can parallel transport
tangent vectors from p to I using the group action more efficiently. The proof of
Theorem 1 is available in the extended version.

Theorem 1. On SPD manifold, let Γp→I(w) denote the parallel transport of
w ∈ TpM along the geodesic from p ∈ M to I ∈ M. The parallel transport is
equivalent to group action by p−1/2wp−T/2, where the inner product 〈u, v〉p =
tr(p−1/2up−1vp−1/2).

5.2 Extensions to the Product Riemannian Manifold

In the types of imaging datasets of interest in this paper, we seek to perform an
analysis on an entire population of images (of multiple types). For such data,
each image must be treated as a single entity, which necessitates extending the
formulation above to a Riemannian product space.

Let us define a Riemannian metric on the product spaceM = M1×. . .×Mm.
A natural choice is the following idea from [36].

〈X1,X2〉P =

m∑

j=1

〈Xj
1 , X

j
2〉P j (15)

where X1 =
(
X1

1 , . . . , X
m
1

) ∈ M, and X2 =
(
X1

2 , . . . , X
m
2

) ∈ M and P =(
P 1, . . . , Pm

) ∈ M. Once we have the exponential and logarithm maps, CCA
on a Riemannian product space can be directly performed by Algorithm 2. The
exponential map Exp(P ,V ) and logarithm map Log(P ,X) are given by

(Exp(P 1, V 1), . . . ,Exp(Pm, V m)) and (Log(P 1, X1), . . . ,Log(Pm, Xm)) (16)

respectively, where V = (V 1, . . . , V m) ∈ TPM. The length of tangent vector is

‖V ‖ =
√
‖V 1‖2P 1 + · · ·+ ‖Vm‖2Pm , where V i ∈ TP iMi. The geodesic distance

between two points d(X1,X2) on Riemannian product space is also measured
by the length of tangent vector from one point to the other. So we have

d(μx,X) =
√

d(μ1
x, X1)2 + · · ·+ d(μm

x , Xm)2 (17)

From our previous discussion of the relationship between projection coeffi-
cients and distance from the mean to points (after projection) in Section 4, we
have ti = d(µx, ΠSWx

(Xi))/‖W x‖µx
and tji = d(μj

x, ΠS
W

j
x

(Xj
i ))/‖W j

x‖μj
x
. By

substitution, the projection coefficients on Riemannian product space are given
by
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(18)

We can now mechanically substitute these “product space” versions of the
terms in (18) to derive a CCA on Riemannian product space. The full model is
provided in the extended version.
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6 Experiments

6.1 CCA on SPD Manifolds

Diffusion tensors are symmetric positive definite matrices at each voxel in DTI.
Let SPD(n) be a manifold for symmetric positive definite matrices of size n×n.
This forms a quotient space GL(n)/O(n), where GL(n) denotes the general
linear group and O(n) is the orthogonal group. The inner product of two tangent
vectors u, v ∈ TpM is given by 〈u, v〉p = tr(p−1/2up−1vp−1/2). Here, TpM is a
tangent space at p (which is a vector space) is the space of symmetric matrices of
dimension (n+1)n/2. The geodesic distance is d(p, q)2 = tr(log2(p−1/2qp−1/2)).

Here, the exponential map and logarithm map are defined as,

Exp(p, v) = p1/2 exp(p−1/2vp−1/2)p1/2, Log(p, q) = p1/2 log(p−1/2qp−1/2)p1/2 (19)

and the first derivative of g in equation (11) on SPD(n) is given by

d

dti
g(ti,wx) =

d

dti
‖Log(Exp(μx, tiWx), Xi)‖2 =

d

dti
tr[log2(X−1

i S(ti))]

= 2tr[log(X−1
i S(ti))S(ti)

−1Ṡ(ti)], according to Prop. 2.1 in [28]

(20)

where S(ti) = Exp(μx, tiWx) = μ
1/2
x exptiA μ

1/2
x , and Ṡ(ti) = μ

1/2
x A exptiA μ

1/2
x

and A = μ
−1/2
x Wxμ

−1/2
x . The derivative of equality constraints, namely d2

dWdtg,
d2

dt2 g are calculated by numerical derivatives. Embedding the tangent vectors in
the n(n + 1)/2 dimensional space with orthonormal basis in the tangent space
enables one to compute numerical differentiation. Details are provided in the
extended paper.

