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Abstract. Budget constraints arise in many computer vision problems.
Computational costs limit many automated recognition systems while
crowdsourced systems are hindered by monetary costs. We leverage wide
variability in image complexity and learn adaptive model selection poli-
cies. Our learnt policy maximizes performance under average budget
constraints by selecting “cheap” models for low complexity instances
and utilizing descriptive models only for complex ones. During training,
we assume access to a set of models that utilize features of different costs
and types. We consider a binary tree architecture where each leaf corre-
sponds to a different model. Internal decision nodes adaptively guide
model-selection process along paths on a tree. The learning problem
can be posed as an empirical risk minimization over training data with
a non-convex objective function. Using hinge loss surrogates we show
that adaptive model selection reduces to a linear program thus realiz-
ing substantial computational efficiencies and guaranteed convergence
properties.

Keywords: test-time budget, adaptive model selection, cost-sensitive
learning.

1 Introduction

Image recognition often relies on expensive intermediate visual processing tasks
that can hinder test-time applicability. In automated systems, low-level repre-
sentations (e.g., histograms of oriented gradients) typically incur a high compu-
tation cost and impact test time tractability. In crowdsourced systems, humans
are paid to identify intermediate visual cues/attributes and can be prohibitively
expensive for test-time.

On the other hand, we can leverage the fact that images exhibit wide diversity
in complexity. Indeed, recognition for many typical instances can be performed
to desired accuracy with relatively cheap models that utilize computationally in-
expensive features or only a few expensive attributes. This key insight motivates
our model selection policies that adapts to problem difficulty. We learn decision
rules from training data, which when presented with a new example selects the
most informative and cost-effective model for that example.

We describe our work in the context of handwriting recognition and scene
categorization. In handwriting recognition the objective is to predict a word
given a sequence of letter images. While a more complex model, that uses sev-
eral feature types or processing at multiple resolutions yields better predictive
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performance, the system suffers from the prohibitively slow computation time
[24]. Scene recognition– another scenario where budget constraints arise–is a
difficult task due to the large number of classes and interclass similarity [15].
Low-level features are often insufficient for acceptable performance; and high-
level attributes crowdsourced by Amazon Mechanical Turk (AMT) are often
used in predictive models incurring monetary costs. Due to the wide diversity
of images, high-cost attributes/features are often unnecessary for many images
to meet acceptable performance. Indeed “cheap” models can often be used for
typical cases. The goal of this paper is to learn policies that adaptively utilizes
cost-effective models while ensuring desired performance. If we represent an in-
put data instance as x, its unknown response as y and our adaptive selection
system as g(x) then the high level objective is to minimize the average prediction
error subject to an average budget B.

min
g

E [ error(g(x), y) ] s.t. E [ cost(g(x)) ] ≤ B

Several researchers have explored similar problems ([8,10,11,24]) which we will
describe later.

The novel contribution that differentiates our work is a convex formulation
for learning an adaptive model selector. We assume we are given a collection of
precomputed models. Each model operates on features with different costs. Our
decision system is described by a binary tree (see Fig.1). Each leaf corresponds to
a particular model. Due to this structure, models can share features/attributes.
The internal decision nodes route examples along the paths in a tree culminating
in a model that is cost-effective while meeting desired accuracy levels.

Learning decision functions at each node of such a tree can be posed as an
empirical risk minimization(ERM) problem that balances acquisition cost and
misclassification error. We express ERM as an extremal(maxima) point of sums
of indicator functions. This key transformation enables us to introduce convex
surrogates for the indicator functions and, in turn, results in a convex objective.
Without our transformation, direct substitution of surrogates in the original
empirical risk results in a non-convex multi-linear formulation which is known
to be NP-complete [14].

Next, by choosing a hinge loss for upper-bounding surrogate, we reduce the
objective to a linear program (LP): a very well studied problem with strong
convergence guarantees and efficient optimization algorithms. However, other
convex surrogates are also possible and our formulation carries all the advantage
of convex programming such as repeatability, global convergence and compu-
tation efficiency. In contrast, alternating non-convex optimization approaches
[18,2,21] applied to similar problems do not have such guarantees.

