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Abstract. In this paper, we study the k-support norm regularized matrix pur-
suit problem, which is regarded as the core formulation for several popular com-
puter vision tasks. The k-support matrix norm, a convex relaxation of the matrix
sparsity combined with the �2-norm penalty, generalizes the recently proposed k-
support vector norm. The contributions of this work are two-fold. First, the pro-
posed k-support matrix norm does not suffer from the disadvantages of existing
matrix norms towards sparsity and/or low-rankness: 1) too sparse/dense, and/or
2) column independent. Second, we present an efficient procedure for k-support
norm optimization, in which the computation of the key proximity operator is
substantially accelerated by binary search. Extensive experiments on subspace
segmentation, semi-supervised classification and sparse coding well demonstrate
the superiority of the new regularizer over existing matrix-norm regularizers, and
also the orders-of-magnitude speedup compared with the existing optimization
procedure for the k-support norm.

Keywords: k-support norm, subspace segmentation, semi-supervised classifica-
tion, sparse coding.

1 Introduction

We consider the following matrix pursuit problem:

min
W

λΩ(W ) +
1

2
||A−BW ||2F , (1)

where λ > 0 is a non-negative trade-off parameter, ||·||F is the Frobenius norm of a ma-
trix and Ω(W ) is the regularization term. A,B are two given matrices with compatible
dimensions.

(1) is a typical problem formulation for many computer vision tasks. For example,
with A = B = X and X being a set of column samples, (1) becomes the formulation of
subspace segmentation [11,3] which seeks to learn an affinity matrix W satisfying X ≈
XW : minW λΩ(W ) + 1

2 ||X −XW ||2F . With A = X being a set of column samples
(e.g., SIFT features [12]) and B = D being an over-complete dictionary, (1) becomes
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Table 1. The characteristics of the five matrix norms. Here wi is the ith column of the matrix W
and Diag(wi) is the diagonal matrix whose diagonal elements are wi.

�1-norm Frobenius Nuclear Trace Lasso k-Support
Form ||W ||1 ||W ||F ||W ||∗ ∑

i ||BDiag(wi)||∗ ||W ||spk
Sparsity Sparse Dense Dense Balanced Balanced
Column
Dependency

Independent Independent Dependent Independent Dependent

Efficiency Efficient Efficient Slow Slow Slow → Efficient

the formulation of sparse coding for image classification [20,21]: minW λΩ(W ) +
1
2 ||X −DW ||2F .

In this paper, we focus on designing the regularization term Ω(W ). In the past few
years, there has been considerable research work on matrix regularization. The repre-
sentative regularization norms include �1-norm [3], nuclear norm [11], Frobenius norm
[13] and trace lasso [5]. In addition to the four representative norms, the k-support
norm [1] has recently been proposed, which is the tightest convex relaxation of sparsity
combined with �2-norm penalty. Table 1 lists the characteristics of these norms.

Regularization with the �1-norm [3,20] is a commonly-used technique to pursue
sparse models for variable or feature selection, which makes the models more inter-
pretable. However, it tends to over-shrink large coefficients, which often degrades the
model accuracies. Besides, in the context of matrix pursuit, regularization with the �1
norm usually seeks a sparse representation of each row/column of the target matrix
individually, regardless of the possible correlation between these rows/columns. For
example, in multi-task learning or sparse coding problems, different rows/columns of
the target matrix may be related in some sense, and it is advantageous to simultaneously
pursue these rows/columns [21].

Regularization with the Frobenius norm has a grouping effect [13] and can reveal
the correlated information. More importantly, it has the closed form solution, which
makes it very efficient. However, it fails to encourage the sparsity and is also column
independent as the �1-norm.

Regularization with the nuclear norm is used to approximate the rank of a matrix. For
example, Low Rank Representation (LRR) [11] jointly optimizes the affinity matrix
under a global low rank constraint which makes it better capture the global structure
of the data. However, it often results in dense solutions as the Frobenius norm. Also
solving the nuclear norm minimization problem requires Singular Value Decomposition
(SVD) operation, which limits its scalability on large datasets.