6.2 Synthetic Experiments

In this section we provide experimental results using a synthetic dataset to eval-
uate the performance of Riemannian CCA. The samples are generated to be
spread far apart on the manifold M(≡ SPD(3)) so that the curvature of the
manifold plays a key role in the maximization of the correlation function. In
order to sample data from different regions of the manifold, we generate data
around two well separated means μx1 , μx2 ∈ X , μy1 , μy2 ∈ Y by perturbing the
data randomly (see the extended version) in the corresponding tangent spaces.
Fig. 2 shows the CCA results obtained by Riemannian and Euclidean methods.
We can clearly see the improvements from the manifold approach by inspecting
the correlation coefficients ρx,y on the respective titles.

6.3 CCA for Multi-modal Risk Analysis

Motivation:We collected multi-modal magnetic resonance imaging (MRI) data
to investigate the effects of risk for Alzheimer’s disease (AD) on the white and
gray matter in the brain. One of the central goals in analyzing this rich dataset
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Fig. 2. Synthetic experiments showing the benefits of Riemannian CCA. The top row
shows the projected data using the Euclidean CCA and the bottom using Rieman-
nian CCA. PX and PY denote the projected axes. Each column represents a synthetic
experiment with a specific set of {μxj , εxj ;μyj , εyj}. The first column presents results
with 100 samples while the three columns on the right show with 1000 samples. The
improvements in the correlation coefficients ρx,y can be clearly seen from the corre-
sponding titles.

is to find statistically significant AD risk ↔ brain relationships. We can adopt
many different ways of modeling these relationships but a potentially useful way
is to analyze multi modality imaging data simultaneously, using CCA.

Risk for AD is characterized by their familial history (FH) status as well as
APOE genotype risk factor. In the current experiments, we include a subset of
343 subjects and first investigate the effects of age and gender in a multimodal
fashion since these variables are also important factors in healthy aging.

Brain structure is characterized by diffusion weighted images (DWI) for white
matter and T1-weighted (T1W) image data for the gray matter. DWI data pro-
vides us information about the microstructure of the white matter. We use diffu-
sion tensor (D ∈ SPD(3)) model to represent the diffusivity in the microstructure.
T1Wdata can be used to obtain volumetric properties of the gray-matter.The vol-
umetric information is obtained from Jacobian matrices (J) of the diffeomorphic
mapping to a population specific template. These Jacobian matrices can be used
to obtain the Cauchy deformation tensors which also belong to SPD(3).

Hippocampus and cingulum bundle (shown in Fig. 3) are two important re-
gions in the brain. They are a priori believed to be significant in AD↔brain
structure relationships, primarily due to the role of hippocampus in memory
function and the projections of cingulum onto the hippocampus. However, de-
tecting risk -brain relationships before the memory/cognitive function is impaired
is difficult due to several factors (such as noise in the data, small sample and
effect sizes, type I error due to multiple comparisons.). One approach to improve
the statistical power in such a setting would be to perform tests on average
properties in regions of interest (ROI) in the brain. This procedure reduces both
noise and the number of comparisons/tests. However, taking averages will also
dampen the signal of interest which is already weak in such pre-clinical studies.
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Fig. 3. Shown on the left are the bilateral cingulum bundles (green) inside a brain sur-
face obtained from a population DTI template. Similarly on the right are the bilateral
hippocampi. The gray and white matter ROIs are also shown on the right.

CCA can take the multi-modal information from the imaging data and project
the voxels into a space where the signal of interest is likely to be stronger.