1.1 Related Work

Our work is broadly related to detection cascades (see [20,27,5] and references
therein) and the more recent work on classifier cascades [18]. Detection cascades
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Fig. 1. An illustration of our model selection tree. We have access to four models:
f1, . . . f4. The models use a different combination of three representations: rgb, hog,
and gist. The system has two internal decisions nodes. g1(rgb) uses the raw pixel values
to either select a low cost model f1(rgb), medium cost model f2(rgb, hog) or delay the
decision. The last decision node, g2(rgb, gist), acquired the gist feature selects between
predicting with available information, f3(rgb, gist), or processing hog and predicting
with the most expensive model, f4(rgb, gist, hog). The performance of an adaptive
model selection can be represented by an budget vs error curve in the upper right
corner. The colors correspond to different operating points as we vary the trade off
between cost and error. The overall goal is to operate close the performance of the
most complex model (red) with much lower budgets. The green point will an example
of a desired system.

have been used for highly skewed problems for object detection and realize ef-
ficiency by using simpler models to reject examples as negative without need-
ing to evaluate the more complex models farther along the cascade. Classifier
cascades generalize this to multi-class scenarios with a series of increasingly in-
formative models that adapt to problem difficulty. More recently, these ideas
have also been generalized to cost-sensitive tree classifiers for web page ranking
[26]. Our work differs from these contributions in several ways. First, our archi-
tecture is flexible and account for tree structures unlike cascades. Second, our
approach can deal with a wider variety of prediction tasks including structured
learning and sequence prediction with combinatorial output spaces in contrast
to [20,27,5,18,26]. Finally, unlike much of this existing work that involve non-
convex objectives and resort to alternative minimization schemes we formulate
a globally convex objective with guaranteed convergence properties. We gener-
alize the work on convex classifier cascades in [23] to more flexible architectures
and broader range of prediction problems. Also, related convex optimization
techniques were used by [22] in local learning problems.

Our work can be placed within the broader context of MDP approaches as
well. MDP methods unlike ours do not assume fixed architectures. [10,9] apply
an imitation learning (IL) algorithm introduced by [16] to the problem of feature
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selection. IL learns decision functions that mimics an oracle on training data.
Many issues arise in this context. We do not have access to an oracle in our setting
of model selection. Furthermore, IL [9] requires generating arbitrary collection
of states (candidate feature subsets) from training data to ensure a sufficiently
rich collection of state-actions to mimic. Nevertheless this idea applied to our
setting entails models that can take any arbitrary subset of features as inputs,
which is not tractable. In contrast by employing a fixed acquisition architecture
we only need a relatively small number of models that can be readily trained.
Related to the IL approach is another direction based on reinforcement learning
[12,4,7]. In lieu of an oracle the authors linearly parameterize a reward function
and estimate it with standard RL techniques. However, the need for models that
are customized to arbitrary subset of attributes remains as in IL.

Our work is closely related to dynamic model selection for structured predic-
tion of [24]. There the authors combine the architecture of detection cascades
with decision structure of RL. The authors define a value for selecting a more
complex model to make predictions, and approximate the selection policy as a
linear combination of meta-features computed on previous model outputs. The
goal is to improve inference accuracy while satisfying a budget on a batch of test
data. Our approach is more general. Instead of being limited to cascades, we
have the ability to construct a binary tree architecture. Also, instead of a single
policy that controls model selection at every step, we learn a separate decision
function for every internal node of the tree. These advantages produce a more
cost-effective model selection policy as we demonstrate in our experiments.

2 Empirical Risk Problem

In a typical learning problem, a data instance, x ∈ X has a corresponding
response y ∈ Y. The goal is to learn a model f(x) ∈ Y that correctly predicts
the response variable y. For notational purposes we let D denote the unknown
joint distribution for (x, y).

For example, in scene categorization, the objective is to predict a scene cate-
gory, y, in an image x. Here, the response space Y consists of L possible classes,
{1, . . . , L}. In structured prediction, the input, x, is a sequence of handwritten
letter images. The goal is predict the written word. Here, Y is a combinatorial
output space consisting of all admissible letter sequences.

