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Abstract. Tags have been popularly utilized for better annotating, or-
ganizing and searching for desirable images. Image tagging is the problem
of automatically assigning tags to images. One major challenge for image
tagging is that the existing/training labels associated with image exam-
ples might be incomplete and noisy. Valuable prior work has focused on
improving the accuracy of the assigned tags, but very limited work tack-
les the efficiency issue in image tagging, which is a critical problem in
many large scale real world applications. This paper proposes a novel
Binary Codes Embedding approach for Fast Image Tagging (BCE-FIT)
with incomplete labels. In particular, we construct compact binary codes
for both image examples and tags such that the observed tags are consis-
tent with the constructed binary codes. We then formulate the problem
of learning binary codes as a discrete optimization problem. An efficient
iterative method is developed to solve the relaxation problem, followed
by a novel binarization method based on orthogonal transformation to
obtain the binary codes from the relaxed solution. Experimental results
on two large scale datasets demonstrate that the proposed approach can
achieve similar accuracy with state-of-the-art methods while using much
less time, which is important for large scale applications.
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1 Introduction

The purpose of image tagging, assigning tags or keywords to images, is to ben-
efit people for managing, organizing and searching desired images from various
resources. For example, Flickr has more than 2 billion images with millions of
newly uploaded photos per day. Users can better categorize or search desired
images based on the tags associated with them. Due to the rapid growth of the
Internet, a huge amount of images have been generated and users can only man-
ually tag a very small portion of the images. Therefore, it is a challenging task
to automatically assigning accurate tags to images for large scale data.

� The two authors contributed equally to this work.

D. Fleet et al. (Eds.): ECCV 2014, Part II, LNCS 8690, pp. 425–439, 2014.
c© Springer International Publishing Switzerland 2014



426 Q. Wang et al.

Numerous research have been conducted on improving the accuracy of image
tagging, such as automatic image annotation techniques [28,31] and multi-label
learning [3,10]. Although these methods generate promising results of effectively
assigning tags to image examples, they usually require a large set of training
images with clean and complete tags/labels. But for many Web image applica-
tions, the annotated tags are incomplete and noisy, making it difficult to directly
apply these methods for image tagging. Several tag completion [2,14,30] meth-
ods have been recently proposed to deal with incomplete and noisy tags, which
achieve better results in terms of tag predicting accuracy by modeling global
tag consistency. However, most existing methods only focus on the effectiveness
without paying much attention to efficiency. In real world applications, the data
size grows explosively and there are often a large number of possible tags and
thus it is a practical and important research problem to design efficient methods
for large scale image tagging.

This paper proposes a novel Binary Codes Embedding approach for Fast Im-
age Tagging (BCE-FIT) by designing compact binary codes for both image ex-
amples and tags. In particular, each image example is represented by a C-bit
binary code and each tag is also represented using a C-bit binary code. Our
key ideas of constructing the binary codes are that (1) if a tag is associated to
an image, then the Hamming distance between their corresponding binary codes
should be small; (2) two similar images should have similar codes; (3) the codes
of two semantically similar tags should also be similar. We then formulate the
problem of learning binary codes as a discrete optimization problem by simulta-
neously ensuring the observed tags to be consistent with the constructed binary
codes and preserving the similarities between image examples and tags. An itera-
tive optimization method together with a novel binarization method is proposed
to obtain the optimal binary codes. In tag predicting process, we calculate the
Hamming distances between the code of a query image and the codes of all pos-
sible tags, and choose those tags within small Hamming distance to the query
image. The Hamming distances between the binary codes of images and tags can
be efficiently calculated using the bitwise XOR operation. In this way, assigning
tags to images can be efficiently conducted.

We summarize the contributions in this work as follows: (1) To our best
knowledge, we propose the first research work to learn compact binary codes for
both images and tags in order to efficiently assigning tags to image examples.
(2) We propose a learning framework to obtain the optimal binary codes and
develop an efficient coordinate descent method as the optimization procedure.
(3) We prove the orthogonal invariant property of the optimal relaxed solution
and learn an orthogonal matrix to further improve the code performance.