Regularization with the trace lasso [5] is a data correlation dependent method which
can adaptively balance the �1-norm and the Frobenius norm. For instance, Correlation
Adaptive Subspace Segmentation (CASS) [14] uses the trace lasso to exhibit both spar-
sity and grouping effect, which makes it effective for subspace clustering. However,
it also requires SVD for optimization as LRR and is column independent as �1 and
Frobenius norms.

It can be seen that these four norms all suffer from one or two of the following dis-
advantages: 1) too dense/sparse solution, 2) column independency. To overcome these
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disadvantages, in this paper, we consider the matrix pursuit problem regularized with
the k-support norm [1], i.e. Ω(W ) = (||W ||spk )2, where we denote ||W ||spk as the k-
support norm of the matrix W . Specifically, assuming W ∈ R

d×n, and w =vec(W )
represents the vector constructed by concatenating the columns ofW , ||W ||spk is defined
as:

||W ||spk =
( k−r−1∑

i=1

(|w|↓i )2 +
1

r + 1
(

nd∑
i=k−r

|w|↓i )2
) 1

2

, (2)

where |w|↓i denotes the ith largest element in |w| and |w|↓0 is assumed to be +∞.
r ∈ {0, 1, ..., k−1} satisfies |w|↓k−r−1 > 1

r+1(
∑nd

i=k−r |w|
↓
i ) ≥ |w|↓k−r . The k-support

norm has two terms: �2-norm penalty for the large components, and �1-norm penalty
for the small components. k(1 ≤ k ≤ nd) is a tunable parameter of the cardinality to
achieve a balance between the �2-norm (when k = nd) and the �1-norm (when k = 1).
The k-support matrix norm provides an appropriate trade-off between model sparsity
(by �1-norm) and algorithmic stability1 (by Frobenius norm) [19], which yields more
stable solutions than the �1-norm. Moreover, in (1), the k-support matrix norm facili-
tates simultaneously learning all the columns of the target matrix, and thus transferring
knowledge from one column to another to improve generalization performance.

The k-support norm regularization problem can be solved by the Accelerated Prox-
imal Gradient (APG) method [2] or Alternating Direction Method [10] (ADM), which
both require computing the proximity operator of the k-support norm. The time com-
plexity of the method in [1] is O(nd(k+ log(nd))) when the k-support norm is applied
on a d × n matrix. This time complexity is impractically high when n, d and k are
large. To tackle this issue, we propose a novel efficient procedure, which reduces the
time complexity to O((nd + k) log(nd)). Since k is usually set to be much larger than
n in practice, such time reduction (with a factor of k) can substantially accelerate the
optimization procedure with the k-support norm.

The main contributions of this paper can be summarized as follows:
1) We propose the k-support matrix regularizer, which can well balance the sparsity

and density of the solution, and is column dependent. We apply the proposed regularizer
to several popular computer vision problems. The experiment results show that the k-
support matrix regularizer outperforms the state-of-the-art popular norms/regularizers.

2) We propose an efficient procedure to solve the proximity operator of the k-support
norm, which is 100 ∼ 1000 times faster than the method in [1] for moderate or large
matrix pursuit problems.

2 k-Support Matrix Pursuit and Optimization

2.1 Problem Definition and Optimization Overview

In this paper, we particularly address the matrix pursuit problem with the k-support
norm:

min
λ

2
(||W ||spk )2 +

1

2
||A−BW ||2F . (3)

1 Algorithmic stability means that given two similar datasets, the outputs of the algorithm change
very little [15].
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The k-support norm is a convex relaxation to seek a sparse, low �2-norm linear pre-
dictor [1], as shown in the following convex hull:

Ck = conv{w ∈ R
nd | ||w||0 ≤ k, ||w||2 ≤ 1},

where w = vec(W ). It consists of two parts: one is the �0-norm constraint and the other
is the �2-norm constraint. The k-support norm is defined as the norm whose unit ball
equals Ck. An equivalent but more intuitive definition is in Eq. (2).