Each instance x is composed of M different vector-valued feature/attribute
components. The mth feature component has an associated cost cm. We assume
we have access to K prediction models: f1(x), . . . , fK(x) that are a priori given
and fixed. The input to each model, fk(·), is a sub-collection, Sk, of the M at-
tributes or features. Each model has an associated cost of prediction:

∑
m∈Sk

cm.
In addition, each model’s prediction performance is evaluated with a loss func-
tion given the ground truth response variable: L(f(x), y) ∈ R+. For instance, in
classification, the loss is simply a 0/1 error, L(f(x), y) = 1[f(x) �=y].

Our goal is to learn a decision system that dynamically selects one of these
models for every instance x. We represent our system as a binary tree. The
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binary tree is composed of K leafs and K − 1 internal nodes. At each internal
node, j = 1, . . . ,K − 1, is a binary decision function, sign[gj(x)] ∈ {+1,−1}.
This function determines which action should be taken for a given example.
The binary decisions, gj(x)’s, represent actions from the following set: stop and
predict with the model that uses the current set of features or choose which
feature to request next. Each leaf node, k = 1, . . . ,K, corresponds to a terminal
decision of predicting with the model fk(x) based on the available information.
For notational simplicity, we denote applying a decision node and a leaf model
as gj(x) and fk(x) respectively. Note the functions implicitly operate only on
the feature sets that have been acquired along the associated path to each node.

g1

g2 g3

+-

- - ++

f1 f2 f3 f4

g1(x) g2(x) g3(x)⎡
⎢⎣

⎤
⎥⎦

Leaf 1 −1 −1 0
Leaf 2 −1 +1 0
Leaf 3 +1 0 −1
Leaf 4 +1 0 +1

=

P︷ ︸︸ ︷⎡
⎢⎣
0 0 0
0 1 0
1 0 0
1 0 1

⎤
⎥⎦−

N︷ ︸︸ ︷⎡
⎢⎣
1 1 0
1 0 0
0 0 1
0 0 0

⎤
⎥⎦

Fig. 3. An example decision system of depth two: node g1(x1) selects either to acquire
feature 2 for a cost c2 or 3 for a cost c3. Node g2(x1, x2) selects either to stop and
predict with features {1, 2} or to acquire 3 for c3 and then terminate. Node g3(x1, x3)
selects to predict with {1, 3} or with {1, 2, 3}.

The objective is to learn the internal decision functions: gj(x)’s. We define
the system risk:

R(g,x, y) =

K∑

k=1

Rk(fk,x, y)Gk(g,x) (1)

Here, g = {g1, . . . gK−1} is the set of decision functions. Rk(fk,x, y) is the risk
of making a decision at a leaf k. It consists of two terms: loss of the model at the
leaf and the cost of features corresponding to the sub-collection of attributes,
Sk, acquired along the path from the root node to the leaf; and α is a parameter
that controls trade-off between acquisition cost and model performance.

Rk(fk,x, y) = L(fk(x), y) + α
∑

m∈Sk

cm (2)

Gk(g,x) ∈ {0, 1} is a binary state variable indicating whether or not an instance
x is terminated at the kth leaf. As illustrated in Fig. 3 we compactly encode the
path from the root to every leaf in terms of internal decisions, gj(x)’s, by two
auxiliary binary matrices: P, N ∈ {0, 1}K×K−1. If Pk,j = 1 then, on the path
to leaf k, a decision node j must be positive: gj > 0. If Nk,j = 1 then on the
path to leaf k, a decision at node j must be negative: gj ≤ 0. A kth row in P
and N jointly encode a path from the root node to a leaf k. The sign pattern
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for each path is obtained by P −N. Using this path matrix, the state variable
can be defined:

Gk(g,x) =

K−1∏

j=1

[1gj(x)>0]
Pk,j [1gj(x)≤0]

Nk,j (3)

Our goal is to learn decision functions g1, . . . , gK−1 that minimize the expected
system risk:

min
g

ED [R(g,x, y)] (4)