2 Related Work

2.1 Image Tagging

Image tagging can be viewed as a multi-label learning problem where each im-
age is associated with multiple tags. Numerous work have been proposed on
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multi-label learning for automatic image annotation and classification by
exploiting the dependence among tags [1,3,10,28]. Desai et al. [6] propose a
discriminative structured prediction model for multi-label object recognition.
Hariharan et al. [10] introduce a max-margin framework for large scale multi-
label classification. In [3], Chen et al. propose an efficient multi-label classifica-
tion method using hypergraph regularization. Bao et al. [1] formulate a scalable
multi-label propagation framework for image annotation. Liu et al. [17] propose
a constrained nonnegative matrix factorization method for multi-label learning.

Besides the multi-label learning methods, several machine learning approaches
have been proposed for image tagging, including tag propagation [9,19], distance
metric learning [12] and tag recommendation [23]. Li et al. [12] propose a neigh-
bor voting algorithm for social tagging which accurately and efficiently learns
tag relevance by accumulating votes from visual neighbors. A tag propagation
(TagProp) method has been proposed in [9] which propagates tag information
from the labeled examples to the unlabeled examples via a weighted nearest
neighbor graph. Makadia et al. [19] propose a widely-used annotation baseline
denoted as JEC, which is a straightforward but sophisticated greedy algorithm
propagating labels from nearest visual neighbors to the target image. Zhou et al.
[32] develop a hybrid probabilistic model for unified collaborative and content
based image tagging.

Image tag completion [2,14,24,30] methods have been recently proposed for
image tagging task by recovering the missing entries in the tag matrix. Cabral
et al. [2] propose two convex algorithms for matrix completion based on a rank
minimization criterion. Wu et al. [30] introduce a direct tag matrix completion
algorithm by ensuring the completed tag matrix to be consistent with both
the observed tags and the visual similarity. Lin et al. [14] propose a image-
specific and tag-specific linear sparse reconstruction model for automatic image
tag completion. Although existing image tagging methods generate promising
results, very limited prior research addresses the efficiency problem, which is a
practical and critical issue in many large scale real world applications.

2.2 Learning Binary Codes

Extensive research on learning binary codes for fast similarity search [5,8,25,26]
have been proposed in recent years. Locality Sensitive Hashing (LSH) [5] method
utilizes random linear projections to map data examples from a high-dimensional
Euclidean space to a low-dimensional one. The work in [21] uses stacked Re-
stricted Boltzman Machine (RBM) to generate compact binary hashing codes
for fast similarity search of documents. The PCA Hashing (PCAH) [13] method
projects each example to the top principal components of the training set, and
then binarizes the coefficients by setting a bit to 1 when its value is larger than
the median value seen for the training set, and -1 otherwise.

Recently, Spectral Hashing (SH) [29] is proposed to learn compact binary
codes that preserve the similarity between data examples by balancing the binary
codes. The work in [15] proposes a graph-based hashing method to automatically
discover the neighborhood structure inherent in the data to learn appropriate
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compact codes. A Canonical Correlation Analysis with Iterative Quantization
(CCA-ITQ) method has been proposed in [7,8] which treats the image features
and tags as two different views. The hashing function is then learned by extract-
ing a common space from these two views. More recently, a bit selection method
[16] has been proposed to select the most informative hashing bits from a pool
of candidate bits generated from different hashing methods.

Existing hashing methods focus on constructing binary codes on images for
fast similarity search and can not be directly applied for fast assigning tags to
images. The reason is that image tagging requires to design compact binary
codes for both image examples and tags. Therefore, different from prior work,
we propose a binary codes embedding approach for fast image tagging which
learns binary codes for both image examples and tags simultaneously.

