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Abstract. Place recognition currently suffers from a lack of scalability
due to the need for strong geometric constraints, which as of yet are typ-
ically limited to RANSAC implementations. In this paper, we present
a method to successfully achieve state-of-the-art performance, in both
recognition accuracy and speed, without the need for RANSAC. We pro-
pose to discretise each feature pair in an image, in both appearance and
2D geometry, to create a triplet of words: one each for the appearance
of the two features, and one for the pairwise geometry. This triplet is
then passed through an inverted index to find examples of such pairwise
configurations in the database. Finally, a global geometry constraint is
enforced by considering the maximum-clique in an adjacency graph of
pairwise correspondences. The discrete nature of the problem allows for
tractable probabilistic scores to be assigned to each correspondence, and
the least informative feature pairs can be eliminated from the database
for memory and time efficiency. We demonstrate the performance of our
method on several large-scale datasets, and show improvements over sev-
eral baselines.

Keywords: Place Recognition, Location Recognition, Instance Recog-
nition, Image Retrieval, Bag Of Words, Inverted Index.

1 Introduction

This paper addresses place recognition [6][16][8][26], whereby the identity is
sought of a particular place or scene depicted in a query image. This is closely
related to the recognition or retrieval of object instances [13][1] and qualita-
tive localisation [7][17][2]. In a typical place recognition framework, a Bag Of
Words (BOW) filtering stage yields a subset of candidate images [14], upon
which strong 3D constraints are imposed on local features based on a RAN-
dom SAmple Consensus (RANSAC) scheme [15]. Whilst such constraints offer
powerful verification of global geometric consistency, they are expensive to com-
pute due to the need for generating multiple transformation hypotheses in the
RANSAC algorithm, and large-scale real-time recognition tasks are often forced
to forego 3D geometry entirely [2][7]. Although the use of an inverted index in
the BOW stage allows for very fast pre-filtering and has been studied extensively
in recognition and retrieval methods [5][1], geometric verification is typically re-
served as a separate stage altogether [14], or weakly represented in the BOW
vector [4], but typically is not incorporated directly in the inverted index.
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Fig. 1. A comparison of our proposed pairwise voting method with the standard single
feature voting method, both using an inverted index

In this paper, we consider an alternative approach to geometric matching
by building a generative model for each place, and embedding the learned 2D
pairwise geometry directly in the inverted index to allow for much faster query-
ing, which we denote Pairwise Probabilistic Voting (PPV). First, local features
are tracked across training images for each place using wide baseline matching.
Then, the relative geometry of pairs of features is discretised into a dictionary of
geometric words, and the informative elements of an image are taken as the two
visual words and one geometric word that defines each feature pair, which we
denote a word triplet. Given a query image, rather than searching for candidate
places that contain a particular visual word as with standard BOW, the search
is for places that contain a particular pairwise configuration satisfying all three
words in the triplet, as illustrated in Figure 1. By learning a probabilistic model
of local geometry for each pair of features across training images for a particular
place, votes for each place are weighted with a score reflecting the likelihood
that the pairwise correspondence is a true positive. Finally, by ensuring that all
votes for a candidate place agree globally with each other in pairwise geometry,
an approximate constraint on global geometry can be applied without the need
for an expensive RANSAC step.

1.1 Related Work

Instance recognition typically extends the image retrieval framework [14] to a
recognition framework [26], by exploiting structure in the database [3] and learn-
ing models of places or objects over a training set of training images. Standard
image retrieval approaches based on ranking database images form a simple so-
lution [13], and in [16] a query was matched to each of a small subset of exemplar
images for each place. Tracking local features across several training images to
learn the expected behaviour of features was proposed in [6], and superimposing
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them onto a single synthetic image was investigated in [8]. Competing ideologies
to recognition include learning discriminative models based on the BOW vector
[9] and building point clouds from which to draw feature correspondences [17].

