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Abstract. This paper presents a novel approach for multi-person track-
ing utilizing a model motivated by the human vision system. The model
predicts human motion based on modeling of perceived information. An
attention map is designed to mimic human reasoning that integrates both
spatial and temporal information. The spatial component addresses hu-
man attention allocation to different areas in a scene and is represented
using a retinal mapping based on the log-polar transformation while
the temporal component denotes the human attention allocation to sub-
jects with different motion velocity and is modeled as a static-dynamic
attention map. With the static-dynamic attention map and retinal map-
ping, attention driven motion of the tracked target is estimated with a
center-surround search mechanism. This perception based motion model
is integrated into a data association tracking framework with appearance
and motion features. The proposed algorithm tracks a large number of
subjects in complex scenes and the evaluation on public datasets show
promising improvements over state-of-the-art methods.

1 Introduction

Multi-person tracking is a fundamental problem for many computer vision tasks,
such as video surveillance and activity recognition. The computer vision com-
munity has begun to explore social behavior modeling to improve accuracy of
multi-target tracking systems in recent years. Various social behavior models
[29,24,39,31] have been explored and incorporated into the multi-person track-
ing frameworks. Unlike the traditional motion model, the social behavior model,
in essence, treats human motion as the result of both a person’s intention and
their interaction with environment rather than the outcome of a motion dynam-
ics model alone. This is a critical aspect of tracking humans and enables incorpo-
ration of the basic understanding that human beings invariably will make motion
decision based on their intent and understanding of the environment. In general,
typical social behavior models are built on constraints over spatial proximity and
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Fig. 1. Examples of reconstructed virtual world. (a) The original surveillance image,
(b) the virtual vision image, (c) the first-person view image from the person under the
arrow, (d) the retinal mapping image. The bounding boxes in (a,b,c) with same color
represent the same person.

Fig. 2. System Framework. The components in red outline are implemented in virtual
environment.

treat nearby subjects and objects with equal importance [38,2,18]. However, a
person does not plan his/her movements based on a holistic understanding of
the scene but reasons about it based on the local field of visual perception [17].
Therefore, in this paper, we propose building a perception based motion model
from the first-person perspective. Intuitively, a person does not react to all sub-
jects in his/her perspective with equal intensity. For example, a person will react
strongly to a person moving faster in their direction as compared to someone
moving slower. In other words, a person moving quickly towards one will take
priority in one’s perception and hence in their motion planning. We argue that
people’s attention has two kinds of variations: (1) spatial variations that are
related to subjects that are near or far; and (2) temporal variations that are re-
lated to subjects that are moving fast or slow. To explore a more realistic motion
model, we propose an attentive vision based tracking framework.

Benfold and Reid [6] utilized a person’s head pose to locate areas of attention
to guide surveillance systems. However, this information was not incorporated
into a multi-person tracking framework. In our case, to visualize the scene from
each person’s point of view we utilize the virtual vision simulation [36] so
that the scene can be rendered graphically and further used to simulate a first-
person view assuming the camera to be located at the head height for each person
in the scene. Figure 1(a) shows the real world, (b) shows the virtual scene, and
(c) shows the first-person view image of person in the red bounding box in (a)
and (b). Finally, Figure 1(d) shows the retinal mapping of the first-person view
image of the specific person based on the log-polar transformation wherein the
center of the first-person view image is assumed to be the focal point. Alternate
approaches for simulating the scene can also be utilized [32].

We generate “attention maps” of the simulated first-person view image that
guides the person’s motion as shown in Figure 2. The static attention map is
built based on human detection, which treats human subjects in the first-person
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view image as obstacles. In this paper, we assume that the human motion is
dominated by the intent of obstacle avoidance. The dynamic attention map is
derived from optical flow displacement of human subjects in a person’s view.
Human subjects further away or moving slowly will have a smaller optical flow
displacements than those in closer proximity or moving fast. Further, the opti-
cal flow displacement from first-person view image, when mapped according to
retinal mapping, implicitly incorporates the effect of motion direction in which
humans subjects moving towards the person along the direction of the person’s
focal point will exhibit expansion and occupy more area than those moving
away from the person. After combining static and dynamic attention maps, reti-
nal mapping is overlaid on the combined map to mimic human retinal vision,
i.e., spatial regions far from individual’s visual center will have low attention
and hence lower spatial resolution and vice-versa for closer regions. The final
attention map combines spatial and temporal variations of the scene as per the
person’s visual priority. Our method identifies regions of high interest from sub-
ject’s attention map that guides the estimation of subject’s next movement and
serves as a novel feature in a person tracking framework. The advantage of visual
attention over direct use of motion information is that it provides a reasonable
mechanism to estimate the motion probability while automatically weighting
the proximal and peripheral information together. The key contributions of our
work are as follows:

– Perception based multi-person tracking. We simulated the virtual vision and
get the first-person view image. Such transformation facilitates intuitive
analysis of human perception and reaction to subjects in the environment
and induces a more realistic motion model. This also serves to enhance social
behavior models by weighting relationship graphs.

– Attentive vision model. We propose an attentive vision model that approxi-
mates the spatial and temporal variance of human attention. The combined
attention map enables motion path prediction of a person without explicit
knowledge of other person’s motion. Our model predicts human motion and
is combined with data association for tracking.

We define human motion as a direct consequence of human attentive vision
system. The problem is then transformed into a human attentive vision modeling
problem (Sec. 3), which operates in a virtual simulation world that has the same
physical world coordinates as the real world. We show how to integrate attention
features into a tracking-by-detection framework (Sec. 4). Finally, we test our
approach in real world challenging surveillance videos and evaluate the tracking
performance in comparison to other tracking methods (Sec. 5).

2 Related Work

Multi-person Tracking. Tracking-by-detection has becomes increasingly pop-
ular for multi-person tracking due to the improvement of human detector.
Progress on tracking-by-detection can be attributed to development in two areas,
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both of which bring the benefit to tracking performance. The first is the design of
efficient data association methods. Brender et al. [10] used maximum weighted
independent set to converge to a data association optimum. Andriyenko et al. [4]
combined discrete with continuous optimization to solve both data association
and trajectory estimation. Butt et al. [13] use Lagrangian relaxation to transfer
the global data association to solvable min-cost flow problem. The second area is
in the learning of discriminative features. In this category, multi-person tracking
algorithms either exploit appearance variance feature [16,9] or model complex
motion dynamics feature [33,26]. We contribute to build discriminative motion
feature in this work.

Social behavior modeling has attracted more attention with its ability to
quantify complex human interactions. Luber et al. [24] proposed to use repul-
sion effects to incorporate scene obstacles. Choi et al. [14] considered the group
motion dynamics within a joint prediction model. Yan et al. [39] integrated the
social attraction and repulsion effects into an interactive tracking framework.
Qin et al. [31] and Bazzani et al. [5] exploited the social group effect associated
with the tracking performance. Manocha et al. [8,23] leveraged reciprocal veloc-
ity obstacles model to take into account local interactions as well as physical
and personal constraints. All the aforementioned works treat the social behavior
from surveillance camera view angle instead of understanding social behavior
from subject’s own viewpoint. In this paper, we model the target motion behav-
ior from the first-person view and utilize it for multiple target tracking. To the
best of our knowledge, no previous tracking method has leveraged first-person
perspective.

Visual Attention Modeling. By mimicking the human vision system, com-
putational visual attention modeling is investigated by psychologists, microbiol-
ogists, and computer scientists. A number of computational models of attention
are proposed and can be categorized based on whether they are biological, purely
computational, or hybrid [15]. All plausible biological methods are directly or
indirectly inspired by cognitive concepts. In contrast, Ma et al. [25] proposed a
method based on local contrast for generating saliency maps that is not based
on any biological model. Achanta et al. [1] had incorporated both biological
and computational parts in their method. Our work falls in the area of purely
computational methods. Related work in crowd simulation [27,21] has leveraged
human visual attention to model the motion of virtual agents in a synthesized
environment.

3 Attentive Vision Modeling

Given a configuration Ct = {cti} of subjects (i = 1 . . .N) at time t, each subject
is modeled as cti = (pti, s

t
i, a

t
i), where pti denotes the world coordinate position,

sti its speed, and ati its motion angle. Our method models the human perception
of each subject i at the time step t based on the configuration Ct. For sim-
plicity, we will explain one subject’s attentive vision model in a scene with a
fixed number of subjects. This can easily be generalized to an arbitrary number
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of subjects. Unlike previous approaches, we don’t assume each person’s prior
knowledge about other subjects’ position.