The main advantage of the k-support norm is that it provides the flexibility of tuning
the cardinality k in W (i.e., the number of non-zero elements in W ). This parameter,
which is often selected by cross validation, can be regarded as an upper bound estima-
tion of the number of non-zero elements in the optimal W . The k-support regularized
matrix pursuit with a fine-tuned k has the potential to obtain more predictive [1] and
more stable [19] solutions. Another advantage of the k-support norm is that it is col-
umn dependent, which makes it effective for selecting the informative variables cross
all columns.

The optimization problem (3) can be solved by first-order proximal gradient algo-
rithms, such as the Accelerated Proximal Gradient (APG) method as in [2]. As shown
in Algorithm 1, the problem (3) is solved based on the APG scheme.

Algorithm 1. Accelerated Proximal Gradient method
Input: A,B, λ, k, T and L.
Initialize: W0 = P1 = 0, α1 = 1, M = BTB, N = BTA.
For t = 1, · · · , T

Let Gt = MPt −N (gradient)
Wt = argminW

λ
2
(||W ||spk )2 + 〈W − Pt, Gt〉+ L

2
||W − Pt||2F (proximity operator)

αt+1 =
1+

√
1+4α2

t

2

Pt+1 = Wt +
(αt − 1

αt+1

)
(Wt −Wt−1)

End For
output: WT .

In Algorithm 1, the proximity operator is a computationally expensive step in each
iteration:

min
W

β

2
||W − V ||2F +

1

2
(||W ||spk )2, (4)

where V = Pt −Gt/L and β = L/λ. It is equivalent to the following problem:

min
w

β

2
||w − v||2F +

1

2
(||w||spk )2, (5)

where w = vec(W ) ∈ R
nd, and v = vec(V ) ∈ R

nd. Argyriou et al. [1] proposed an
algorithm to solve (5) with time complexity O(nd(k + log(nd))). Since the parameter
k is regarded as an upper bound estimation of the number of non-zero elements in W ,
k is usually set to be much larger than n (e.g., k = O(nd)). Hence, the computation
of the proximity operator generally dominates the whole algorithm, and its complexity
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O(nd(k + log(nd))) ≈ O(ndk) is impractically high for matrix pursuit problems with
large n, d and k.

To accelerate Algorithm 1, in the next subsection, we propose a much more effi-
cient procedure to solve the proximity operator problem, where the time complexity is
reduced to O((nd+ k) log(nd)).

2.2 Binary Search Procedure to Solve the Proximity Operator

In this subsection, we present an efficient procedure to solve (5) based on binary
search [8]. For ease of description, some notations are defined. We define z as the vec-
tor obtained by sorting the absolute values of the elements in v in a descending order,
i.e., z = |v|↓. We also define si as zi’s corresponding index in v: |vsi | = zi. The sign
function is defined as: sign(x) = 1 if and only if x ≥ 0, and otherwise sign(x) = −1.

According to the work [1], the solution w of the optimization problem (5) can be
obtained by:

wsi = sign(vsi)qi, (6)

where qi is defined by:

qi =

⎧
⎪⎨
⎪⎩

β
β+1zi if i = 1, ..., k − r − 1;

zi −
∑l

i=k−r zi
l−k+r+1+β(r+1) if i = k − r, ..., l;

0 if i = l + 1, ..., nd.

(7)

In (7), the integers r and l must satisfy
⎧⎨
⎩

1
β+1zk−r−1 >

∑l
i=k−r zi

β(r+1)+l−k+r+1 ≥ 1
β+1zk−r;

zl >
∑l

i=k−r zi
β(r+1)+l−k+r+1 ≥ zl+1.

(8)

To obtain every wi (and corresponding qi), two integers r and l must be efficiently
found for (7) which satisfy the constraints in (8), which is very challenging. For exam-
ple, in Algorithm 1 in the work [1], the time complexity O(ndk) is needed to find the
integer pair r, l for all qi, i = 1, 2, ..., nd. Since k is usually set to be much larger than
n, this complexity is unaffordable in large matrix pursuit problems.

To tackle this issue, we propose a new method to find the integer pair r, l for all qi
based on binary search. The proposed procedure to solve (5) is shown in Algorithm 2,
in which we define Tr,l =

∑l
i=k−r zi. In each iteration, given r, we search for an l

that satisfies the second condition in (8), by a binary search procedure (see Algorithm
3). If the obtained l also satisfies the first condition in (8), we jump out of the loop and
calculate the final w with the obtained l and r. Otherwise we increase r by one and
continue the loop.