Although geometric matching for recognition with these techniques still relies
on a costly RANSAC iteration, attempts to enrich this stage using 2D geometries
have proven successful in image retrieval. In [22], matches were made between
groups of neighbouring features that were weakly spatially consistent, and in
[25][24] dictionaries combining both appearance and geometry were learned. In
[20], fast Hough-based voting based on feature geometries was proposed, and
[19][18] developed techniques for matching only those subsets of features with
agreement on global transformations across an image pair. Near-duplicate image
search methods also allow for enforcement of strong local geometric constraints
[23], but these are not suitable for wide baseline matching or outdoor scenes.

2 A Geometric Dictionary

Concurrently with a standard visual dictionary [14], we propose to discretise
pairwise geometry to enable geometric data to be sent through an inverted index
alongside the appearance data. As with the visual dictionary Π of visual words
π ∈ Π , we define a geometric dictionary Φ of geometric words φ ∈ Φ. Each
geometric word represents a unique range in pairwise 2D image space.

The geometric dictionary is composed over 4-dimensional space, with each
geometric word defined by 4 pairwise geometries. For a feature pair constituting
features u and v, the pairwise geometries are as follows: scale-invariant distance
δuv, scale ratio σuv, rotation-invariant orientation difference θuv and rotation-
invariant angle ψuv. Scale-invariance and rotation-invariance are important in
ensuring that the generative model of each place is not limited by the scales
and rotations reflected in the training dataset. The distance between features,
duv, is made scale-invariant by dividing by the scale of u, and the relative angle
is made rotation-invariant by subtracting the orientation of u. The scale ratio
and orientation difference are naturally invariant to in-plane transformation.
This discretisation of geometry is similar to that of [25] except for we define the
discretisation a priori rather than during querying, and is comparable to [24] but
we limit to pairwise geometries to allow for inverted indexing with reasonable
memory requirements.

Using the notation in Figure 2, the pairwise geometries are then calculated as
follows:

δuv =
duv
σu

, σuv =
σv
σu
,

θuv = θv − θu, ψuv = ψuv − θu

(1)

Each of these four pairwise geometries is independently discretised by defining
boundaries for each of the four geometries, with n divisions per geometry. How-
ever, rather than defining each boundary as a linear function of n, we instead use
the expected distribution of each geometry from a training set of feature pairs,
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Fig. 2. Notation for pairwise geometries

and compute the kth percentile from that distribution. This is because whilst
the orientation and angle differences can be assumed to be distributed uniformly
in the range 0− 360◦, there is no such trend in the distribution of pairwise scale
ratios and distances. By considering the observed distribution over a set of fea-
ture pairs from real data, this ensures that for a geometric dictionary with a
fixed number of divisions per geometry, each division has an equal likelihood
of assignment given a new pair of features, tending towards a uniform global
distribution. We learned these distributions by randomly sampling one million
pairs of features observed in images from the database.

Finally, the geometric word φuv for the feature pair is the discrete portion
of 4-dimensional geometry defined by the quantised values of δuv, σuv, θuv and
ψuv. This geometric word is then combined with the visual words πu and πv of
the two features, to form a word triplet τuv. For our experiments, we used 30
divisions for each of the four geometries, yielding a geometric dictionary of size
810K.

3 Pairwise Probabilistic Voting

The key idea behind our proposed method is to create a generative model for each
place in the database, by learning distributions of word triplets over the place’s
training images, and then finding matches between pairs of query features and
pairs of database landmarks. These matches then vote for the respective place,
with the vote weighted probabilistically.

3.1 Learning a Distribution of Triplets

Let us define a landmark as a real-world point in the environment, that is ob-
served in an image as a feature. Every database place s ∈ S is represented by
a set of such landmarks Xs, with each built from a single feature track across
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the place’s entire set of training images using wide baseline matching, similar to
[6][8][16]. Each pair of features u and v, forming two tracks, is assigned one word
triplet per image in which the features co-occur, and thus a set of word triplets
is accumulated over all training images. The two tracks form two landmarks x
and y, with the landmark pair zxy assigned the distribution of triplets p(τ |zxy)
based on this learned set of word triplets from the feature tracks.