3.1 Virtual Vision Simulation

We assume a person’s consistent moving direction in the next step t+1 is same as
the person’s current motion direction. Based on the calibration of the real scene
(Figure 1(a)) and the output of human detection, we can get the position param-
eter pti for each subject i. The motion parameters si and ai estimation will be ex-
plained in section 4. Here we assume we have the parameters cti for each subject.
To simplify the configuration, we also set every person’s height as 1.7 meter and
the eye position is 1.6 meter from the ground, which is also set as the first-person
view camera’s position. Using the configurationCt, we construct the virtual scene
as shown in Figure 1(b) with virtual vision simulator [36]. In the simulator, we
simulate human motion based on the start point, end point and the time we set to
match the estimated speed. All movements are assumed to be piece-wise linear. In
the virtual scene, the first-person view image is generated by putting the virtual
camera at the virtual person’s head location and directed towards the virtual per-
son’s moving direction in the simulated world. The focal length is fixed for each
person. Here we assume the head pose is same as the subject motion direction.
An example of a first-person view image is shown in Figure 1(c). The first-person
view image shares the same world coordinate with virtual vision image and real
world image. In the following sections, all computations of attentive vision are per-
formed on first-person view images. The corresponding retinal mapping image is
shown in Figure 1(d) further explained in the following section.

3.2 Attention Map

Visual saliency is one of the most popular computational model for visual atten-
tion [19]. Similar to saliency based attention model [28], we compute an attention
map that leverages both static and dynamic components of attention. The atten-
tion map is built as shown in Figure 2 (red outline). The first step is to construct
static and dynamic maps, then to overlap retinal mapping on the combined map.

Static Map. With virtual scene, all the pedestrian’s motion are simulated with
virtual agents that have the same velocity as the real world scene. The images
of first-person perspective are collected from virtual vision simulator for frame
{1, . . . , i, . . . ,K}. Background subtraction is performed to detect the human sub-
jects within the controlled foreground-background contrast in virtual scene [30].
The static map is built based on human detection results in frame 1. The out-
put of human detection of frame 1 is denoted as R1 = {r11, . . . , r1n} where r1n is
represented by binary foreground mask. The static map of human attention is
modeled as Ss = r11 ∪ . . . ∪ r1n.
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(a) (b) (c)

Fig. 3. The static map in first-person perspective view. (a) The over-head view im-
age.(b) The first-person view image. (c) The static map is generated based on the
human detection.

Dynamic Map. Human perception is sensitive to moving subjects and human
attentive vision treats moving subjects with different velocities differently. The
dynamic map is built to address the temporal variance component of atten-
tive vision. Optical flow (Oi

x, O
i
y) is calculated for frame {2, . . . , i, . . . ,K}, which

implicitly models the relative motion between observer’s and all the other sub-
jects’ motion [11]. With the virtual vision images, the human in {2, . . . , i, . . . ,K}
frames is detected by background subtraction and the locations are denoted as
R2,...,i,...,K . We set K = 25 in this paper. The motion saliency in frame i is
defined as

M i(x, y) =

{
sqrt((Oi

x)
2 + (Oi

y)
2) (x, y) ∈ Ri

0 otherwise
(1)

The final dynamic map combines all the motion saliency denoted as Sd(x, y) =
max{M2(x, y), . . . ,M i(x, y), . . . ,MK(x, y)}, which is determined by taking the
maximum of motion intensity. A dynamic map example for one person is shown
in Figure 4(a).

Static-Dynamic Map Combination. We hypothesize that the human per-
ception drives attention to specific areas when the motion intensity in that region
is above a certain threshold. Thus the combination of static and dynamic map is
fulfilled in a motion-conditioned strategy. The combined attention map is com-
puted as follows:

S(x, y) =

{
1 if Sd(x, y) ≥ ε or Ss(x, y) = 1

0 otherwise
(2)

where, ε denotes the threshold on motion intensity and is set to 0.1 in this paper.
After combination, a binary mask is generated and is overlaid on the original
image as shown in Figure 4(b) and 4(c). A crucial point to note here is that even
though subjects receive higher perceptual attention, the regions they occupy
may have lower probability as potential future target positions.