To efficiently obtain l that satisfies the second condition in (8), we propose to use a
binary search scheme as shown in Algorithm 3. In Algorithm 3, we search for l in the
range from k − r to nd.

If zlow is zero, which implies that zj , j = low, ..., high, are all zeros, we obtain
l = low = k− r. Otherwise, we use a trick like the binary search scheme [8] to reduce
the search range by half in each iteration. Specifically, with the assumption that the
obtained l satisfies the second condition in (8), we consider two cases:
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Algorithm 2. Procedure to solve the proximity operator
Input: v ∈ Rnd, β, k.
Initialize: z = |v|↓, z0 = +∞, znd+1 = −∞.
For r = k-1,...,0

Obtain l by BinarySearch(z,k-r,nd) (see Algorithm 3);

If 1
β+1

zk−r−1 >
Tr,l

l−k+r+1+β(r+1)
≥ 1

β+1
zk−r

break;
End If

End For
For i = 1, 2, ..., nd, calculate qi by (7);
For i = 1, 2, ..., nd, calculate wi by (6);
Output: w.

– Case 1. If we also have zmid >
Tr,mid

mid−k+r+1+β(r+1) for a certain index mid, then
we can prove that mid ≤ l (see Lemma 1). Hence, we only need to search for l in
the range [mid, high], by ignoring the search in [low,mid− 1].

– Case 2. If we also have zmid ≤ Tr,mid

mid−k+r+1+β(r+1) , then we can prove that
l ≤ mid − 1 (see Lemma 1). Hence, we only need to search for l in the range
[low,mid− 1], by ignoring the search in [mid, high].

By using these facts, we follow the binary search scheme to design a loop to find
l. In each iteration, we set mid to be � low+high

2 � (Line 7 in Algorithm 3) where �x�
represents the smallest integer which is larger than x. Then we reduce the search range
of l by either Case 1 (Line 9 in Algorithm 3) or Case 2 (Line 11 in Algorithm 3).

Algorithm 3. Binary search procedure to find l

1. Input: z, low, high,
2. Output: l.
3. If zlow = 0
4. return l = low.
5. End If
6. While low < high− 1

7. mid = � low+high
2

�.

8. If zmid >
Tr,mid

mid−k+r+1+β(r+1)

9. low = mid.
10. Else
11. high = mid− 1.
12. End If
13. End While
14. return l = low.

Justification. We give the following two lemmas to prove the correctness of Algorithm
3. The detailed proof of these lemmas can be found in the supplementary material.

Lemma 1 provides the foundation to design a binary search for l in Algorithm 3 so
that we can efficiently reduce the search range.
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Lemma 1. Suppose that l satisfies zl >
Tr,l

l−k+r+1+β(r+1) ≥ zl+1. Let low, high,mid

be variables generated by Algorithm 3. Then
(1) If zmid >

Tr,mid

mid−k+r+1+β(r+1) then mid ≤ l;

(2) If zmid ≤ Tr,mid

mid−k+r+1+β(r+1) then l ≤ mid− 1.

A natural question arises in Algorithm 3: whether there always is an l satisfying the
second condition in (8) in the range [k − r, d]? The answer is “yes” by the following
lemma.

Lemma 2. For any r ∈ [0, k − 1], if zk−r > 0, there exists an l such that zl >
Tr,l

l−k+r+1+β(r+1) ≥ zl+1 and l ∈ [k − r, nd]. If zk−r = 0, we can obtain l = k − r.

3 Applications of k-Support Matrix Pursuit

The matrix pursuit problem is the core for various vision applications. In this section,
we apply the k-support regularizer to the following popular vision related problems:
subspace clustering, semi-supervised learning and sparse coding, and show how these
tasks benefit from the k-support regularizer.

3.1 Subspace Segmentation and Semi-supervised Learning

Subspace segmentation aims to partition a set of data points into multiple (linear or
affine) subspaces. It is a widely-used technique in various visual tasks, such as face
clustering [11] and motion segmentation [3].