3.2 Voting

For the remainder of the paper, we drop the subscripts in z and let it represent
any particular landmark pair. During recognition, each feature pair w in the
query image is assigned a single word triplet τw. These query word triplets are
then sent through an inverted index to find landmark pairs in the database that
have also been assigned to this particular word triplet. The leaf node in the index
tree assigns a weighted vote μz to landmark pair z, and the overall score for a
place s is then the normalised summation of votes across all its landmark pairs:

f(s) =

∑

z∈Zs

μ̂z

η
(2)

Here, Zs is the set of landmarks in place s, and η is a normalisation term,
defined as the average number of landmark pairs observed in s’s training images.
μ̂z is defined as the maximum value of μz achieved by all query feature pairs, to
account for cases when more than one feature pair matches a landmark pair.

The weighted vote μz is a probabilistic score representing how likely it is that
observed triplet τw is a true observation of landmark pair z. From the learned dis-
tribution p(τ |z), we can readily draw the value of p(τw|z). Furthermore, we can
also draw the values of p(τw|z∗) for any landmark pair z∗ in the entire database.
Therefore, for a given triplet τw, the vote for landmark pair z is evaluated as:

μz = p(z|τw) = p(τw|z)p(z)∑

z∗
p(τw|z∗)p(z∗) (3)

The value of p(τw|z)p(z) is proportional to the number of times τw is observed
for landmark pair z across all training images. Therefore, μz is simply the number
of times that τw is observed when z is present, divided by the number of times
that τw is observed when any landmark pair is present. This weight is calculated
in advance and stored at the leaf node in the index, such that voting for a place
involves simply traversing the index with a query triplet and adding weighted
votes to any database places, should a landmark pair for that place have an entry
at that leaf node. Figure 3 illustrates a set of landmark pairs and their associated
weights. Higher weights are assigned to pairs which are both frequently observed
at a place and discriminative with respect to all other landmark pairs in the
database.



Pairwise Probabilistic Voting 509

Fig. 3. Vote weights μz for landmark pairs for an example place. The blue circle
represents landmark x, with all other circles representing landmark y, and hence a
landmark pair zxy.

3.3 Index Structure

Our goal in designing an appropriate index is to link every word triplet to a
leaf node, with each leaf node pointing to a set of weighted votes, and each
one associated with a database place. The fastest inverted index is one which
contains one pointer for every possible word triplet, where each pointer represents
the leaf node. However, given a visual dictionary containing 100K words and a
geometric dictionary containing 800K words,, this would require an index with
at least 100K × 100K × 800K ≈ 1016 pointers, which is impractical.

We therefore propose to divide the inverted index into two layers, each with a
different structure. The first layer is a standard inverted index, and represents the
combination of the two visual words in a word triplet, requiring 100K×100K =
1010 pointers (10 GB RAM). Then, the second layer is no longer an inverted index
structure, but simply a list of geometric words for each visual word combination
from the first layer. This list represents all geometric words from the entire
database that have been assigned to by this visual word combination, and the
list is structured as a binary search tree for efficient searching. In this way,
whilst the first layer contains an entry for every possible combination of visual
word pairs, the second layer only contains those geometric words which have
actually been observed together with the particular visual word pair, reducing
the memory requirements by several orders of magnitude.

Figure 4 illustrates this structure. In this example, suppose we have a query
triplet consisting of visual words π2 and π3, and geometric word φ4. Following
the path of π2 for the first landmark and then π3 for the second, we see the list of
two geometric words: φ1 and φ4. Then, taking φ4, we see that there are two votes,
targetting two different landmark pairs in the database that are represented by
this particular word triplet, and we then add these weighted votes to scores for
the respective places.
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Fig. 4. The index structure, with an example distribution of wods. The arrows repre-
sent potential paths through the index in pursuit of the weighted votes.

4 Smoothing the Distributions

The discrete nature of the generative place models makes it tractable to learn a
deep probabilistic model of landmark pairs, as a joint distribution across both
appearance and geometry. Rather than treat the visual and geometric words
assigned to a pair as independent, we propose to compute a full joint distribution
across all three words in a triplet. In this way, effects on one word are modelled
in the knock-on effect on another word. For example, if a particular illumination
condition causes the visual word of one landmark to change, then we model
the corresponding effect of this illumination condition on the visual word of the
other landmark in the pair. Similarly, if the viewpoint on the place changes
such that the pair’s geometric word is affected, then the effect on the visual
words due to the apparent change in scene appearance can be modelled. This
involves updating the distribution p(τ |z) for each landmark pair by smoothing
the explicit observations of word triplets from the feature tracks in the training
images.