Experimental Design: The key multimodal linear relations we examine are

YDTI = β0 + β1Gender + β2XT1W + β3XT1W ·Gender + ε,

YDTI = β′
0 + β′

1AgeGroup + β′
2XT1W + β′

3XT1W ·AgeGroup + ε,

where the AgeGroup is defined as a categorical variable with 0 (middle aged) if
the age of the subject ≤ 65 and 1 (old) otherwise. The sample under investiga-
tion is between 43 and 75 years of age. The statistical tests ask if we can reject
the Null hypotheses β3 = 0 and β′

3 = 0 using our data at α = 0.05. We report
the results from the following four sets of analyses: (i) Classical ROI-average
analysis: This is a standard type of setting where the brain measurements in an
ROI are averaged. Here YDTI = MD i.e., the average mean diffusivity in the cin-
gulum bundle. XT1W = log |J | i.e., the average volumetric change (relative to the
population template) in the hippocampus. (ii) Euclidean CCA using scalar mea-
sures (MD and log |J |) in the ROIs: Here, the voxel data is projected using the
classical CCA approach [35] i.e., YDTI = wT

MDMD and XT1W = wT
log |J| log |J |.

(iii) Euclidean CCA using D and J in the ROIs: This setting is an improvement
to the setting above in that the projections are performed using the full tensor
data [35]. Here YDTI = wT

DD and XT1W = wT
JJ . (iv) Riemannian CCA using

D and J in the ROIs: Here YDTI = 〈wD,D〉μD and XT1W = 〈wJ ,J 〉μJ .
The findings are shown in Fig. 4. We can see that the performance of CCA

using the full tensor information improves the statistical significance for both
Euclidean and Riemannian approaches. The weight vectors in the different set-
tings for both Euclidean and Riemannian CCA are shown in Fig. 5 top row. We
would like to note that there are several different approaches of using the data
from CCA and we performed experiments with full gray matter and white mat-
ter regions in the brain whose results are included in the extended version. We
show the representative weight vectors (in Fig. 5 bottom row) obtained using the
full brain analyses. Interestingly, the weight vectors are spatially cohesive even
without enforcing any spatial constraints. What is even more remarkable is that
the regions picked between the DTI and T1W modalities are complimentary in
a biological sense. Specifically, when performing our CCA on the ROIs, although
the cingulum bundle extends into the superior mid-brain regions the weights are
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Fig. 4. Experimental evidence showing the improvements in statistical significance
of finding the multi-modal risk-brain interaction effects. Top row shows the gender,
volume and diffusivity interactions. Second row shows the interaction effects of the
middle/old age groups.

Fig. 5. Weight vectors (in red-yellow color) obtained from our Riemannian CCA ap-
proach. The weights are in arbitrary units. The top row is from applying Riemannian
CCA on data from the cingulum and hippocampus ROIs (Fig. 3) while the bottom
row is obtained using data from the entire white and gray matter regions of the brain.
On the left (three columns) block we show the results in orthogonal view for DTI and
on the right for T1W. The corresponding underlays are the population averages of the
fractional anisotropy and T1W contrast images respectively.

non-zero in its hippocampal projections. In the case of entire white and gray
matter regions, the volumetric difference (from the population template) in the
inferior part of the corpus callosum seem to be highly cross-correlated to the
diffusivity in the corpus callosum. Our CCA finds these projections without any
a priori constraints in the optimization suggesting that performing CCA on the
intrinsic nature of the data can reveal biologically meaningful patterns. Due to
space constraints, we refer the interested reader to the extended version of the
paper for additional details.
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7 Conclusion

The classical CCA assumes that data live in a pair of vector spaces. However,
many modern scientific disciplines require the analysis of data which belong to
curved spaces where classical CCA is no longer applicable. Motivated by the
properties of imaging data from neuroimaging studies, we generalize CCA to
Riemannian manifolds. We employ differential geometry tools to extend opera-
tions in CCA to the manifold setting. Such a formulation results in a multi-level
optimization problem. We derive solutions using the first order condition of pro-
jection and an augmented Lagrangian method. In addition, we also develop an
efficient single path algorithm with approximate projections. Finally, we propose
a generalization to the product space of SPD(n), namely, tensor fields allowing
us to treat a full brain image as a point on the product manifold. On the ex-
perimental side, we presented neuroimaging findings using our proposed CCA
on DTI and T1W imaging modalities on an Alzheimer’s disease (AD) dataset
focused on risk factors for this disease. Here, the proposed methods perform well
and yield scientifically meaningful results. In closing, we note that our core opti-
mization methods can be readily applied when maximizing correlation between
data from two different types of Riemannian manifolds — this may open the
doors to various other types of analysis not explicitly investigated in this paper.
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