
Growing Regression Forests by Classification:

Applications to Object Pose Estimation

Kota Hara and Rama Chellappa

Center for Automation Research, University of Maryland, College Park, USA

Abstract. In this work, we propose a novel node splitting method for
regression trees and incorporate it into the regression forest framework.
Unlike traditional binary splitting, where the splitting rule is selected
from a predefined set of binary splitting rules via trial-and-error, the
proposed node splitting method first finds clusters of the training data
which at least locally minimize the empirical loss without considering
the input space. Then splitting rules which preserve the found clusters
as much as possible are determined by casting the problem into a clas-
sification problem. Consequently, our new node splitting method enjoys
more freedom in choosing the splitting rules, resulting in more efficient
tree structures. In addition to the Euclidean target space, we present
a variant which can naturally deal with a circular target space by the
proper use of circular statistics. We apply the regression forest employ-
ing our node splitting to head pose estimation (Euclidean target space)
and car direction estimation (circular target space) and demonstrate that
the proposed method significantly outperforms state-of-the-art methods
(38.5% and 22.5% error reduction respectively).

Keywords: Pose Estimation, Direction Estimation, Regression Tree,
Random Forest.

1 Introduction

Regression has been successfully applied to various computer vision tasks such
as head pose estimation [17,13], object direction estimation [13,30], human body
pose estimation [2,28,18] and facial point localization [10,5], which require con-
tinuous outputs. In regression, a mapping from an input space to a target space is
learned from the training data. The learned mapping function is used to predict
the target values for new data. In computer vision, the input space is typically the
high-dimensional image feature space and the target space is a low-dimensional
space which represents some high level concepts present in the given image.
Due to the complex input-target relationship, non-linear regression methods are
usually employed for computer vision tasks.

Among several non-linear regression methods, regression forests [3] have been
shown to be effective for various computer vision problems [28,9,10,8]. The re-
gression forest is an ensemble learning method which combines several regression
trees [4] into a strong regressor. The regression trees define recursive partitioning

D. Fleet et al. (Eds.): ECCV 2014, Part II, LNCS 8690, pp. 552–567, 2014.
c© Springer International Publishing Switzerland 2014

Growing Regression Forests by Classification 553

of the input space and each leaf node contains a model for the predictor. In the
training stage, the trees are grown in order to reduce the empirical loss over
the training data. In the regression forest, each regression tree is independently
trained using a random subset of training data and prediction is done by finding
the average/mode of outputs from all the trees.

As a node splitting algorithm, binary splitting is commonly employed for
regression trees, however, it has limitations regarding how it partitions the input
space. The biggest limitation of the standard binary splitting is that a splitting
rule at each node is selected by trial-and-error from a predefined set of splitting
rules. To maintain the search space manageable, typically simple thresholding
operations on a single dimension of the input is chosen. Due to these limitations,
the resulting trees are not necessarily efficient in reducing the empirical loss.

To overcome the above drawbacks of the standard binary splitting scheme, we
propose a novel node splitting method and incorporate it into the regression for-
est framework. In our node splitting method, clusters of the training data which
at least locally minimize the empirical loss are first found without being re-
stricted to a predefined set of splitting rules. Then splitting rules which preserve
the found clusters as much as possible are determined by casting the problem
into a classification problem. As a by-product, our procedure allows each node
in the tree to have more than two child nodes, adding one more level of flexi-
bility to the model. We also propose a way to adaptively determine the number
of child nodes at each splitting. Unlike the standard binary splitting method,
our splitting procedure enjoys more freedom in choosing the partitioning rules,
resulting in more efficient regression tree structures. In addition to the method
for the Euclidean target space, we present an extension which can naturally deal
with a circular target space by the proper use of circular statistics.

We refer to regression forests (RF) employing our node splitting algorithm
as KRF (K-clusters Regression Forest) and those employing the adaptive deter-
mination of the number of child nodes as AKRF. We test KRF and AKRF on
Pointing’04 dataset for head pose estimation (Euclidean target space) and EPFL
Multi-view Car Dataset for car direction estimation (circular target space) and
observe that the proposed methods outperform state-of-the-art with 38.5% error
reduction on Pointing’04 and 22.5% error reduction on EPFL Multi-view Car
Dataset. Also KRF and AKRF significantly outperform other general regression
methods including regression forests with the standard binary splitting.