For an observed visual word π ∈ Π , let us define a set of aπ alternative visual
words, π̄ ∈ Π , where an alternative word represents a possible assignment on a
subsequent observation of the same landmark. This is similar to the soft assign-
ment strategies in the BOW framework [13][11]. Each alternative visual word is
designated a likelihood p(π̄x|πx) following Gaussian weighting proportional to
the word centroid distance, with standard deviation σπ , as in [13]. Similarly, for
each geometric word φ ∈ Φ, a set of aφ alternative geometric words φ̄ ∈ Φ are
defined as the αφ nearest geometric words to φ, with their likelihoods p(φ̄|φ)
again weighted by a Gaussian, with standard deviation σφ. We chose the values
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for aπ and aφ by observing sets of landmark pairs, and determining the limit
when the set of alternative words assigned to the pair accounted for future ob-
servations in 99% of the cases. The values of σπ and σφ were fixed such that the
furthest away alternative word had a value of p(π̄|π) or p(φ̄|φ) at 1% of that of
the original word, i.e. when π̄ ≡ π) or φ̄ ≡ φ).

We now consider the probability that an observation of landmark pair z is
assigned to a particular word triplet τ . Let us factorise the distribution as follows:

p(τ |z) = p(πx, πy, φxy|z)
= p(πx|z)p(πy|πx, z)p(φxy|πx, πy , z)

(4)

As such, we model y’s visual word to be dependent on x’s visual word, and the
geometric word as dependent on both these visual words. We now introduce the
smoothing effects of the alternative words, by considering that new word triplets
should be included in the distribution, if each word in the triplet is in fact an
alternative word for the respective original word. The probability of observing
this new triplet is then calculated by taking the factorisation in Equation 4, and
replacing each term with the probability of assignment to the alternative word.
This is evaluated as:

p(τ |z) = p(πx, πy, φxy|z)

=

contribution from alternative visual words for landmark x
︷ ︸︸ ︷∑

π̄x

p(π̄x|τ)p(π̄x|πx)

×
contribution from alternative visual words for landmark y

︷ ︸︸ ︷∑

π̄y

p(π̄y|π̄x)p(π̄y|πy)

×
contribution from alternative geometric words for landmark pair z

︷ ︸︸ ︷∑

φ̄xy

p(φ̄xy|π̄x, π̄y)p(φ̄xy |φxy)

(5)

where the probabilities in the bottom three rows are based on the maximum-
likelihood distributions as before.

5 Geometric Cliques for Global Consistency

Whilst the pairwise geometry embedded in the inverted index offers strong con-
straints on local configurations, as of yet there is no enforcement of global geo-
metric consistency. Thus, a set of feature pairs voting for one place may be in-
dependently representative of a landmark pair, but when considering the global
relationships between all pairs, the overall configuration may be incompatible.

5.1 Defining a Compatibility Matrix

The proposed solution, which we denote the method of Geometric Cliques (GC),
is based on finding a maximum clique in an adjacency matrix, whose elements
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indicate the compatibility of each pairwise match. Let us define a set of n pairwise
matches m ∈ M between an image and a place, generated by passing query
feature pairs through the inverted index. Then, for each place, we construct an
n×n binary compatibility matrix B, where element Bij stores the compatibility
of pairwise matches mi and mj , and is set to either 0 or 1. If mi represents a
match between feature pair wuivi and landmark pair zxiyi , the value of Bij is
1 if, and only if, there also exist pairwise matches between every feature pair
wuiuj , wuivj , wviuj , wvivj and every landmark pair zxixj , zxiyj , zyixj , zyiyj . In
other words, all pairwise combinations of features and landmarks in mi and mj

must have found a match through the inverted index formij to be set to 1. If any
pair of these features has not found a match to any pair of these landmarks, then
mi and mj are not fully compatible and Bij is set to 0. In the case that a pair
of landmarks never co-occur in the place’s training images, then the respective
element of B is always set to 1, i.e. a value of 0 indicates that we have explicitly
observed an inconsistent pairwise match that needs to be eliminated.