Semi-supervised learning has received considerable attention in computer vision lit-
erature. In this work, we consider the graph based semi-supervised learning (SSL) [22],
where the label information can be propagated to the unlabeled data through a certain
affinity matrix.

A core step in both subspace segmentation and graph based semi-supervised learning
is to learn a good affinity matrix to represent the structure of the data points. Here, we
describe how to apply the k-support graph for these two tasks.

Let X = [x1, x2, · · · , xn] ∈ R
m×n be a matrix whose columns are n data samples of

m-dimension. Suppose that these samples are drawn from different subspaces, and each
sample can be expressed as a linear combination of all the data points X : xi = Xwi,
where wi characterizes how other samples contribute to the reconstruction of xi. Since
xi should be associated with only a few samples drawn from the same subspace, W
should be sparse but not too sparse. Thus we use the k-support norm to infer such
an affinity matrix: minW

1
2 (||W ||spk )2, s.t. X = XW. For the case with noises, we

consider the following problem instead:

min
W

λ

2
(||W ||spk )2 +

1

2
||X −XW ||2F , (9)

where λ > 0 is a parameter for controlling the tradeoff between the model complexity
and the reconstruction error.

The detailed steps of the two learning tasks based on the inferred k-support norm are
as follows. First, a good affinity matrix W is learned, that is, solving the problem (9),
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after which we symmetrize it by W = (|W |+ |WT |)/2. Then, for subspace clustering,
the spectral clustering algorithm [17] is used on the matrix W to segment data, while
for semi-supervised learning, the Markov random walks algorithm [16] is adopted to
propagate label information to the unlabeled data through the matrix W .

3.2 Collaborative Sparse Coding

Let X be a set of m-dimensional local descriptors extracted from an image, i.e., X =
[x1, x2, · · · , xn] ∈ R

m×n. The dictionary D ∈ R
m×d contains d bases. Sparse coding

is a task which seeks a sparse linear combination of the bases from an over-complete
dictionary D, to recover the input signal x with low reconstruction errors.

Two representative works are locally linear codes (LLC) [18] and the �1-norm reg-
ularized sparse coding (ScSPM) [20]. LLC chooses the k nearest bases of the input xi

within the dictionary D by Euclidean distance: minW

∑n
i=1 ||xi −Dwi||22 + λ(||hi �

wi||)2, s.t. 1Twi = 1, ∀i, where � denotes the element-wise multiplication, and hi

is the locality adaptor, i.e., the similarity between each basis vector and the input de-
scriptor. ScSPM minimizes the following optimization problem: minW

∑n
i=1 ||xi −

Dwi||22 + λ||wi||1.
Suppose each image is partitioned into M sub-regions, and the jth sub-region Xj

includes nj local descriptors: Xj = [xj1 , . . . , xjnj
]. If M is large, the local descriptors

within the same sub-region would be similar or have high correlations to some extent,
and the sparse codes of these local descriptors would have correlated patterns. Hence,
from the viewpoint of multi-task learning, it is natural to jointly learn the sparse codes
for the local descriptors within the same sub-region. However, both ScSPM and LLC
solve the sparse coding problem of each local descriptor individually, regardless of the
possible correlations of descriptors in the same sub-region. To address this problem, we
propose collaborative sparse coding using the k-support matrix norm:

min
W

M∑
j=1

1

2
||Xj −DWj ||22 +

λ

2
(||Wj ||spk )2, (10)

where Wj is the sparse code matrix of the descriptors in the jth sub-region. Note that all
the elements in Wj are sorted in a descending order, with �2-norm penalty being applied
to the large elements and �1-norm penalty being applied to the small elements. Hence,
||Wj ||spk can be regarded as a global regularizer on the jth sub-region, where the infor-
mative variables in Wj are assigned with large values and the irrelevant variables are
assigned with small values. Moreover, Xu et al. [19] showed that sparsity and algorith-
mic stability are two desired properties for designing a leaning algorithm. Xu et al. [19]
proved that �1-regularized regression is sparse but not stable, while �2-regularized re-
gression has strong stability. Hence, for some similar local descriptors (e.g., they are
from the same sub-region), ScSPM would output different codes although they have
high correlations. Intuitively, it is benefitial to consider these correlated descriptors to-
gether and collaborative sparse coding is desirable. The k-support matrix norm makes
a trade-off between model sparsity (by �1-norm) and model stability (by Frobenius
norm), and also is column dependent. Hence, it is a natural choice for collaborative
sparse coding.
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4 Experiments

In this section, we evaluate the effectiveness of the proposed k-support matrix regu-
larization on three applications: 1) subspace segmentation, 2) semi-supervised classi-
fication and 3) sparse coding for image classification. Also we evaluate in detail the
running time of our solver for the k-support norm by comparing it with the previous
method shown in [1].