2 Related Work

A number of inherently regression problems such as head pose estimation and
body orientation estimation have been addressed by classification methods by
assigning a different pseudo-class label to each of roughly discretized target value
(e.g., [33,20,23,1,24]). Increasing the number of pseudo-classes allows more pre-
cise prediction, however, the classification problem becomes more difficult. This
becomes more problematic as the dimensionality of target space increases. In
general, discretization is conducted experimentally to balance the desired clas-
sification accuracy and precision.

554 K. Hara and R. Chellappa

[32,29] apply k-means clustering to the target space to automatically discretize
the target space and assign pseudo-classes. They then solve the classification
problem by rule induction algorithms for classification. Though somewhat more
sophisticated, these approaches still suffer from problems due to discretization.
The difference of our method from approaches discussed above is that in these
approaches, pseudo-classes are fixed once determined either by human or cluster-
ing algorithms while in our approach, pseudo-classes are adaptively redetermined
at each node splitting of regression tree training.

Similarly to our method, [11] converts node splitting tasks into local classi-
fication tasks by applying EM algorithm to the joint input-output space. Since
clustering is applied to the joint space, their method is not suitable for tasks with
high dimensional input space. In fact there experiments are limited to tasks with
upto 20 dimensional input space, where their method performs poorly compared
to baseline methods.

The work most similar to our method was proposed by Chou [7] who applied k-
means like algorithm to the target space to find a locally optimal set of partitions
for regression tree learning. However, this method is limited to the case where
the input is a categorical variable. Although we limit ourselves to continuous
inputs, our formulation is more general and can be applied to any type of inputs
by choosing appropriate classification methods.

Regression has been widely applied for head pose estimation tasks. [17] used
kernel partial least squares regression to learn a mapping from HOG features to
head poses. Fenzi [13] learned a set of local feature generative model using RBF
networks and estimated poses using MAP inference.

A few works considered direction estimation tasks where the direction ranges
from 0◦ and 360◦. [19] modified regression forests so that the binary splitting
minimizes a cost function specifically designed for direction estimation tasks.
[30] applied supervised manifold learning and used RBF networks to learn a
mapping from a point on the learnt manifold to the target space.

3 Methods

We denote a set of training data by {xi, ti}Ni=1 , where x ∈ R
p is an input vector

and t ∈ R
q is a target vector. The goal of regression is to learn a function F ∗(x)

such that the expected value of a certain loss function Ψ(t, F (x)) is minimized:

F ∗(x) = argmin
F (x)

E[Ψ(t, F (x)]. (1)

By approximating the above expected loss by an empirical loss and using the
squared loss function, Eq.1 is reformulated as minimizing the sum of squared
errors (SSE):

F ∗(x) = argmin
F (x)

N∑

i=1

||ti − F (xi)||22. (2)

However, other loss functions can also be used. In this paper we employ a spe-
cialized loss function for a circular target space (Sec.3.5).

Growing Regression Forests by Classification 555

In the following subsections, we first explain an abstracted regression tree
algorithm, followed by the presentation of a standard binary splitting method
normally employed for regression tree training. We then describe the details of
our splitting method. An algorithm to adaptively determine the number of child
nodes is presented, followed by a modification of our method for the circular tar-
get space, which is necessary for direction estimation tasks. Lastly, the regression
forest framework for combining regression trees is presented.

3.1 Abstracted Regression Tree Model

Regression trees are grown by recursively partitioning the input space into a
set of disjoint partitions, starting from a root node which corresponds to the
entire input space. At each node splitting stage, a set of splitting rules and
prediction models for each partition are determined so as to minimize the certain
loss (error). A typical choice for a prediction model is a constant model which is
determined as a mean target value of training samples in the partition. However,
higher order models such as linear regression can also be used. Throughout this
work, we employ the constant model. After each partitioning, corresponding
child nodes are created and each training sample is forwarded to one of the child
nodes. Each child node is further split if the number of the training samples
belonging to that node is larger than a predefined number.

The essential component of regression tree training is an algorithm for split-
ting the nodes. Due to the recursive nature of training stage, it suffices to discuss
the splitting of the root node where all the training data are available. Subse-
quent splitting is done with a subset of the training data belonging to each node
in exactly the same manner.