Retinal Mapping. Attentive vision refers to the reaction of people according to
the visual stimuli in a dynamically changing environment, which is characterized
by selective sensing in space and time as well as selective processing with respect
to a specific task [34]. Selection in space involves the splitting of the visual field
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(a) (b) (c)

Fig. 4. (a) The dynamic map is generated based on virtual vision simulation. (b) The
combined static-dynamic attention map. (c) The combined map mask is applied on
first-person perspective image.

in a high resolution area, the fovea, and a space-variant resolution area, the
periphery, which are denoted as retinal mapping. Log-polar transformation is
the most common method to represent visual information with a space-variant
resolution [37] and to achieve retinal mapping. The log-polar transformation
conserves high resolution in the center of the image and the resolution gradually
decreases away from center.

We denote (x, y) for the image coordinates and (r(x,y), θ(x,y)) for the corre-
sponding polar coordinates and rmax denotes the maximum value of r(x,y). The
polar mapping of image pixel (x, y) with origin (x0, y0) is defined as

r(x,y) =
√
(x− x0)2 + (y − y0)2, and θ(x,y) = tan−1(

y − y0
x− x0

). (3)

The foveal region is defined as a round disk with the radius r0 and origin (x0, y0).
The image in the foveal region retains uniform resolution while the non-foveal
region exhibits decreasing resolution, which is also used to indicate the impor-
tance of observations . We apply the log-polar transformation on the non-foveal
part of a first-person perspective image, which is defined as the ring-shaped area
rmax > r(x,y) > r0. The unified retina mapping is defined as:

r′(x,y) =

{
r(x,y) r(x,y) < r0

log(r(x,y)) rmax > r(x,y) > r0
(4)

and θ′(x, y) = θ(x, y). With the transformed log-polar coordinates, the quantiza-
tion is applied along θ′ and r′ axes that results in G and R elements, respectively.
As shown in Figure 5, each pixel (x, y) undergoes a transform to the log-polar
space and the log-polar space is quantized. The retinal mapping of combined
static-dynamic attention map is computed based on the remapping of log-polar
space that transforms the log-polar image back to the Cartesian space. The
remapping follows the Eq. 3 and 4 utilizing the inverse mapping of θ′ and r′ to
x′ and y′, respectively. Certain number of pixels will be allocated as the same
intensity value due to the quantization in log-polar space. After doing so, we
get the retinal mapping on combined attention map as shown in Figure 5(b).
Another attention search map is generated for motion prediction as shown in
Figure 5(c). For attention search map, we compute the mean of the mapped



What Do I See? 321

Fig. 5. The diagram of retinal mapping. (a)The first-person view image overlaid by
static-dynamic map. (b) Retina mapping image. (c) Attention search map.

pixel locations and assign the intensity value from the log-polar space to the
pixel position nearest to the computed mean position. The remaining pixels are
assigned a value of zero. This allows us to generate a sparse map where the
pixels that do not have a value of zero represent positions that can be probable
locations for a target’s next position.

3.3 Motion Prediction Based on Attentive Vision

This paper assumes that people follow their intuition, which means that people
will find the most feasible and most attentive point as their destination. We
divide this process into two step. The first step is to find the most attentive

(a) (b)

(c) (d)

Fig. 6. (a) Center-surround search path. Red line is a sub-path, which is sparse here
for visualization purpose. (b) The generated 3d probability map. The yellow point
represents the nearest point in the sub path with maximum probability of being the
destination point. X and Y are the original image coordinates and Z is the probabil-
ity. (c) Potential destination point in first-perspective view image. (d) The calculated
moving angle based on attentive vision.
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sub-path based on attention search map (Figure 6(a)). A sub-path is defined
as a line between two consecutive corners in the center-surround path as shown
with red color in Figure 6(a). The probability of each sub-path in attention map
is denoted as

Ppath =
mvalid

mtotal
(5)

where, mvalid is the number of pixels that are not equal to zero in the attention
map along the sub-path and mtotal is the total number of pixels in the sub-
path. Following the center-surround search path, the probability map of atten-
tive vision is generated as shown in Figure 6(b). The sub-paths with maximum
probability are selected as most attentive sub-path by exhaustive search.