For example, in Figure 5a, the left image can be considered the query features,
and the right image the database landmarks. Taking the red and blue pairs, all
four features in the left image have a geometrically-similar configuration to the
associated landmarks in the right image. Therefore, the respective element in B
is set to 1 (see the first matrix in Fig 5b). However, taking the red and orange
pairs, the configuration is not similar across all four features (only across the
two features highlighted by the same colour), and hence the respective element
in B is set to 0.

5.2 Searching for the Maximum Clique

The task now becomes to find a set of pairwise matches that are all compatible
with each other, i.e. finding the maximum clique of B. Several solutions to this
exist, including fast branch-and-bound methods [12], or approximate solutions
using a fast search for a near-optimal maximum clique, followed by gradient
descent to avoid local minima [21]. However, these methods are generalised and
deal with a wide range of matrix structures, whereas we now propose our own
fast approximate solution that exploits the unique nature of B.

There is a very low probability that both query features in a false positive
pairwise match are also compatible with other pairwise matches. Thus, any false
positive matches in B will have a very sparse row in the matrix, typically with
very few elements set to 1. However, true positive pairwise matches will have a
much larger number of compatible pairs, and hence the corresponding row will
have a significant number of 1’s. As such, we can very quickly eliminate false
positives by detecting those rows with few 1’s. The proposed algorithm exploits
this by scoring each pairwise match by the number of consistent pairs, i.e. the
number of elements in the respective row of B assigned to 1, and recursively
removing the pair with the lowest score. After each iteration, the scores for
each remaining pair are updated. The algorithm then converges when the entire
matrix is devoid of any 0’s.
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(a) Each colour represents one pairwise match found
through the inverted index, and the resulting adja-
cency matrix is shown in (b)

(b) The adjacency matrix iteratively eliminates the
pairwise match with the lowest score, until a maxi-
mum clique is found

Fig. 5. Illustration of the Geometric Cliques algorithm to eliminate pairwise matches
that, although may be locally consistent, are not globally consistent with other pairwise
matches

See Figure 5b for an example of the evolution of B towards a maximum clique.
Here, the green pairwise match is in fact a false positive, even though it may
appear consistent with some of the other pairwise matches; in this example, the
red pair. Our method is able to deal with this case because we require every pair
to be consistent with every other pair in the final matrix.

Once the maximum clique has been established, the score for the respective
place is determined in Equation 2 by considering only those pairs in the maxi-
mum clique. Given that false positive candidates exhibit zero or very few 1’s in
their respective row and hence are easy to eliminate, this method reproduced
the same maximum clique as the methods of [12] and [21] over all experiments
presented in Section 7, but with an average speed up factor of 13.7 compared
with the fastest of these two.

During recognition of a query image, database places are ranked in order
of their current scores, before elimination of these false positive matches as dis-
cussed. First, the place with the highest score is processed with geometric cliques,
with its score updated, then the place with the second highest score, and so on.
The algorithm stops when the score of the next place is lower than the maximum
updated score for places which have been through the geometric cliques stage,
because it is only possible for the score to reduce. Hence, only a small fraction
of database places need to go through this stage, offering significant speed-up
compared to RANSAC-based re-ranking strategies.
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6 Boosting Efficiency by Triplet Selection

A key requirement of modern retrieval and recognition engines is scalability to
web-scale tasks, whereby databases are automatically generated from vast user-
generated databases [26][3]. We now explore how our proposed system scales
appropriately to such demand, in terms of both memory efficiency and compu-
tational efficiency.

In order to both reduce the memory footprint and increase the recognition
speed, albeit at a small cost to recognition accuracy, only a subset of all word
triplets are stored in the index, with the rest discarded. Memory requirements
will naturally be reduced, and meanwhile, speed will be increased when attempt-
ing to find a particular geometric word in the binary tree search, as each binary
tree will be reduced in length. We propose to store only the most informative
word triplets, such as those representing landmark pairs that are very stable
in a place, or landmark pairs which have word triplets particularly unique to
their place. Note that the emphasis is on informative word triplets, not informa-
tive landmark pairs; the triplets associated with each landmark pair will differ
in their own discriminative power due to the number of other landmark pairs
represented by each triplet.