Formally, we denote a set of K disjoint partitions of the input space by
R = {r1, r2, . . . , rK}, a set of constant estimates associated with each parti-
tion by A = {a1, . . . , aK} and the K clusters of the training data by S =
{S1, S2, · · · , SK} where

Sk = {i : xi ∈ rk}. (3)

In the squared loss case, a constant estimate, ak, for the k-th partition is
computed as the mean target vector of the training samples that fall into rk:

ak =
1

|Sk|
∑

i∈Sk

ti. (4)

The sum of squared errors (SSE) associated with each child node is computed
as:

SSEk =
∑

i∈Sk

||ti − ak||22, (5)

where SSEk is the SSE for the k-th child node. Then the sum of squared errors
on the entire training data is computed as:

SSE =

K∑

k=1

SSEk =

K∑

k=1

∑

i∈Sk

||ti − ak||22. (6)

556 K. Hara and R. Chellappa

The aim of training is to find a set of splitting rules defining the input partitions
which minimizes the SSE.

Assuming there is no further splitting, the regression tree is formally repre-
sented as

H(x;A,R) =

K∑

k=1

ak�(x ∈ rk), (7)

where � is an indicator function. The regression tree outputs one of the elements
of A depending on to which of the R = {r1, . . . , rK}, the new data x belongs.
As mentioned earlier, the child nodes are further split as long as the number of
the training samples belonging to the node is larger than a predefined number.

3.2 Standard Binary Node Splitting

In standard binary regression trees [4], K is fixed at two. Each splitting rule
is defined as a pair of the index of the input dimension and a threshold. Thus,
each binary splitting rule corresponds to a hyperplane that is perpendicular to
one of the axes. Among a predefined set of such splitting rules, the one which
minimizes the overall SSE (Eq.6) is selected by trial-and-error.

The major drawback of the above splitting procedure is that the splitting
rules are determined by exhaustively searching the best splitting rule among the
predefined set of candidate rules. Essentially, this is the reason why only simple
binary splitting rules defined as thresholding on a single dimension are considered
in the training stage. Since the candidate rules are severely limited, the selected
rules are not necessarily the best among all possible ways to partition the input
space.

3.3 Proposed Node Splitting

In order to overcome the drawbacks of the standard binary splitting procedure,
we propose a new splitting procedure which does not rely on trial-and-error. A
graphical illustration of the algorithm is given in Fig.1. At each node splitting
stage, we first find ideal clusters T = {T1, T2, · · · , TK} of the training data
associated with the node, those at least locally minimize the following objective
function:

min
T

K∑

k=1

∑

i∈Tk

||ti − ak||22 (8)

where Tk = {i : ||ti − ak||2 ≤ ||ti − aj ||2, ∀ 1 ≤ j ≤ K} and ak = 1
|Tk|

∑
i∈Tk

ti.

This minimization can be done by applying the k-means clustering algorithm in
the target space with K as the number of clusters. Note the similarity between
the objective functions in Eq.8 and Eq.6. The difference is that in Eq.6, clusters
in S are indirectly determined by the splitting rules defined in the input space
while clusters in T are directly determined by the k-means algorithm without
taking into account the input space.

Growing Regression Forests by Classification 557

After finding T, we find partitions R = {r1, . . . , rK} of the input space which
preservesT as much as possible. This task is equivalent to aK-class classification
problem which aims at determining a cluster ID of each training data based on
x. Although any classification method can be used, in this work, we employ L2-
regularized L2-loss linear SVM with a one-versus-rest approach. Formally, we
solve the following optimization for each cluster using LIBLINEAR [12]:

min
wk

||wk||2 + C

N∑

i=1

(max(0, 1− lki w
T
k xi))

2, (9)

where wk is the weight vector for the k-th cluster, lki = 1 if i ∈ Tk and −1
otherwise and C > 0 is a penalty parameter. We set C = 1 throughout the
paper. Each training sample is forwarded to one of the K child nodes by

k∗ = argmax
k∈{1,··· ,K}

wT
k x. (10)

At the last stage of the node splitting procedure, we compute S (Eq.3) and
A (Eq.4) based on the constructed splitting rules (Eq.10).