3 Binary Codes Embedding for Fast Image Tagging

3.1 Problem Setting and Overview

We first introduce the problem of BCE-FIT. Assume there are total n train-
ing images in the dataset, denoted as: xi, i ∈ {1, 2, . . . , n}, where xi is the d-
dimensional feature of the i-th image. There are total m possible tags denoted
as: tj , j ∈ {1, 2, . . . ,m}. Denote the observed tag matrix as: T ∈ {0, 1}n×m,
where a label Tij = 1 means the j-th tag is assigned to the i-th image, and
Tij = 0 means a missing tag or the i-th image is not associated with the j-th
tag. Note that the i-th row of T is the tag vector associated with image xi.
In our approach, the training tags could be noisy and incomplete, which is the
case in real world applications. The main purpose of BCE-FIT is to obtain op-
timal binary codes yi ∈ {−1, 1}C×1, i ∈ {1, 2, . . . , n} for the training images and
zj ∈ {−1, 1}C×1, j ∈ {1, 2, . . . ,m} for all possible tags, where C is the code
length. We also want to learn a hashing function f : RRRd → {−1, 1}C, which
maps each image xi to its binary code yi (i.e., yi = f(xi)).

The proposed BCE-FIT approach is a general learning framework and we first
describe the problem formulation of how to construct the objective function.
Then we represent the optimization method to obtain the optimal binary codes
and the hashing function. Fig.1 shows an example of the proposed approach.

3.2 Problem Formulation

The goal of image tagging is to automatically assign tags to both training images
and query images. Three main ingredients of constructing the compact binary
codes are: (1) if a tag tj is assigned to an image xi, then their corresponding
binary codes zj and yi should be similar; (2) visually similar images xi and
xj should have similar codes yi and yj ; and (3) semantically similar tags, e.g.
‘human’ vs. ‘people’, ti and tj should also have similar codes zi and zj. The
similarity between two binary codes can be measured based on their normalized
Hamming distance as follows:

s(yi, zj) = 1− 1

C
distHam(yi, zj) =

1

2
+

yTi zj
2C

(1)
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Fig. 1. An example of the proposed BCE-FIT. In this example, there are 4 training
images (n = 4) with 4 possible tags (m = 4). 5 bits are used to represent the binary
codes (C = 5). The predicted tag score is the similarity between the binary code of an
image and a tag, which is calculated based on the normalized Hamming distance in
Eqn.1. For the query image in this example, we will assign tags t2 and t3 to the query
image since the corresponding tag scores are relatively high (0.8).

where distHam is the Hamming distance between two binary codes, which is just
the number of bits that they differ. It can be seen from Eqn.1 that the smaller
the Hamming distance is, the more similar their binary codes become. Note that
the similarity between two binary codes is a real value between 0 and 1.

The first key problem in designing binary codes is to ensure the consistency
between the observed tags and the constructed binary codes. Specifically, we
propose to minimize the squared loss of the observed tags and the similarity
estimated from the binary codes, which is a commonly used loss function in
many machine learning applications.

n∑

i=1

m∑

j=1

(Tij − s(yi, zj))
2

(2)

As discussed before, Tij = 0 can be interpreted in two ways that tag Tij is
missing or the i-th image is not related to the j-th tag, which indicates that
Tij = 1 contains more useful information than a tag with value 0. Therefore, an
importance matrix I ∈ RRRn×m is introduced to denote the confidence of how we
trust tag information in tag matrix T . We set Iij to a higher value when Tij = 1
than Tij = 0 as follows:

Iij =

{
a, if Tij = 1

b, if Tij = 0
(3)
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where a and b are parameters satisfying a > b > 0.1 Then the square loss term
becomes:

n∑

i=1

m∑

j=1

Iij(Tij − s(yi, zj))
2

(4)

Substituting Eqn.1 into Eqn.4 we have:

n∑

i=1

m∑

j=1

Iij(Tij − 1

2
− yTi zj

2C
)2 (5)