To determine the level of information which each word triplet conveys, we
consider the conditional entropy of the place identity, given that the knowledge
of the triplet’s presence or absence in a query image is available. Let us define
S as the state of the place depicted in the query, which can take on all values
s ∈ S, and the binary variable T as the state of word triplet τ , where T = 1
indicates that the triplet is observed in a query. Word triplets are then ranked
in order of the conditional entropy:

H(S|T) =
∑

S∈S

∑

T=0,1

p(S,T) log
p(T)

p(S,T)

=
∑

S∈S

∑

T=0,1

p(T|S) log p(T)

p(T|S)
(6)

where the second row comes from p(S,T) = p(T|S)p(S), where the terms
p(S) then cancel due to an equal prior probability across all places.

To calculate p(T = 1|S = s), the probability of observing word triplet τ
given place s, we consider the proportion of s’s training images that contain a
landmark pair with this triplet, based on the landmark’s distribution of word
triplets. The value of p(T = 0|S = s) is then 1 − p(T = 1|S = s), and the value
of p(T) is the summation of p(T|S) over all places. In order to choose an optimal
set of word triplets for a specified memory constraint, triplets are added to the
inverted index in order of their conditional entropy, such that those which offer
most information when observed, are added first. This is evaluated in Section 7
for a given memory allowance. Note that the empty index, before any triplets
are added, is a constant for any scale of database.
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7 Experiments

7.1 Experimental Procedure

We evaluated our method on three datasets: the Oxford [14] and Paris [13] Build-
ings, and our own new dataset World Buildings. The Oxford and Paris Buildings
datasets consist of 17 and 12 places respectively, and the World Buildings dataset
consists of 300 places acquire from Flickr.com using search terms such as “Syd-
ney Opera House” and “Houses of Parliament”, each with 1000 training images
and 10 test images. It was decided to use this new dataset due to the large
number of individual places compared to standard image retrieval datasets such
as the Oxford and Paris Buildings, together with the large number of training
images as is required for our method. SIFT features [10] were matched using fast
geometric matching [14] to generate feature tracks, whilst discarding tracks be-
tween image pairs yielding less than 15 inlier feature matches. For each dataset,
a further 1M random distractor images were added from Flickr, with each im-
age acting as its own place, such that each feature is designated a landmark,
and with the probabilistic model for PPV computed across the single image. A
dictionary of 100k visual words was trained using approximate k-means [14].

Our PPV method was compared against implementations of two modelling
techniques, each with three geometric querying methods, for a total of 6 com-
petitors. The modelling techniques include the Iconic Images (IC) method [16],
returning the image with the most inliers across a set of iconic images for each
place, and the Scene Maps (SM) method [8], with each place represented by a
single map of superimposed features and returning the scene map with the most
inliers. The querying techniques include the Visual Phrases (VP) of [25] where
small groups of geometrically-consistent features are voted for, and the spatially-
constrained similarity measure (SCSM) of [18] where entire object transforma-
tions are voted for, both using an inverted index. Furthermore, a standard tech-
nique was implemented using RANSAC geometric verification on the top 50
places returned from a BOW stage (BOW + RANSAC) [14], using the recently-
updated LO-RANSAC method [15]. For each implementation, both the Average
Precision (AP) and the Recall at 100% precision (R@1) were recorded, with the
latter being a useful measure for the applicability to robotics due to the need
for very high precision in localisation.