Unlike standard binary splitting, our splitting rules are not limited to hy-
perplanes that are perpendicular to one of the axes and the clusters are found
without being restricted to a set of predefined splitting rules in the input space.
Furthermore, our splitting strategy allows each node to have more than two child
nodes by employing K > 2, adding one more level of flexibility to the model.
Note that larger K generally results in smaller value for Eq.8, however, since the
following classification problem becomes more difficult, the larger K does not
necessarily lead to better performance.

3.4 Adaptive Determination of K

Since K is a parameter, we need to determine the value for K by time consuming
cross-validation step. In order to avoid the cross-validation step while achieving
comparative performance, we propose a method to adaptively determine K at
each node based on the sample distribution.

In this work we employ Bayesian Information Criterion (BIC) [21,27] as a
measure to choose K. BIC was also used in [25] but with a different formulation.
The BIC is designed to balance the model complexity and likelihood. As a result,
when a target distribution is complex, a larger number of K is selected and
when the target distribution is simple, a smaller value of K is selected. This
is in contrast to the non-adaptive method where a fixed number of K is used
regardless of the complexity of the distributions.

As k-means clustering itself does not assume any underling probability dis-
tribution, we assume that the data are generated from a mixture of isotropic
weighted Gaussians with a shared variance. The unbiased estimate for the shared
variance is computed as

σ̂2 =
1

N −K

K∑

k=1

∑

i∈Tk

||ti − ak||22. (11)

558 K. Hara and R. Chellappa

Target Space Input Space Target Space

Fig. 1. An illustration of the proposed splitting method (K = 3). A set of clusters of
the training data are found in the target space by k-means (left). The input partitions
preserving the found clusters as much as possible are determined by SVM (middle). If
no more splitting is needed, a mean is computed as a constant estimate for each set
of colored samples. The yellow stars represent the means. Note that the color of some
points change due to misclassification. (right) If further splitting is needed, clusterling
is applied to each set of colored samples separately in the target space.

We compute a point probability density for a data point t belonging to the
k-th cluster as follows:

p(t) =
|Tk|
N

1√
2πσ̂2

q exp(−||t− ak||22
2σ̂2

). (12)

Then after simple calculations, the log-likelihood of the data is obtained as

lnL({ti}Ni=1) = lnΠN
i=1p(ti) =

K∑

k=1

∑

i∈Tk

ln p(ti) =

−qN

2
ln(2πσ̂2)− N −K

2
+

K∑

k=1

|Tk| ln |Tk| −N lnN (13)

Finally, the BIC for a particular value of K is computed as

BICK = −2 lnL({ti}Ni=1) + (K − 1 + qK + 1) lnN. (14)

At each node splitting stage, we run the k-means algorithm for each value of
K in a manually specified range and selectK with the smallest BIC. Throughout
this work, we select K from {2, 3, . . . , 40}.

3.5 Modification for a Circular Target Space

1D direction estimation of the object such as cars and pedestrians is unique
in that the target variable is periodic, namely, 0◦ and 360◦ represent the same
direction angle. Thus, the target space can be naturally represented as a unit
circle, which is a 1D Riemannian manifold in R2. To deal with a such target
space, special treatments are needed since the Euclidean distance is inappropri-
ate. For instance, the distance between 10◦ and 350◦ should be shorter than that
between 10◦ and 50◦ on this manifold.

Growing Regression Forests by Classification 559

In our method, such direction estimation problems are naturally addressed by
modifying the k-means algorithm and the computation of BIC. The remaining
steps are kept unchanged. The k-means clustering method consists of computing
cluster centroids and hard assignment of the training samples to the closest
centroid. Finding the closest centroid on a circle is trivially done by using the
length of the shorter arc as a distance. Due to the periodic nature of the variable,
the arithmetic mean is not appropriate for computing the centroids. A typical
way to compute the mean of angles is to first convert each angle to a 2D point
on a unit circle. The arithmetic mean is then computed on a 2D plane and
converted back to the angular value. More specifically, given a set of direction
angles t, . . . , tN , the mean direction a is computed by

a = atan2(
1

N

N∑

i=1

sin ti,
1

N

N∑

i=1

cos ti). (15)

It is known [15] that a minimizes the sum of a certain distance defined on a
circle,

a = argmin
s

N∑

i=1

d(ti, s) (16)

where d(q, s) = 1 − cos(q − s) ∈ [0, 2]. Thus, the k-means clustering using the
above definition of means finds clusters T = {T1, T2, · · · , TK} of the training
data that at least locally minimize the following objective function,

min
T

K∑

k=1

∑

i∈Tk

(1− cos(ti − ak)) (17)

where Tk = {i : 1− cos(ti − ak) ≤ 1− cos(ti − aj), ∀ 1 ≤ j ≤ K}.
Using the above k-means algorithm in our node splitting essentially means

that we employ distance d(q, s) as a loss function in Eq.1. Although squared
shorter arc length might be more appropriate for the direction estimation task,
there is no constant time algorithm to find a mean which minimizes it. Also as
will be explained shortly, the above definition of the mean coincides with the
maximum likelihood estimate of the mean of a certain probability distribution
defined on a circle.