The second key problem in designing binary codes is similarity preserving,
which indicates that visually similar images should be mapped to similar bi-
nary codes within a short Hamming distance. The pairwise visual similarity,
Sij , between two images xi and xj can be pre-calculated as:

Sij = e−
‖xi−xj‖2

σ2 (6)

where σ2 is the bandwidth parameter. Note that we use the Gaussian func-
tion/kernel to calculate the similarity in this work due to its popularity in many
hashing methods [29,27], but other similarity criteria may also be used, such as
cosine similarity or inner product similarity. To measure the similarity between
images represented by the binary codes, one natural way is to minimize the
follow quantity:

n∑

i,j=1

(s(yi, yj)− Sij)
2

(7)

The third criteria in designing binary codes is to ensure that semantically
similar tags have similar codes. For example, we wish that the binary hashing
codes for tags ‘car’ and ‘automobile’ be as close as possible since these two tags
represent similar semantic meaning. In the extreme case, if two tags ti and tj
appear in exactly the same set of images, i.e. the column i and j of tag matrix
are identical, their binary codes should also be identical. However, since the tag
information might be incomplete, we only assume that semantically similar tags
tend to appear in the same image. Therefore, in order to measure the semantical
similarity between two tags ti and tj , we use the number of images that are

commonly shared by both tags, which can be calculated as:
TT
i Tj

m . Here Ti is the
i-th column of tag matrix T . Dividing m is to normalize this quantity from 0
to 1. Then the similarity preservation between tags represented by the binary
codes can be measured as:

m∑

i,j=1

(s(zi, zj)− T T
i Tj

m
)2 (8)

1 In our experiments, we set the importance parameters a=1 and b=0.01 consistently
throughout all experiments.
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The entire objective function of the proposed BCE-FIT approach consists of
three components: the square loss of tag consistency term in Eqn.4 and two
similarity preservation term given in Eqn.7 and 8 as follows:

min
y,z

n∑

i=1

m∑

j=1

Iij(Tij − s(yi, zj))
2

+α

n∑

i,j=1

(s(yi, yj)− Sij)
2 + β

m∑

i,j=1

(s(zi, zj)− T T
i Tj

m
)2

s.t. yi, zj ∈ {−1, 1}C×1,

n∑

i=1

yi = 0

m∑

j=1

zj = 0

(9)

where α and β are trade-off parameters. The constraints
∑n

i=1 yi = 0 and∑m
j=1 zj = 0 are the bit balance constraints, which are equivalent to maximizing

the entropy of each bit of the binary codes to ensure each bit carrying as much
information as possible.

3.3 Optimization Algorithm

Relaxation. Directly minimizing the objective function in Eqn.9 is intractable
since it is a constrained discrete optimization problem which is NP-hard to solve
[29]. Therefore, we propose to relax the balance constraints into soft penalty
terms and then relaxing the space of solution to [−1, 1]C×1. Then the relaxed
objective function becomes:

min
ỹ,z̃

n∑

i=1

m∑

j=1

Iij(Tij − 1

2
− ỹi

T z̃j
2C

)2

+α

n∑

i,j=1

(
1

2
+

ỹi
T ỹj
2C

− Sij)
2 + β

m∑

i,j=1

(
1

2
+

z̃i
T z̃j
2C

− T T
i Tj

m
)2

+γ(‖
n∑

i=1

ỹi‖2 + ‖
m∑

j=1

z̃j‖2)

s.t. ỹi, z̃j ∈ [−1, 1]C×1

(10)

where γ is a trade-off parameter. ‖∑n
i=1 ỹi‖2 and ‖∑m

j=1 z̃j‖2 are soft penalty
terms converted from the bit balance constraints. However, even after the relax-
ation, the objective function is still non-convex with respect to ỹ and z̃ jointly,
which makes it difficult to optimize. Fortunately, this relaxed problem is differ-
entiable with respect to either one of the two sets of parameters when the other
one is fixed, and therefore we propose to solve the problem by coordinate descent
method. In particular, we alternatively update ỹ and z̃ while fixing the other set
of parameters by doing the following two steps until convergence.
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Step 1: Fix ỹ, Optimize z̃. By taking the partial derivative of Eqn.10 with
respect to z̃j , we can obtain the gradient and LBFGS method is then applied
for solving this optimization problem to obtain optimal z̃.