For the second step, we calculate the corresponding world coordinate of each
pixel in previous optimal sub-paths. With known observer’s position, the point
with the shortest distance to the observer is selected as potential destination
from the optimal sub-path as shown in Figure 6(c). The predicted human motion
direction πatt is calculated correspondingly based on the vector from the current
position to found destination and is depicted in Figure 6(d). This is used to
guide tracking later due to the shared world coordinate between the observer
and the surveillance camera’s view.

4 Tracking Framework

To reduce the computation load and for more accurate subject motion estima-
tion, we leverage a two-stage tracking framework. In first stage, we extracts basic

tracklets {T1, . . . , Ti, . . . , TN} for each subject i in which Ti = {ctbii , . . . , ct
e
i

i } and
tbi and tei denote the begin and end time frame of Ti. The motion parameters sti
and ati are estimated from basic tracklets. With these parameters, we simulate
the virtual vision as shown in section 3 and get the motion prediction with atten-
tive vision modeling. In second stage, we combine the predicted motion feature
and other features and accomplish the tracklets association.

In first stage, we leverage common method to extract basic tracklet based
on position, size and color histogram similarity in consecutive frames [31]. The
color similarity constraint is also applied between current frame and first frame
of tracklet. The detail of second stage is further explained in section 4.2 and 4.3.

4.1 Tracklet Association Formulation

We transform the tracklet association as 2D linear assignment problem on a
bipartite graph. Given a set of tracklets T = {T1, T2, . . . , TN}, we define a pair-
wise cost matrix H , in which hij denotes the cost that tracklet j is linked as
first tracklet after tracklet i. The data association is formulated as

argmin
{i,j}

N∑
i=1

N∑
j=1

hijxij s.t.

⎧⎪⎨
⎪⎩
∑N

j=1 xi,j = 1;∑N
i=1 xi,j = 1;

xij ∈ {0, 1}
(6)
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where xij = 1 iff tracklet j immediately follows tracklet i, otherwise, xij = 0.
The cost is defined as the combination of five features including our attentive
vision feature:

hij = β · Φ(Ti, Tj) · Z(Δt) (7)

where, β = [β1;β2;β3;β4] is a vector of model parameters and set empirically
in this paper, Φ(·) = [φ1(·), φ2(·), φ3(·), φ4(·)] represents the association feature
set, and Z(·) is the time gap component defined by an exponential model:

Z(Δt) =

{
λΔt−1 1 ≤ Δt ≤ ξ

∞ Δt < 1 or Δt > ξ
(8)

where ξ is the threshold of time gap and Δt = tbj − tei .

4.2 Features Extraction

Given each tracklet pair (Ti, Tj), four features are calculated to get the associa-
tion cost. The color feature φ1 is build based on the 3D color histogram in the
Red-Green-Intensity (RGI) space with 8 bins per channel. We perform a kernel
density estimate for both the tracklets across their live frames. The similarity be-
tween two kernels g(Ti) and g(Tj) is measured by the Bhattacharyya coefficient
B given by:

φ1 ∝ exp(−B[g(Ti), g(Tj)]). (9)

The speed feature φ2 is modeled by the Normal distribution: φ2 ∝ N (μs
j ;μ

s
i , σ

s
i )

where, μs
j = mean(

∑tej
t=tbj

stj) is the average speed of Tj in its living period and

μs
i , σ

s
i is the mean and variance of Ti’s speed.

The angular likelihood is divided to two angular regions. The first one incor-
porates the attentive vision feature that assumes the next tracklet should appear
at the predicted angle. It is modeled by the von Mises distribution [35], which
is formulated as:

φ3 =
eκcos(π−πatt)

2πI0(κ)
, (10)

where I0(.) is the modified Bessel function of order zero, and π denotes the mo-
tion angle between the spatial location of the middle point of tracklet i and the
corresponding location of Tj . The πatt is our attentive vision model’s predicted
angle. κ corresponds to variance in a normal distribution and is set empirically.
To get the informative attentive vision feature, the human motion direction his-
tory should be estimated accurately. Due to the uncertainty of detection output,
we design a threshold strategy to estimate the human motion direction. When
the basic tracklet is shorter than 10 frames, we compute the average optical
flow to estimate the motion direction and we rule out the region overlapped by
other tracklets. Otherwise, the motion direction is computed based on tracklet
position information.