As in the Euclidean target case, we can also adaptively determine the value
for K at each node using BIC. As a density function, the Gaussian distribution
is not appropriate. A suitable choice is the von Mises distribution, which is a
periodic continuous probability distribution defined on a circle,

p(t|a, κ) = 1

2πI0(κ)
exp (κ · cos(t− a)) (18)

560 K. Hara and R. Chellappa

where a, κ are analogous to the mean and variance of the Gaussian distribution
and Iλ is the modified Bessel function of order λ. It is known [14] that the
maximum likelihood estimate of a is computed by Eq.15 and that of κ satisfies

I1(κ)

I0(κ)
=

√√√√(
1

N

N∑

i=1

sin ti)2 + (
1

N

N∑

i=1

cos ti)2 =
1

N

N∑

i=1

cos(ti − a). (19)

Note that, from the second term, the above quantity is the Euclidean norm of
the mean vector obtained by converting each angle to a 2D point on a unit circle.

Similar to the derivation for the Euclidean case, we assume that the data are
generated from a mixture of weighted von Mises distributions with a shared κ.
The mean ak of k-th von Mises distribution is same as the mean of the k-th
cluster obtained by the k-means clustering. The shared value for κ is obtained
by solving the following equation

I1(κ)

I0(κ)
=

1

N

K∑

k=1

∑

i∈Tk

cos(ti − ak). (20)

Since there is no closed form solution for the above equation, we use the
following approximation proposed in [22],

κ ≈ 1

2(1− I1(κ)
I0(κ)

)
. (21)

Then, a point probability density for a data point t belonging to the k-th
cluster is computed as:

p(t|ak, κ) = |Tk|
N

exp (κ · cos(t− ak))

2πI0(κ)
. (22)

After simple calculations, the log-likelihood of the data is obtained as

lnL({ti}Ni=1) = lnΠN
i=1p(ti) =

K∑

k=1

∑

i∈Tk

ln p(ti) =

−N ln(2πI0(κ)) + κ

K∑

k=1

∑

i∈Tk

cos(ti − ak) +

K∑

k=1

|Tk| ln |Tk| −N lnN. (23)

Finally, the BIC for a particular value of K is computed as

BICK = −2 lnL({ti}Ni=1) + 2K lnN. (24)

where the last term is obtained by putting q = 1 into the last term of Eq.14.

Growing Regression Forests by Classification 561

3.6 Regression Forest

We use the regression forest [3] as the final regression model. The regression for-
est is an ensemble learning method for regression which first constructs multiple
regression trees from random subsets of training data. Testing is done by com-
puting the mean of the outputs from each regression tree. We denote the ratio of
random samples as β ∈ (0, 1.0]. For the Euclidean target case, arithmetic mean
is used to obtain the final estimate and for the circular target case, the mean
defined in Eq.15 is used.

For the regression forest with standard binary regression trees, an additional
randomness is typically injected. In finding the best splitting function at each
node, only a randomly selected subset of the feature dimensions is considered.
We denote the ratio of randomly chosen feature dimensions as γ ∈ (0, 1.0]. For
the regression forest with our regression trees, we always consider all feature
dimensions. However, another form of randomness is naturally injected by ran-
domly selecting the data points as the initial cluster centroids in the k-means
algorithm.

4 Experiments

4.1 Head Pose Estimation

We test the effectiveness of KRF and AKRF for the Euclidean target space on
the head pose estimation task. We adopt Pointing’04 dataset [16]. The dataset
contains head images of 15 subjects and for each subject there are two series of
93 images with different poses represented by pitch and yaw.