However, the probability distribution D is assumed to be unknown and cannot be
estimated reliably due to potential high-dimensionality of attributes. Instead, we
are given a set of N training examples with full features, (x1, y1), . . . , (xN , yN).
We approximate the expected risk by a sample average over the data and con-
struct the following empirical risk minimization (ERM) problem:

min
g

N∑

i=1

R(g,xi, yi) =

N∑

i=1

K∑

k=1

risk of leaf k
︷ ︸︸ ︷
Rk(fk,xi, yi)

K−1∏

j=1

[1gj(xi)>0]
Pk,j [1gj(xi)≤0]

Nk,j

︸ ︷︷ ︸
Gk(·) = state of xi in a tree

(5)

Note that by the definition of risk in (1), the ERM problem can be viewed as a
minimization over a function of indicators with respect to decisions: g1, . . . , gK−1.

3 Model Selection by Linear Programming

A popular approach to solving ERM problems is to substitute indicators with
convex upper-bounding surrogates, φ(z) ≥ 1[z] and then to minimize the re-
sulting surrogate risk. However, this strategy leads to a non-convex, multi-linear
optimization problem in our setting. Previous attempts to solve problems of
this form have focused on computationally costly alternating minimization ap-
proaches [18,2,21] with no guarantees on optimality. A key point of this paper
is that rather than attempting to solve this non-convex surrogate problem, we
instead reformulate the indicator empirical risk in (5) as a maximization over
sums of indicators before introducing convex surrogate. Our approach yields a
globally convex upper-bounding surrogate of the empirical loss function.

3.1 Convex Risk Objective

In reformulating the risk, it is useful to define the ”savings” for an example.
The savings, πi

k, for an example i, represents the difference between the worst
case outcome, Rmax and the risk Rk(fk,xi, yi) for terminating at the kth leaf.



Model Selection by Linear Programming 653

Intuitively Rmax is the cost of incorrectly predicting with the most expensive
model (the model that uses all the features): Rmax = maxy′ L(y, y′)+α

∑
m cm.

πi
k = Rmax −Rk(fk,xi, yi) (6)

Note that the savings do not depend on the decisions, g′js, that we are interested
in learning.

For a binary tree, T , composed of K − 1 internal nodes and K leaves, it
turns out that the risk in (5) can be rewritten as a maxima of K terms. Each
term is a weighted linear combination of indicators, and each weight corresponds
to the savings lost if the decision inside the indicator argument is true. Before
stating the result, we define the weights for the linear combination in each term
of the max. For an internal node j, we denote Cn

j as the set of leaf nodes in a
subtree corresponding to a negative decision gj(x) ≤ 0. And Cp

j is the set of leaf
nodes in a subtree corresponding to a positive decision. For instance in Fig. 1,
Cp

1 = {Leaf 3, Leaf 4}.
For a compact representation, recall that the kth rows in matrices P and N

define a path to leaf k in terms of g1, . . . , gK−1, and a non-zero Pk,j or Nk,j

indicates if gj ≶ 0 is on the path to leaf k. So for each xi and each leaf k, we
introduce two positive weight row vectors of length K − 1:

wi
n,k = Nk,1

∑

l∈C
p
1

πi
l , ...,Nk,K−1

∑

l∈C
p
K−1

πi
l , wi

p,k = Pk,1

∑

l∈Cn
1

πi
l , ...,Pk,K−1

∑

l∈Cn
K−1

πi
l

(7)

Using these weight definitions, the empirical risk in (5) can be rewritten as:

Lemma 31. The empirical risk of tree T is:

R(g,xi, yi) = Rmax −
K∑

k=1

πi
k + max

k∈{1,...,K}
wi

p,k

⎡

⎢⎣
1g1(xi)>0

...
1gK−1(xi)>0

⎤

⎥⎦+wi
n,k

⎡

⎢⎣
1g1(xi)≤0

...
1gK−1(xi)≤0

⎤

⎥⎦

(8)

The proof of this lemma is included in the Supplementary Material
The jth component of wi

n,k multiplies 1[gj(xi)≤0] in the term corresponding
to the kth leaf. For instance in our four leaf example in Fig. 1, the weight
multiplying 1[g1(xi)≤0] is the sum of these savings for leaves 3 and 4 (i.e. savings

lost if g1 ≤ 0).
(
wi

n,1

)
1
= πi

3 + πi
4. Therefore, sets C

p
j , C

n
j define which πi

k’s
contribute to a weight for a decision term. If Pk,j or Nk,j is zero then decision
gj ≷ 0 is not on the path to leaf k and the weight is zero.