Step 2: Fix z̃, Optimize ỹ. Similar to step 1, we use LBFGS method to solve
for the optimal ỹ using the gradient of Eqn.10 with respect to ỹi.

Due to the space limitation, we will provide the two gradients in supplemental
material. We alternate the process of updating ỹ and z̃ for several iterations to
find a locally optimal solution. In practice, we have found that a reasonable small
number of iterations can achieve good performance.

Binarization. After obtaining the optimal real value solution ỹ and z̃ for the
relax problem, we need to binarize them to obtain binary hashing codes y and z.
A direct binarization method is to obtain binary codes y and z that are closest
to ỹ and z̃. In particular, we seek to minimize the quantization error between
the binary codes and the relaxed solution as follow:

min
y,z

∑

i

‖yi − ỹi‖2 +
∑

j

‖zj − z̃j‖2

s.t. yi, zj ∈ {−1, 1}C×1

(11)

which leads to the close form solution:

yi = sgn(ỹi), zj = sgn(z̃j) (12)

where sgn() is the signum function of a real value vector.
In this work, we propose a novel binarization method that improves the quan-

tization error through an orthogonal transformation by making use of the struc-
ture of the relaxed solution. We first prove the following theorem.

Theorem 1. Assume Q is a C ×C orthogonal matrix, i.e., QTQ = I. If ỹ and
z̃ are an optimal solution to the relaxed problem Eqn.10, then Qỹ and Qz̃ are
also an optimal solution.

Proof. By substituting Qỹ and Qz̃ into Eqn.10, we have
∑

i,j Iij(Tij − 1
2 −

(Qỹi)
TQz̃j

2C )2 =
∑

i,j Iij(Tij − 1
2 − ỹi

T z̃j
2C )2. Similarly, the value of the second

and third terms will also not change. ‖∑iQỹi‖2 = ‖Q∑
i ỹi‖2 = ‖∑i ỹi‖2 and

‖∑j Qz̃j‖2 = ‖Q∑
j z̃j‖2 = ‖∑j z̃j‖2. We also have that Qỹ,Qz̃ ∈ [−1, 1]C×1.

Thus, the value of the objective function in Eqn.10 does not change by the
orthogonal transformation.

Based on the above observation, we propose to binarize ỹ and z̃ by minimizing
the quantization error between the binary hashing codes and the orthogonal
transformation of the relaxed solution as follow:

min
y,z,Q

∑

i

‖yi −Qỹi‖2 +
∑

j

‖zj −Qz̃j‖2

s.t. yi, zj ∈ {−1, 1}C×1, QTQ = I

(13)
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Note that the direct binarization method can be achieved by simply setting Q =
I. The intuitive idea behind this method is that the orthogonal transformation
not only preserves the optimality of the relaxed solution but also provides us
more flexibility to achieve more effective hashing codes with low quantization
error. Similar ideas have also been investigated in other applications such as
[8] for applying orthogonal transformation for only images in similarity search.
However, our new research not only applies orthogonal transformation for images
but also for tags. The above optimization problem can be solved by minimizing
Eqn.13 with respect to y, z and Q alternatively.