4.1 Experiments on Subspace Segmentation

We apply the proposed algorithm to solve the k-support matrix regularized subspace
segmentation problem (9). The performance is compared with the following baselines:
Sparse Subspace Clustering (SSC) [3], Low-Rank Representation (LRR) [11], Least
Squares Regression (LSR) [13], Non-Negative Low-Rank and Sparse graph (NNLRS)
[22] and Correlation Adaptive Subspace Segmentation (CASS) [14]. Our proposed
method is referred to as KMP for K-support norm regularized Matrix Pursuit. The re-
sults of SSC, LRR, LSR and CASS are cited from [14]. The results of NNLRS and KMP
are obtained by our careful implementations. For fair comparison, we follow the exper-
imental settings as [14], where the parameters are tuned to the best for each method.

After constructing the affinity matrix, the normalized cuts method [17] is used to
segment the data into different subspaces. The clustering result is evaluated by the ac-
curacy/error, where the accuracy is calculated by the best matching rate of the predicted
label and the ground truth, while the error rate is calculated by 1 − accuracy.

The experiments are conducted on Extended Yale B [4] for face clustering, and on
Hopkins 155 2 for motion segmentation.

The Extended Yale B dataset consists of 16,128 images of 28 human subjects with
9 poses and 64 illumination conditions. Following the settings in [14], we conduct two
experiments on Extended Yale B. In the first experiment, we use the images in the
first 5 classes, and then project the images onto 30 dimensions by principal component
analysis (PCA). In the second experiment, we use the samples in the first 10 classes, and
the images are projected onto 60 dimensions by PCA. Each class contains 64 images
and each image is resized into 32×32 pixels. Table 2 shows the segmentation accuracy
of each method.

The Hopkins 155 motion database contains 156 video sequences and each sequence
has two or three motions (each motion corresponds to a subspace). Since each sequence
is a sole data set, there are 156 subspace segmentation problems in total. We project the
data onto 12 dimensions by PCA as in [14]. Table 3 shows the maximum, mean and
standard deviation of the error rates of the 156 sequences.

The comparison results on Extended Yale B database and Hopkins 155 motion
database indicate that KMP performs better than all the baselines. For example, in
the first 5 classes, KMP achieves 94.69% accuracy, which indicates an improvement
of 14.38% over SSC and 2.50% over LSR. The experimental results can empirically

2 http://www.vision.jhu.edu/data/hopkins155/

http://www.vision.jhu.edu/data/hopkins155/
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Table 2. The accuracies of different algorithms on the Extended Yale B database (%). Note that
the results of SSC, LRR, LSR and CASS are directly cited from [14].

SSC [14] LRR [14] LSR [14] NNLRS CASS [14] KMP
5 80.31 86.56 92.19 89.69 94.03 94.69

10 52.19 65.00 73.59 79.37 81.88 82.25

Table 3. The error rates of different algorithms on the Hopkins 155 database (%). Note that the
results of SSC, LRR, LSR and CASS are directly cited from [14].

SSC [14] LRR [14] LSR [14] NNLRS CASS [14] KMP
Max 39.53 36.36 36.36 33.09 32.85 39.58

Mean 4.02 3.23 2.50 3.27 2.42 1.99
STD 10.04 6.06 5.62 6.82 5.84 4.93

justify that balancing the �1-norm and the Frobenius norm can help significantly im-
prove the accuracy. On Hopkins 155 motion database, the mean error of KMP is 1.99%,
compared with 2.42% of the second best algorithm CASS. KMP is column dependent,
which may be the underlying reason for KMP to outperform CASS.