Intuitively, the empirical risk in (8) represents a scan over the paths to each
leaf (k = 1, . . . ,K), and each term in the maximization encodes a path to one
of the K leaves. The active term in the maximization corresponds to the leaf to
which an observation is assigned by the decision functions g1, . . . , gK−1. Addi-
tionally, the weights on the indicators represent the savings lost if the argument
of the indicator is active. In our example, if the decision function g1(xi) is nega-
tive, leaves 3 and 4 cannot be reached by xi, and therefore πi

3 and π
i
4, the savings

associated with leaves 3 and 4, cannot be realized and are lost.
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An important observation is that each term in the max in (8) is a linear
combination of indicators instead of a product as in (5). This transformation
enables us to upper-bound each indicator function with a convex surrogate,
φ(z): φ[gj(x)] ≥ 1[gj(x)>0] , φ[−gj(x)] ≥ 1[gj(x)≤0] . And the result is a novel
convex upper-bound on the empirical risk in (8). We denote this risk as Rφ(g).
And the optimization problem over a set of training examples, {xi, yi}Ni=1 and a
family of decision functions G:

max
g∈G

N∑

i=1

Rφ (g,xi, yi) (9)

3.2 Linear Programming

There are many valid choices for the surrogate φ(z). However, if a hinge loss is
used as an upper bound and G is a family of linear functions of the data then
the optimization problem in (9) becomes a linear program (LP).

Proposition 32. For φ(z) = max(1 − z, 0) and linear decision functions
g1, . . . , gK−1, the minimization in (9) is equivalent to the following linear pro-
gram:

min
g1,...,gK−1,γ

1,...,γN

α1
1,...,α

N
K−1,β

1
1,...,β

N
K−1

N∑

i=1

γi subject to: (10)

γi ≥ wi
p,k

⎡

⎢
⎣

αi
1
...

αi
K−1

⎤

⎥
⎦+wi

n,k

⎡

⎢
⎣

βi
1
...

βi
K−1

⎤

⎥
⎦ , i ∈ [N ], k ∈ [K]

1 + gj(xi) ≤ αi
j , 1− gj(xi) ≤ βi

j , αi
j ≥ 0, βi

j ≥ 0,

j ∈ [K − 1], i ∈ [N ]

We introduce the variable γi for each example xi to convert from a maximization
over leaves to a set of linear constraints. Similarly, the maximization within each
hinge loss is converted to a set of linear constraints. The variables αi

j upper-

bound the indicator 1gj(xi)>0 and the variables βi
j upper-bound the indicator

1gj(xi)≤0. Additionally, the constant terms in the risk are removed for notational
simplicity, as these do not effect the solution to the linear program. For details
please refer to Suppl. materials.

Complexity: Linear programming is a relatively well-studied problem, with
efficient algorithms previously developed. Specifically, for K leaves, N training
points, and a maximum feature dimension of D, we have O(KD+KN) variables
and O(KN) constraints. The state of the art primal-dual methods for LP are
fast in practice, with an expected number of iterations O(

√
n logn), where n is

the number of variables [1].

Kernelization: Our formulation can handle more complex decision functions
g(x) by kernelization. The observations xi are replaced in the LP by ψ(xi) for
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some expanded basis function ψ(·). For expanded basis functions, a natural solu-
tion is to add �2 regularization on the decision functions, converting the LP to a
quadratic program. Addition of �2 regularization removes non-unique solutions,
with solution of the regularized problem equal to the minimum norm solution
of the unregularized problem (for a sufficiently small regularization parameter
value). Furthermore, the �2 regularization allows for the problem to be kernel-
ized, as the optimization can be expressed with respect to expanded basis inner
products of the form ψ(xi)

Tψ(xj) in the dual problem. While this is possible,
yielding a quadratic optimization problem in place of the proposed LP, empiri-
cal evidence indicates that on real-world data the family of linear and low-order
polynomial decision functions is sufficiently rich and therefore we do not explore
kernelization in the experimental section.