Fix Q, update y and z. The close form solution can be expressed as:

yi = sgn(Qỹi), zj = sgn(Qz̃j) (14)

Fix y and z, update Q. The objective function becomes:

min
QT Q=I

∑

i

‖yi −Qỹi‖2 +
∑

j

‖zj −Qz̃j‖2 (15)

Let Y = [y1, y2, . . . , yn] and Z = [z1, z2, . . . , zm]. Then the above objective func-
tion can be rewritten to:

min
QTQ=I

‖Y −QỸ ‖2F + ‖Z −QZ̃‖2F
= ‖Y ‖2F + ‖Ỹ ‖2F + ‖Z‖2F + ‖Z̃‖2F
−trace((Y Ỹ T + ZZ̃T )QT )

(16)

which is equivalent to:

max
QTQ=I

trace((Y Ỹ T + ZZ̃T )QT ) (17)

here trace() is the matrix trace function and ‖‖F is the matrix Frobenius norm.
In this case, the objective function is essentially a variant of classic Orthogonal
Procrustes problem [22], which can be solved efficiently by singular value de-
composition using the following theorem (we refer to [22] for the detailed proof).

Theorem 2. Let UΛV T be the singular value decomposition of Y Ỹ T + ZZ̃T .
Then Q = UV T minimizes the objective function in Eqn.15.

We then perform the above two steps alternatively to obtain the optimal binary
codes y and z. After obtaining the binary codes, we can assign tags to images
by calculating the predicted tag score using Eqn.1 (see figure 1).

In order to deal with the out-of-example problem in image tagging, where
we need to generate binary codes for query images. A linear hashing function is
used to map the image examples into binary codes as:

yi = f(xi) = sgn(Hxi) (18)
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Algorithm 1. Binary Codes Embedding for Fast Image Tagging (BCE-FIT)

Input: Images X, Observed tag matrix T
Output: Hashing codes y and z, Hashing function H
1: Initialize ỹ and Q
2: repeat
3: Update z̃ in Step 1.
4: Update ỹ in Step 2.
5: until the solution converges
6: repeat
7: Update y and z using Eqn.14
8: Update Q = UV T according to Theorem 2.
9: until the solution converges
10: Obtain hashing function H using Eqn.18.

where H is a C × d parameter matrix representing the hashing function. Then
the optimal hashing function can be directly obtained by minimizing

∑
i(ỹi −

Hxi)
2 + λ‖H‖2F , where λ is a weight parameter for the regularization term to

avoid overfitting and X = [x1, x2, . . . , xn] is the data feature matrix. The full
learning algorithm is described in Algorithm 1.

3.4 Analysis

The optimization algorithm of (BCE-FIT) consists of two main loops. In the
first loop, we iteratively optimize over z̃ and ỹ to obtain the optimal relaxed
solution, where the time complexities for updating z̃ and ỹ are bounded by
O(nC2 + nmC) and O(nmC + nC) respectively. The second loop iteratively
optimizes the binary hashing codes and the orthogonal transformation matrix,
where the time complexities for updating y, z and Q are bounded by O(nC2 +
mC2+C3). Thus, the total time complexity of the learning algorithm is bounded
by O(nmC + nC + nC2 +mC2 + C3), which scales linearly with n given n �
m > C. For each query, the time for obtaining its binary code is constant O(Cd).

4 Experiments

4.1 Datasets and Implementation

We conduct our experiments on two large scale datasets, Flickr1m [11] andNUS-
WIDE [4]. Flickr1m is collected from Flicker images for image annotation and
retrieval tasks. This benchmark contains 1 million image examples associated
with more than 7k unique tags. A subset of 250k image examples with the most
common 2k tags is used in our experiment by filtering out those images with less
than 10 tags. 512-dimensional GIST descriptors [20] are used as image features.
We randomly choose 240k image examples as training set and 10k for testing.
NUS-WIDE [4] is created by NUS lab, which contains 270k images associated
with 5k unique tags. We use the most common 2k tags in our experiment. We
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Table 1. Performance of different algorithms with varying number of training tags on
both datasets with 32 hashing bits