4.2 Experiments on Semi-supervised Classification

For semi-supervised classification, we compare the performances of the algorithms on
two datasets: Extended Yale B and USPS [6]. USPS 3 is a handwritten digit dataset
which has ten classes (the digits range from 0 to 9).

Following the settings in [14], on Extended Yale B, we use the images in the first 10
classes. On USPS, we randomly select 100 images from each class for our experiments.
Each image in USPS is resized into 16×16 pixels. In all experiments, we randomly
select 4, 8, 16, 32 images from each class as labeled samples, respectively, and the rest
images are used as unlabeled samples. After obtaining the matrix W , we select the
Markov random walks algorithm [16] for semi-supervised learning. For fair compar-
ison with previous work, the parameters of all methods are tuned to achieve the best
performance. We run each experiment for 20 times and report the averaged accuracies.

Fig. 1 shows the comparison results, from which two observations can be made.
First, the k-support matrix norm can well balance the �1-norm and the Frobenius norm.
SSC (�1-norm) achieves a good performance on USPS dataset, but performs poorly on
Extended Yale B. LSR (Frobenius norm) performs well on Extended Yale B, but yields a
poor performance on USPS. Compared with them, the k-support matrix norm performs
well on both datasets. Second, the KMP performs better than CASS. The reason may be
that the k-support matrix norm can capture the cross column information while CASS
cannot.

3 http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html

http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html


Efficient k-Support Matrix Pursuit 627

70

75

80

85

90

95

4 8 16 32
 

 
SSC
LRR
LSR
NNLRS
CASS
KMP

(a) USPS

70

75

80

85

90

95

100

4 8 16 32
 

 
SSC
LRR
LSR
NNLRS
CASS
KMP

(b) Extended Yale B

Fig. 1. The accuracies of semi-supervised classification based on different affinity matrices (%).
Note that the results of SSC, LRR, LSR and CASS are directly cited from [14] on Extended Yale
B database, and obtained by directly running their open source codes on USPS database.

4.3 Experiments on Collaborative Sparse Codings

The proposed algorithm is also applied to the sparse coding problem (10) for image clas-
sification, and compared with two state-of-the-art sparse coding methods: ScSPM [20]
and LLC [18]. The performances are evaluated on two datasets: UIUC-Sport [9] and
Scene15 [7].

On each dataset, we obtain a dictionary containing 1,024 bases using the k-means
clustering. The results of ScSPM and LLC are obtained by directly using the online
source codes4. In our image classification system, we use the open source code of Sc-
SPM [20] to implement SIFT extraction, spatial pyramid matching and max pooling.
For our collaborative sparse coding, we partition each image into a set of 20 × 20 non-
overlap sub-regions. Then the proposed k-support matrix pursuit algorithm is performed
on each sub-region to obtain the sparse codes, respectively.

Results on UIUC-Sport Dataset. The UIUC-Sport dataset contains images collected
from 8 classes of different sports such as badminton, rock climbing and sailing. There
are 1,579 images in total and the number of images in each category ranges from 137
to 250. For each category, we randomly select 70 images as training data, and another
60 images as test data. As shown in Table 4, the k-support regularized sparse coding
method shows superior performance over ScSPM and LLC.

Table 4. Image classification results on UIUC-Sport dataset(%)

Method Average Classification Accuracy
ScSPM [20] 82.74 ± 1.46
LLC [18] 84.58 ± 1.19
KMP 85.55 ± 1.23

4 www.ifp.illinois.edu/˜jyang29

www.ifp.illinois.edu/~jyang29
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Results on Scene15 Dataset. The Scene15 dataset is frequently used for scene clas-
sification. It contains 4,485 images. The images are collected from 15 categories such
as forest, highway and mountain. Each category contains 200 to 400 images. For each
category, we randomly select 100 images as the training data and use the remaining
images as the test data. The proposed method outperforms ScSPM and LLC.