For a fair comparison of scalability, each modelling technique was allocated
the same memory to store the necessary data (excluding constant memory re-
quirements such as the BOW and word triplet index structures, which are not
affected by scale). For II, iconic images were added in order of their distance to
the centroid of the place’s training images until the memory limit was reached,
with all these iconic images then stored in the database. Similarly, for SM, the
superimposed features were added in order of the number of features in the re-
spective feature track. For our PPV method, word triplets were added in order
of their conditional entropy as in Section 6. Feature attributes (location, scale
and orientation) were quantised to 2 bytes each for SM and II.
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7.2 Results

Accuracy and Timing. Table 1 presents the average precision, recognition rate
and query time (excluding feature extraction and quantisation) for all implemen-
tations of competing methods, each given an allocation of 16MB (excluding the
distractor images). Furthermore, we show the incremental improvements on our
PPV method as two key components are introduced: the smoothed parameter
learning stage (as opposed to maximum-likelihood estimation), and the geomet-
ric cliques stage (as opposed to a purely local voting scheme). This new method
outperforms all other competitors that forego a RANSAC stage, and offers sim-
ilar if not greater recognition performance even when RANSAC is included in
the competitors (but not in our method). Intuitively, our geometric cliques stage
for global geometric verification is very powerful and offers similar constraints
to a full RANSAC procedure. Furthermore, our method is significantly faster
than all competitors on all datasets, and in particular, adding the GC stage
incurs little timing penalty compared to the addition of a RANSAC stage for
the competitors. Note that performance is generally higher on the Oxford and
Paris datasets despite the smaller set of training images for each place due to
the availability of bounding boxes, whereas the World Buildings dataset requires
unsupervised feature tracking across the entire image.

Memory. Figure 6 demonstrates that as further triplets are accumulated in
the index, the recognition accuracy improves because a larger number of votes
are possible for the correct place, and so this score becomes less corrupted by
competing places. In fact, average precision begins to flatten out at around
8MB, corresponding to less than half of the maximum memory requirement
(16MB), showing that half of the word triplets offer little information and are
typically drawn from unstable landmark pairs, or those landmark pairs with
poorly discriminating visual word and geometric word combinations. As a further

Table 1. Summary of recognition results for all implementations. AP = Average Pre-
cision, R@1 = Recall at 100% precision. (Time in ms, 3.2GHz Intel Core i7).

Oxford Paris World
Method AP R@1 Time AP R@1 Time AP R@1 Time

II + VP 0.673 0.695 1211 0.704 0.732 1128 0.601 0.645 1379
SM + VP 0.700 0.739 1445 0.731 0.785 1379 0.622 0.656 862
II + SCSM 0.688 0.741 844 0.718 0.772 786 0.612 0.655 894
SM + SCSM 0.700 0.728 521 0.724 0.758 498 0.631 0.684 567

II + BOW + RANSAC 0.741 0.770 1511 0.777 0.802 1456 0.687 0.731 1872
SM + BOW + RANSAC 0.757 0.798 1236 0.778 0.822 1231 0.698 0.748 1560

PPV 0.702 0.731 144 0.741 0.761 137 0.635 0.655 168
PPV + Smoothing 0.737 0.768 166 0.758 0.792 156 0.653 0.686 195

PPV + GC 0.761 0.788 150 0.785 0.812 134 0.676 0.710 174
PPV + Smoothing + GC 0.769 0.803 175 0.790 0.830 165 0.685 0.723 202
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consequence of reducing the number of stored triplets, the computational time
decreases as a much smaller set of triplets must be searched across. The difference
between an allocation of 16MB and 8MB was a decrease in computational time
from 168ms to 137ms. The competing methods naturally increase in performance
as greater memory is allocated, but the scalability of our method is comparable
due to the allocation of memory based on an entropy measure, rather than the
naive heuristics available for the competitors.
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Fig. 6. The effect of the allocated memory on the average precision of recognition

8 Conclusions

In this paper a new framework for fast place recognition has been presented,
called Pairwise Probabilistic Voting. It has been shown that it is possible to
combine the merits of geometric constraints and inverted-index approaches, by
voting for scenes through simple, local pairwise relationships. Geometry can be
embedded in the inverted index by discretising image space over a number of
geometry types, which also enables a strong generative model to be built, with
joint distributions over pairwise appearance and geometry. We have also shown
how global geometric constraints can be applied again by simply considering
pairwise geometries, offering similar recognition performance to RANSAC ap-
proaches at a fraction of the required time. Our PPV method is also able to
scale well with modest memory requirements due to its ability to remove most
pairwise relationships from the index based on an entropy measure.
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