The dataset comes with manually specified bounding boxes indicating the
head regions. Based on the bounding boxes, we crop and resize the image patches
to 64× 64 pixels image patches and compute multiscale HOG from each image
patch with cell size 8, 16, 32 and 2× 2 cell blocks. The orientation histogram for
each cell is computed with signed gradients for 9 orientation bins. The resulting
HOG feature is 2124 dimensional.

First, we compare the KRF and AKRF with other general regression meth-
ods using the same image features. We choose standard binary regression forest
(BRF) [3], kernel PLS [26] and ε-SVR with RBF kernels [31], all of which have
been widely used for various computer vision tasks. The first series of images
from all subjects are used as training set and the second series of images are
used for testing. The performance is measured by Mean Absolute Error in de-
gree. For KRF, AKRF and BRF, we terminate node splitting once the number
of training data associated with each leaf node is less than 5. The number of
trees combined is set to 20. K for KRF, β for KRF, AKRF and BRF and γ
for BRF are all determined by 5-fold cross-validation on the training set. For
kernel PLS, we use the implementation provided by the author of [26] and for
ε-SVR, we use LIBSVM package [6]. All the parameters for kernel PLS and
ε-SVR are also determined by 5-fold cross-validation. As can been seen in Table

562 K. Hara and R. Chellappa

1, both KRF and AKRF work significantly better than other regression meth-
ods. Also our methods are computationally efficient (Table 1). KRF and AKRF
take only 7.7 msec and 8.7 msec, respectively, to process one image including
feature computation with a single thread.

Table 1. MAE in degree of different regression methods on the Pointing’04 dataset
(even train/test split). Time to process one image including HOG computation is also
shown.

Methods yaw pitch average testing time (msec)

KRF 5.32 3.52 4.42 7.7

AKRF 5.49 4.18 4.83 8.7

BRF [3] 7.77 8.01 7.89 4.5

Kernel PLS [26] 7.35 7.02 7.18 86.2

ε-SVR [31] 7.34 7.02 7.18 189.2

Table 2 compares KRF and AKRF with prior art. Since the previous works
report the 5-fold cross-validation estimate on the whole dataset, we also follow
the same protocol. KRF and AKRF advance state-of-the-art with 38.5% and
29.7% reduction in the average MAE, respectively.

Table 2. Head pose estimation results on the Pointing’04 dataset (5-fold cross-
validation)

yaw pitch average

KRF 5.29 2.51 3.90

AKRF 5.50 3.41 4.46

Fenzi [13] 5.94 6.73 6.34

Haj [17] Kernel PLS 6.56 6.61 6.59

Haj [17] PLS 11.29 10.52 10.91

Fig.2 shows the effect ofK of KRF on the averageMAE along with the average
MAE of AKRF. In this experiment, the cross-validation process successfully
selects K with the best performance. AKRF works better than KRF with the
second best K. The overall training time is much faster with AKRF since the
cross-validation step for determining the value of K is not necessary. To train
a single regression tree with β = 1, AKRF takes only 6.8 sec while KRF takes
331.4 sec for the cross-validation and 4.4 sec for training a final model. As a
reference, BRF takes 1.7 sec to train a single tree with β = 1 and γ = 0.4.
Finally, some estimation results by AKRF on the second sequence of person 13
are shown in Fig.3.

Growing Regression Forests by Classification 563

Fig. 2. Pointing’04: The effect of K of KRF on the average MAE. “CV” indicates the
value of KRF selected by cross-validation.

Fig. 3. Some estimation results of the second sequence of person 13. The top numbers
are the ground truth yaw and pitch and the bottom numbers are the estimated yaw
and pitch.

4.2 Car Direction Estimation

We test KRF and AKRF for circular target space (denoted as KRF-circle and
AKRF-circle respectively) on the EPFLMulti-view Car Dataset [24]. The dataset
contains 20 sequences of images of cars with various directions. Each sequence
contains images of only one instance of car. In total, there are 2299 images in the
dataset. Each image comes with a bounding box specifying the location of the
car and ground truth for the direction of the car. The direction ranges from 0◦

to 360◦. As input features, multiscale HOG features with the same parameters
as in the previous experiment are extracted from 64× 64 pixels image patches
obtained by resizing the given bounding boxes.