F lickr1m AP@10 AP@20

training tags 2 4 6 8 10 2 4 6 8 10

BCE-FIT 65.4 68.968.968.9 71.1 73.4 77.4 65.2 66.3 70.470.470.4 71.6 74.5

LSR[14] 66.366.366.3 68.6 71.771.771.7 76.276.276.2 79.579.579.5 65.465.465.4 66.966.966.9 69.3 72.172.172.1 75.375.375.3

TMC[30] 62.9 64.1 66.8 71.7 73.4 57.2 61.8 62.7 66.4 70.1

LM3L[10] 60.4 65.8 68.3 71.6 74.7 58.5 62.0 65.8 68.7 70.8

CCA-ITQ[7,8] 55.2 57.5 59.7 61.1 64.6 53.3 55.2 56.3 57.8 60.2

SH[29] 53.7 55.3 57.5 58.4 60.7 52.4 53.8 55.1 55.6 57.5

NUS-WIDE AP@10 AP@20

training tags 2 4 6 8 10 2 4 6 8 10

BCE-FIT 51.1 56.2 63.4 71.7 74.5 48.4 54.2 61.861.861.8 70.270.270.2 75.1

LSR[14] 51.751.751.7 56.556.556.5 66.466.466.4 72.572.572.5 76.776.776.7 49.249.249.2 54.654.654.6 59.4 67.5 76.476.476.4

TMC[30] 48.3 53.1 61.4 72.0 73.6 46.6 51.7 58.4 62.9 67.7

LM3L[10] 47.6 53.4 59.1 70.6 74.0 47.2 52.0 58.1 60.5 64.8

CCA-ITQ[7,8] 46.8 51.5 57.7 61.4 65.2 44.3 47.1 50.6 55.8 59.0

SH[29] 43.2 47.0 52.9 56.8 58.3 40.7 43.8 47.2 51.5 56.1

also filter out those images with less than 10 tags, resulting in a subset of 110k
image examples. 500-dimensional visual features are extracted using a bag-of-
visual-word model with local SIFT descriptor [18]. We randomly partition this
dataset into two parts, 10k for testing and around 100k for training.

We implement our method using Matlab on a PC with Intel Duo Core i5-
2400 CPU 3.1GHz and 8GB RAM. The parameters α, β and γ are tuned by
cross validation on the training set and we will discuss how they will affect the
performance of our approach later in detail. We repeat each experiment 10 times
and report the result based on the average over the 10 runs. Each run adopts a
random separation of the dataset.

4.2 Results and Discussion

The proposed BCE-FIT approach is compared with five state-of-the-art meth-
ods, including three non-hashing methods TMC [30], LM3L [10] and LSR [14],
and two hashing methods CCA-ITQ [7,8] and SH [29]. For LM3L, we use linear
kernels in this method to obtain fair comparison. For CCA-ITQ, the tags are
treated as a different view and a common space is then learned between tags
and images to form the hashing codes. For SH, the observed labels are viewed
as the similarities between images and tags and a bipartite graph is constructed
between nodes representing images and tags. Then, spectral hashing is applied
to obtain binary codes for images and tags based on this graph. Four sets of
experiments are conducted on both datasets to evaluate the effectiveness and
efficiency of the proposed BCE-FIT for image tagging.
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Table 2. Training time and testing time (sec) for different methods on both datasets.
The length of hashing code is fix to 32 for all hashing methods.