The second angular feature models smooth motion and penalizes motion
change. This is described by the normal distribution; φ4 ∝ N (μa

j ;μ
a
i , σ

a
i ), where
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μa
j is the moving angle mean of Tj , μ

a
i and σa

i are the moving angle mean and
variance of Ti.

4.3 Data Association

Given the cost matrix H , we solve the assignment problem through a strategy
similar to the cut-while-linking strategy proposed in [31]. The cost matrix H is
extended to Hnew to solve the initialization and termination of tracks, which is
defined as,

Hnew =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h11 h12 . . . h1N τ ∞ . . . ∞
h21 h22 . . . h2N ∞ τ . . . ∞
...

...
...

...
...

...
...

...
hn1 hn2 . . . hNN ∞ ∞ . . . τ
∞ ∞ . . . ∞ ∞ ∞ . . . ∞
∞ ∞ . . . ∞ ∞ ∞ . . . ∞
...

...
...

...
...

...
...

...
∞ ∞ . . . ∞ ∞ ∞ . . . ∞

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (11)

The thresholds τ decides when a trajectory ends and is fixed for each scene. When
hij exceeds τ , the link between two tracklets is cut and the track will be linked
to extended columns which indicates the track terminates. The initialization of
tracks is solved along with determined termination. The extended version of data
association formulation is defined as

argmin
{i,j}

2N∑
i=1

2N∑
j=1

hnew
ij xij s.t.

⎧⎪⎨
⎪⎩
∑2N

j=1 xi,j = 1;∑2N
i=1 xi,j = 1;

xij ∈ {0, 1}
(12)

The optimal association is solved by Munkres’ assignment algorithm [12].

5 Experiments

We evaluate how attentive vision helps to improve multi-person tracking on two
public datasets: TUD stadtmitte [3] and TownCentre [7]. We follow the popular
evaluation metrics [22], which includes mostly tracked trajectories (MT), mostly
lost trajectories (ML), fragments (Frag) and ID switches (IDS). In addition, we
also report the false positive rate (FPR) of our results on each dataset. The
TUD statmitte dataset has a short video, but with very low camera angle and
frequent full occlusions among pedestrians. The TownCentre video is a high
definition video with 1920×1280 resolution. This sequence is very crowded with
frequent occlusion and interaction among pedestrians. The pedestrians appearing
briefly at the image boundaries are excluded. We also collected a video in an
outdoor uncontrolled environment. It is a high definition video with 1280× 720
resolution and 1200 frames in total. This sequence is crowded with 40 trajectories
in total. The activity inside is challenging for tracking algorithms since a large
amount of interactions are observed among the people. Walking, skateboarding
and biking activity also exists in the scene. We have manually annotated the
video to identify the locations and provide unique IDs for all the people in the
video.
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5.1 Component-Wise Evaluation

To understand the benefit of the attentive vision feature proposed in this paper,
we first present the component-wise evaluation. The baseline method turns off
the attentive vision feature and re-tuning to the best performance while the
default methods keep all the merits of the proposed method. Table 1 presents
results of quantitative comparison. The default method out-performs the baseline
method in most measures across all the datasets.

Table 1. Component-wise evaluation on each dataset. The best result is in bold.

Dataset With attentive vision MT ML Frag IDS

TUD stadtmitte No 60.0% 0.0% 3 2
TUD stadtmitte Yes 70.0% 0.0% 2 1

TownCentre No 81.3% 6.2% 33 45
TownCentre Yes 85.6% 4.8% 43 19

OURS No 47.5% 20.0% 22 21
OURS Yes 77.5% 10.0% 13 18

5.2 Comparative Evaluation

To compare fairly with different tracking method, we use the same detector’s
output. For TUD stadtmitte, we use the same detection and groundtruth pro-
vided by [40] and show comparable performance. The quantitative results are
show in Table 2. We can see that our result is comparable or better than state-
of-the-art methods. Our result is better than Energy Min [3], Disc-Continue [4]
and PRIMPT [20] as our attentive vision incorporated model gives more in-
formed prediction. Our approach does not provide an obvious advantage over
Online CRF [40] since this video has low camera angle and several very short
tracklets, which makes it difficult to estimate the tracklet motion direction. In
this case, the power of online learned appearance model in Online CRF gives
more benefit than motion prediction. Some sample tracking results are shown in
Figure 7(a). The FPR of our method is 3.2%.