The algorithm is evaluated by using the first 10 sequences for training and
the remaining 10 sequences for testing. In Table 3, we compare the KRF-circle
and AKRF-circle with previous work. We also include the performance of BRF,
Kernel PLS and ε-SVR with RBF kernels using the same HOG features. For
BRF, we extend it to directly minimize the same loss function (d(q, s) = 1 −
cos(q − s)) as with KRF-circle and AKRF-circle (denoted by BRF-circle). For
Kernel PLS and ε-SVR, we first map direction angles to 2d points on a unit circle
and train regressors using the mapped points as target values. In testing phase,
a 2d point coordinate (x, y) is first estimated and then mapped back to the

564 K. Hara and R. Chellappa

angle by atan2(y, x). All the parameters are determined by leave-one-sequence-
out cross-validation on the training set. The performance is evaluated by the
Mean Absolute Error (MAE) measured in degrees. In addition, the MAE of 90-
th percentile of the absolute errors and that of 95-th percentile are reported,
following the convention from the prior works.

As can be seen from Table 3, both KRF-circle and AKRF-circle work much
better than existing regression methods. In particular, the improvement over
BRF-circle is notable. Our methods also advance state-of-the-art with 22.5%
and 20.7% reduction in MAE from the previous best method, respectively. In
Fig.4, we show the MAE of AKRF-circle computed on each sequence in the
testing set. The performance varies significantly among different sequences (car
models). Fig.5 shows some representative results from the worst three sequences
in the testing set (seq 16, 20 and 15). We notice that most of the failure cases are
due to the flipping errors (≈ 180◦) which mostly occur at particular intervals
of directions. Fig.6 shows the effect of K of KRF-circle. The performance of
the AKRF-circle is comparable to that of KRF-circle with K selected by the
cross-validation.

Table 3. Car direction estimation results on the EPFL Multi-view Car Dataset

Method MAE (◦) 90-th percentile MAE (◦) 95-th percentile MAE (◦)
KRF-circle 8.32 16.76 24.80

AKRF-circle 7.73 16.18 24.24

BRF-circle 23.97 30.95 38.13

Kernel PLS 16.86 21.20 27.65

ε-SVR 17.38 22.70 29.41

Fenzi et al. [13] 14.51 22.83 31.27

Torki et al. [30] 19.4 26.7 33.98

Ozuysal et al. [24] - - 46.48

Fig. 4. MAE of AKRF computed on each sequence in the testing set

Growing Regression Forests by Classification 565

Fig. 5. Representative results from the worst three sequences in the testing set. The
numbers under each image are the ground truth direction (left) and the estimated
direction (right). Most of the failure cases are due to the flipping error.

Fig. 6. EPFL Multi-view Car: The effect of K of KRF on MAE. “CV” indicates the
value of KRF selected by cross-validation.

5 Conclusion

In this paper, we proposed a novel node splitting algorithm for regression tree
training. Unlike previous works, our method does not rely on a trial-and-error
process to find the best splitting rules from a predefined set of rules, providing
more flexibility to the model. Combined with the regression forest framework,
our methods work significantly better than state-of-the-art methods on head
pose estimation and car direction estimation tasks.

Acknowledgements. This research was supported by a MURI grant from the
US Office of Naval Research under N00014-10-1-0934.

566 K. Hara and R. Chellappa

References

1. Baltieri, D., Vezzani, R., Cucchiara, R.: People Orientation Recognition by Mix-
tures of Wrapped Distributions on Random Trees. In: Fitzgibbon, A., Lazebnik,
S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part V. LNCS, vol. 7576,
pp. 270–283. Springer, Heidelberg (2012)

2. Bissacco, A., Yang, M.H., Soatto, S.: Fast Human Pose Estimation using Appear-
ance and Motion via Multi-dimensional Boosting Regression. In: CVPR (2007)

3. Breiman, L.: Random Forests. Machine Learning (2001)

4. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression
Trees. Chapman and Hall/CRC (1984)

5. Cao, X., Wei, Y., Wen, F., Sun, J.: Face alignment by Explicit Shape Regression.
In: CVPR (2012)

6. Chang, C.C., Lin, C.J.: LIBSVM: A Library for Support Vector Machines. ACM
Transactions on Intelligent Systems and Technology (2011)