Algorithm 1. Model Selection by LP

INPUT: f1(x), f2(x), . . . , fK(x) {Models}; S1, S2, . . . , SK {Features used by each
model}; P,N {Tree structure}; (x1, y1), (x2, y2), . . . , (xN , yN ) {Training Data}; α
{Trade-off parameters}
for (i, k) = {1, . . . , N} × {1, . . . ,K} do

Compute savings in (6): πi
k ← Rmax −Rk(fk,xi, yi)

Compute weight vectors in (7): wi
n,k,w

i
p,k

end for
Solve linear program in (10): [g1(x), g2(x), . . . , gK−1(x)]← LPsolver({wi

n,k,w
i
p,k})

OUTPUT: Model Selection Tree: g(x)

4 Experiments

We demonstrate our LP model selection approach in Algorithm 1 on two im-
portant prediction tasks in computer vision. First, we apply our method to the
problem of structured prediction. We use the handwriting dataset for word pre-
diction and compare our method to the RL based model selection ([24]). Here,
the cost is computation time for processing HOG transforms of different scales.
For the second experiment, we apply our method to the SUN scene categoriza-
tion [15] dataset. Here instead of using image processing features, we use human
generated descriptor as inputs to a classifier. In this set-up, the cost of feature
acquisition is the monetary value paid to Amazon Mechanical Turk workers.

Performance Metric: Our goal is to train a set of decision functions for a fixed
tree that minimizes prediction loss subject to an average budget constraint. We
examine average acquisition cost vs. average prediction loss to compare per-
formance of the proposed LP approach. We sweep over values of the tradeoff
parameter α in order to learn systems of varying average budget, resulting in
a series of learned trees of differing prediction rates and average budgets. In-
creasing the value of α biases the system to learn decisions with low average
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acquisition cost with an increased system error, while decreasing the value α
yields systems with smaller error at the expense of an increase in cost. Although
a system may not be learned that exactly matches a desired budget, any point
in the convex hull of budget/error points learned is achievable by weighted ran-
domization over learned systems. As a result, we take the lower convex hull of
points in the space of average error vs. average cost to learn a decision system
for any average budget. Note that in the experimental results, a convex hull over
the training points is taken, with the corresponding policies applied to unseen
test data, and therefore the resulting curve is not necessarily a convex hull. In
all experiments, we first divide the data into 10 training/test folds. Within each
fold, we further divide the training data of each fold into 10 sub-folds. In these
sub-folds, we use all but one subfold to train the models, and apply this learned
predictor to estimate the losses for the unused subfold. These sub-folds are used
to more accurately represent the prediction ability of the models for learning our
adaptive system.

Leaf Models: Each individual leaf model, f1, . . . , fK , operates on a subset of
the features acquired on the path to that leaf. We assume fk’s are pre-computed
prior to learning the decision system. The goal of our paper is to demonstrate
the advantage of an adaptive selection system therefore we do not seek to learn
the most accurate models. We simply illustrate the gain in relative performance:
same level of accuracy as the most complex model achieved with lower budgets.

4.1 Model Selection in Structured Learning

Structured Learning Problem: In structured learning, the goal is to learn
a model from a set of training samples that maps inputs x ∈ X to the outputs
y ∈ Y. In a typical structured prediction setup [19], the response space Y is not
simply a discrete label but instead a more complex structured output. In partic-
ular, we focus on the problem of predicting words from handwritten characters,
where the output space, Y, is a string of letters of varying length. The goal is
to learn a scoring function, Ψw(x, y), over training data such that the prediction
model, f(x) = argmaxy∈Y Ψw(x, y) matches the given training structure.