F lickr1m NUS-WIDE

method training testing training testing

BCE-FIT 232 1.23 86.45 0.38

LSR[14] 337 24.31 108 7.39

TMC[30] 837 5.36 528 2.57

LM3L[10] 489 23.52 154 7.86

CCA-ITQ[7,8] 254 1.23 91.83 0.37

SH[29] 198 1.22 79.44 0.38

In the first set of experiments, we evaluate the performance of different algo-
rithms by varying the number of training tags. In particular, we vary the number
of training tags for each image from {2, 4, 6, 8, 10}. We then rank the tags based
on their relevance scores (Eqn.1) and return the top K ranked tags. We use
the average precision (AP@K) of top 10 and 20 ranked tags as the evaluation
metric. Table 1 summarizes the results for different methods. Note that for all
hashing methods in this set of experiments, we fix the length of hashing codes
to be 32. It is not surprising to see that the performance of all methods improve
with the increasing number of training tags. From these comparison results,
we can also see that BCE-FIT achieves similar or comparable accuracy results
to the non-hashing methods and substantially outperforms the other hashing
methods. Our hypothesis is that both CCA-ITQ and SH only focus on encod-
ing the consistency of the binary codes to the observed tags without preserving
the visual similarities among the image examples and the semantical similarities
among tags, which tend to over fit. On the other hand, the proposed BCE-FIT
constructs binary codes by simultaneously ensuring the learned codes to be con-
sistent with observed tags and preserving the similarity between images and

Fig. 2. Results of image tagging by varying number of hashing bits on two datasets
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tags, which indicates that BCE-FIT generates more effective codes and predicts
tags accurately. We also evaluate the precision and recall behavior of different
methods. Due to the space limitation, we will include the precision and recall
results in supplemental material.

In the second set of experiments, we evaluate the efficiency of different meth-
ods on both datasets. The training time and tag prediction time are reported
in Table 2. We also fix the hashing bits to be 32 for all hashing methods. From
the reported results, it is clear that image tagging process of hashing methods
is 20 to 25 times faster than multi-label learning method LM3L, tag sparse re-
construction method LSR and tag matrix completion method TMC. The reason
is that hashing methods use binary codes to calculate the tag relevance scores,
which only involves efficient bit-wise operations XOR, while these non-hashing
methods need to deal with real value vectors to compute the tag scores. We also
observe that the training time of our method is comparable with other hashing
methods and is much faster than TMC since the learning algorithm of TMC is
quite involved with multiple terms.

In the third set of experiments, we evaluate the effectiveness of all hashing
methods on both datasets by varying the number of hashing bits. We fix the
number of training tags to be 10 in our experiments. We also compare our BCE-
FIT with direct binarization method from Eqn.12 and call this BCE-FIT0. The
comparison results are reported in Fig.2. It is clear that the proposed BCE-
FIT substantially outperforms other hashing methods on all different number of
hashing bits. We can also observe that the binarization method with orthogonal
transformation is consistently better than directly binarizing method. This is
because BCE-FIT generates more effective hashing codes with lower quantization
error than BCE-FIT0 through orthogonal transformation, which preserves the
optimality of the relaxed solution.

The fourth set of experiments study the performance of BCE-FIT with re-
spect to the parameters α, β and γ. To prove the robustness of the proposed
method, we conduct parameter sensitivity experiments on both datasets. In each

Fig. 3. Parameter Sensitivity for α, β and γ. Results of average precision with 32
hashing bits.
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experiment, we tune only one parameter from {0.5, 1, 2, 4, 8, 16, 32, 128}, while
fixing the other two to the optimal values obtained from the first set of experi-
ments. We report the results on Flickr1m and NUS-WIDE in Fig.3. It is clear
from these experimental results that the performance of BCE-FIT is relatively
stable with respect to α, β and γ.

5 Conclusion

This paper proposes a novel Binary Codes Embedding approach for Fast Image
Tagging (BCE-FIT) by designing compact binary hashing codes for both im-
ages and tags. We formulate the problem of learning binary hashing codes as a
discrete optimization problem by simultaneously ensuring the observed tags to
be consistent with the constructed hashing codes and preserving the similarities
between images and tags. An efficient coordinate descent method is developed as
the optimization procedure. Extensive experiments on two large scale datasets
demonstrate that the proposed approach can achieve comparable performance
with state-of-the-art methods while using much less time. There are several pos-
sible directions to explore in the future research. For example, we plan to apply
some sequential learning approach to accelerate the training speed of our method.
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