7. Chou, P.A.: Optimal Partitioning for Classification and Regression Trees. PAMI
(1991)

8. Criminisi, A., Shotton, J.: Decision Forests for Computer Vision and Medical Image
Analysis. Springer (2013)

9. Criminisi, A., Shotton, J., Robertson, D., Konukoglu, E.: Regression Forests for
Efficient Anatomy Detection and Localization in CT Studies. Medical Computer
Vision (2010)

10. Dantone, M., Gall, J., Fanelli, G., Van Gool, L.: Real-time Facial Feature Detection
using Conditional Regression Forests. In: CVPR (2012)

11. Dobra, A., Gehrke, J.: Secret: A scalable linear regression tree algorithm. In:
SIGKDD (2002)

12. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: LIBLINEAR: A Li-
brary for Large Linear Classification. JMLR (2008)

13. Fenzi, M., Leal-Taixé, L., Rosenhahn, B., Ostermann, J.: Class Generative Models
based on Feature Regression for Pose Estimation of Object Categories. In: CVPR
(2013)

14. Fisher, N.I.: Statistical Analysis of Circular Data. Cambridge University Press
(1996)

15. Gaile, G.L., Burt, J.E.: Directional Statistics (Concepts and techniques in modern
geography). Geo Abstracts Ltd. (1980)

16. Gourier, N., Hall, D., Crowley, J.L.: Estimating Face Orientation from Robust
Detection of Salient Facial Structures. In: ICPRW (2004)

17. Haj, M.A., Gonzàlez, J., Davis, L.S.: On partial least squares in head pose estima-
tion: How to simultaneously deal with misalignment. In: CVPR (2012)

18. Hara, K., Chellappa, R.: Computationally Efficient Regression on a Dependency
Graph for Human Pose Estimation. In: CVPR (2013)

19. Herdtweck, C., Curio, C.: Monocular Car Viewpoint Estimation with Circular Re-
gression Forests. In: Intelligent Vehicles Symposium (2013)

20. Huang, C., Ding, X., Fang, C.: Head Pose Estimation Based on Random Forests
for Multiclass Classification. In: ICPR (2010)

21. Kashyap, R.L.: A Bayesian Comparison of Different Classes of Dynamic Models
Using Empirical Data. IEEE Trans. on Automatic Control (1977)

22. Mardia, K.V., Jupp, P.: Directional Statistics, 2nd edn. John Wiley and Sons Ltd.
(2000)

Growing Regression Forests by Classification 567

23. Orozco, J., Gong, S., Xiang, T.: Head Pose Classification in Crowded Scenes. In:
BMVC (2009)

24. Ozuysal, M., Lepetit, V., Fua, P.: Pose Estimation for Category Specific Multiview
Object Localization. In: CVPR (2009)

25. Pelleg, D., Moore, A.: X-means: Extending K-means with Efficient Estimation of
the Number of Clusters. In: ICML (2000)

26. Rosipal, R., Trejo, L.J.: Kernel Partial Least Squares Regression in Reproducing
Kernel Hilbert Space. JMLR (2001)

27. Schwarz, G.: Estimating the Dimension of a Model. The Annals of Statistics (1978)
28. Sun, M., Kohli, P., Shotton, J.: Conditional Regression Forests for Human Pose

Estimation. In: CVPR (2012)
29. Torgo, L., Gama, J.: Regression by classification. In: Brazilian Symposium on Ar-

tificial Intelligence (1996)
30. Torki, M., Elgammal, A.: Regression from local features for viewpoint and pose

estimation. In: ICCV (2011)
31. Vapnik, V.: Statistical Learning Theory. Wiley (1998)
32. Weiss, S.M., Indurkhya, N.: Rule-based Machine Learning Methods for Functional

Prediction. Journal of Artificial Intelligence Research (1995)
33. Yan, Y., Ricci, E., Subramanian, R., Lanz, O., Sebe, N.: No matter where you are:

Flexible graph-guided multi-task learning for multi-view head pose classification
under target motion. ICCV (2013)

	Growing Regression Forests by Classification:Applications to Object Pose Estimation
	1 Introduction
	2 Related Work
	3 Methods
	3.1 Abstracted Regression Tree Model
	3.2 Standard Binary Node Splitting
	3.3 Proposed Node Splitting
	3.4 Adaptive Determination of K
	3.5 Modification for a Circular Target Space
	3.6 Regression Forest

	4 Experiments
	4.1 Head Pose Estimation
	4.2 Car Direction Estimation

	5 Conclusion
	References