For TownCentre dataset, we use the original detection and groundtruth pro-
vided by [7], which are used in [31], and we show improvement by incorporating
the attentive vision features. The quantitative comparison is shown in Table 2.
The results show that the attentive vision based tracking model outperforms
Basic affinity model [31] and SGB model [31] in terms of MT, ML, and IDS.
Fragment of trajectories under our model increased due to threshold setting in
cut-while-linking strategy. Example qualitative result is shown in Figure 7(b,c,d).
The FPR of our method is 7.6%.

We compare our method’s performance with SGB model. We also replace the
attentive vision model in our framework with LTA model [29] and keep all the
other components fixed. The quantitative results are shown in Table 2, which
show that attentive vision model outperforms SGB model and LTA model in
terms of MT, ML and Frag. LTA does a little better in IDS than our model. The
qualitative evaluation is shown in Figure 7(e). The FPR of our method is 5.9%.
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Frame 22 Frame 63 Frame 107 Frame 165
(a) Tracker under heavy occlusion and interaction:

Object 1 is tracked correctly.

Frame 252 Frame 418 Frame 539 Frame 635
(b) Long-term tracking under full occlusion, abrupt motion change

and miss detection: Object 26 is tracked correctly
in spite of significant change of motion direction.

Frame 1287 Frame 1353 Frame 1418 Frame 1509
(c) Robust tracking in densely populated regions:

Object 97 change the motion paths frequently due to the oncoming crowd.

Frame 2620 Frame 2697 Frame 2703 Frame 2777
(d) ID fragment correction: Object 258 suffers from

ID fragment (but not ID switch) which is corrected in Frame 2703.

Frame 53 Frame 141 Frame 201 Frame 295
(e) Attention vision prediction: Object 15 distracted

from large amount of moving subjects which is corrected predicted by
attentive vision modeling and recovered in Frame 201 and Frame 295.

Fig. 7. Tracking results of our approach on TUD statmitte, TownCentre and our cam-
pus datasets. For visualization purpose, certain false positive trajectories are not shown.
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Table 2. Comparison of results on TUD statmitte, TownCentre and Our dataset. The
best result is in bold. [31] (a) and [31] (b) represent the baseline method and proposed
method in [31] respectively.

Dataset Method MT ML Frag IDS

TUD stadtmitte Andriyenko et al. [3] 60.0% 0.0% 4 7
TUD stadtmitte Kuo et al. [20] 60.0% 10.0% 0 1
TUD stadtmitte Andriyenko et al. [4] 60.0% 0.0% 1 4
TUD stadtmitte Yang et al. [40] 70.0% 0.0% 1 0
TUD stadtmitte Proposed method 70.0% 0.0% 2 1

TownCentre Qin et al. [31] (a) 76.8% 7.7% 37 60
TownCentre Qin et al. [31] (b) 83.2% 5.9% 28 39
TownCentre Proposed method 85.6% 4.8% 43 19

OURS Qin et al. [31] 45.0% 22.5% 24 22
OURS Pellegrini et al. [29] 62.5% 15.0% 19 16
OURS Proposed method 77.5% 10.0% 13 18

6 Conclusion

We have presented a novel tracking method using an attentive vision model
where motion analysis is performed in the first-person view. The attentive vi-
sion is created from virtually reconstructed scene. A visual attention map is
generated based on attentive vision mechanism, including both static and dy-
namic components. The most feasible path taken by the person is searched and
decided from this constructed map. The predicted motion direction is integrated
into data-association tracking with color and motion features. The association is
solved by a greedy algorithm. As the experiments show, the proposed approach
achieves promising improvements on different public datasets. Finally, the per-
formance of the algorithm could be improved if we enhance the short tracklet
motion estimation method and the virtual simulation details.
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