Table 5. Image classification results on Scene15 dataset(%)

Method Average Classification Accuracy
ScSPM [20] 80.28 ± 0.93
LLC [18] 81.57 ± 0.50
KMP 83.04 ± 0.43

From the two results, we can observe that it is advantageous to jointly learn the sparse
codes within the same sub-region. KMP also considers the sparsity and stability of the
algorithm, while ScSPM (with �1 norm) is not stable [19], which may be the underlying
reason for the better performance of KMP than ScSPM.

4.4 Experiments on Algorithmic Complexity

In this subsection, we evaluate the running time of our solver by comparing it with the
previous method shown in [1]. We use the open source code of the k-support norm 5

to make a fair comparison. Since it uses the linear search algorithm, we call it “LS-
KMP”. Our method is referred to as “BS-KMP”, which means using binary search for
the k-support norm.

We report the running time of LS-KMP and BS-KMP on all the above databases.
Note that both algorithms use the same implementation except for the computation
of the proximity operator. The running time shown in Table 6 is the cost to compute
the affinity or sparse code matrix. For Scene15 and UIUC datasets, we only report the
average running time of the first 10 images. We can see that the proposed procedure
performs 2 or 3 orders of magnitude faster than the LS-KMP on the first three datasets.
On Scene15 and UIUC datasets, BS-KMP only has 10 times faster than the LS-KMP.
This is because the value of k is set to be a small integer in these two datasets, e.g.,
k = 10.

Table 6. Running time comparison between LS-KMP and BS-KMP on five real datasets (in sec)

YaleB Hopkins USPS Scene15 UIUC
LS-KMP 3530 66174 30707 31.14 33.16
BS-KMP 5.25 400.55 191.05 3.31 3.01

5 http://cvc.centrale-ponts.fr/personnel/andreas/

http://cvc.centrale-ponts.fr/personnel/andreas/
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We conduct simulated experiments to observe the effects of the parameters on the
running time of the proximity operator with different values of β and k:

min
w

β

2
||w − v||2 + 1

2
(||w||spk )2. (11)

We generate a vector v ∈ R
10000, which is randomly sampled from the norm distribu-

tion N(0, 1). For each setting, the running time is averaged over 10 different v.

Parameter k. Table 7 shows how the running time varies with the different values of the
predefined parameter k. The parameter k is chosen from the set {1000, 2000, · · · , 9000}.
We fix β = 10 in these experiments.

Table 7. Running time comparison under different k on synthetic data (in sec)

k 1000 2000 3000 4000 5000 6000 7000 8000 9000
LS-KMP 6.1842 12.4235 16.3917 18.0764 17.8485 16.1820 13.3029 9.5786 5.0788
BS-KMP 0.0020 0.0024 0.0032 0.0083 0.0159 0.0252 0.0371 0.0497 0.0627

It can be seen that the proposed method runs significantly faster than the LS-KMP,
especially when k is set near half value of the dimension, e.g., k = [4000, 5000, 6000].
Table 7 shows that BS-KMP is 81 ∼ 5177 times faster than the LS-KMP on simulated
data.

Parameter β. Table 8 shows how the running time varies with the different values of
β. The parameter β is chosen from the set {0.01, 0.1, 1, 10, 100}. We fix k = 5000 in
these experiments. As shown in Table 8, the running time of LS-KMP sharply changes

Table 8. Running time comparison under different β on synthetic data (in sec)

β 0.01 0.1 1 10 100
LS-KMP 0.0737 0.7016 5.6410 17.8485 22.4130
BS-KMP 0.0401 0.0374 0.0293 0.0159 0.0124

with different β, while BS-KMP is more stable.

5 Conclusions and Future Work

In this paper, we proposed to use the k-support matrix norm to address the matrix pur-
suit problem, which is valuable for a wide range of applications including subspace
segmentation, semi-supervised classification and sparse coding. The k-support matrix
norm is advantageous and provides a flexible trade-off between model sparsity and
prediction accuracy. To tackle the time-consuming proximity operator problem of the
k-support norm, we also developed an efficient binary search procedure, which can
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substantially reduce the running time. Extensive experiments showed the superior ef-
fectiveness of the k-support matrix norm over the state-of-the-art baseline norms.

In future work, we plan to study the effects of using the k-support matrix norm for the
construction error term, and intend to investigate the relationship between the k-support
loss function and the outlier/Gaussian noise of the data.
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