We use a function Ψw(x, y) = w · h[x, y] which is linear in the score fea-
tures h : X × Y → R

p. In general, there are exponentially many outputs
and solving this inference is computationally infeasible. However, h is usu-
ally constructed to decompose over subsets of y that enables this problem to
be solved efficiently. In our experiment, we adopted a first-order linear condi-
tional random field model which is commonly used in optical character recog-
nition (OCR) tasks [24,13]. In this model, the score features decompose into
sum of unary and pairwise terms. Given an input character image sequence of
x = {x(1), ..., x(l)}, the score of output sequence can be written as, Ψw(x, y) =∑�

j=1 h[x(j), y(j)] ·w+
∑�

j=2 h[x, y(j − 1), y(j)] ·w, where y(1), ..., y(�) are la-
bels for individual characters in the word y. Given the weight vector w, we use
max-sum algorithm [3] to solve the inference problem. To learn the weight vector
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w, we solve maximum conditional likelihood using stochastic gradient descent.
We used the implementation in [13] for this purpose.

Dataset and Simulation Details: We used the OCR data set from [17]. This
data set has 6,877 handwritten words where each word is represented as sequence
of 16x8 binary letter images. There are 55 unique words, 26 unique characters
and 55,152 letters.

Following [17], we use three sets of features: raw images, histogram of gradients
(hog1) [6] computed in 3x3 bins and a finer HoG computed on 2x2 bins (hog2).
We train three CRF models: frgb, frgb,hog1, frgb,hog2. Note that once hog2 is
computed, hog1 does not add additional information. The computational cost of
processing the raw images is assumed to be negligible, while the computational
cost of the 2x2 and 3x3 HOG features are assumed to be equal and proportional
to the length of the word.

The goal is to learn a system to minimize character recognition error subject to
an average computational cost constraint per letter. We train two architectures:
a two stage cascade and a three decision node binary tree as illustrated in Fig.
4a. Note the tree allows greater flexibility by allowing us to acquire hog2 directly
from rgb while a cascade has to acquire hog1 before processing hog2.

Following the framework presented in [24], the decision functions in our LP
tree also act on meta features as opposed to the raw features. These meta features
reflect the fit of the structured predictor f(·) to the training set population.
The meta-features used are the difference in the score for the top two sequence
predictions, the average of the min/max and mean entropies of the marginal
distributions as predicted at each position in the word by the predictor at that
stage. Additional meta-features count the number of times a 3-gram 4-gram and
5-gram are predicted but never occur in the training set.

Dynamic Model Selection Baseline: We compare our approach to dynamic
structured model selection method (DMS) in [24]. There the authors employ a
cascade architecture with models arranged sequentially in the order of increasing
cost, and learn a policy that controls whether an example should be predicted
using the current model or rejected to the next more expensive model. For their
DMS architecture, we use the same cascade as for our approach.

The authors define the value of delaying a decision as a decrease in the loss
when a sample is moved from stage i to i + 1. This value function is modeled
as a linear combination of the meta-features. The policy then sends the in-
stance that suffer the maximum predicted loss reduction to the next stage until
a predetermined budget limit is hit. The value of skipping a stage is defined as:
V (fi,x,y) = L(fi−1(x),y) − L(fi(x),y). The policy parameter β is found by

ridge regression, argminβ λ||β||22 +
∑3

i=2

∑n
j=1(V (fi,xj , yj)−βTφ(xj , f1:i−1))

2,
where φ denotes the meta-features for given sample and stage predictors. The
test time value is then defined as J(τ1, ..., τn, η) =

∑n
j=1

∑τj
i=2 β

Tφ(xj , f1:i−1),
where τj denotes how many features are computed for example j. During test
time, the total value is greedily maximized until the budget constraint B pre-
vents any other features from being computed.
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Fig. 4. (a) shows two system structures used in the OCR experiment: a two stage
cascade and a three node tree. In (b), we display the budget vs error plot for three
methods: cascade and tree architecture of our LP model selection system and a DMS
cascade system. While performance of LP and DMS are on par in the cascade structure,
LP Tree has a significant advantage over DMS. LP tree achieves same accuracy with a
significant speedup and lower computation cost(≥70% savings). Panel (c) displays the
distribution of examples that end up at 3 different stages/models in the LP cascade
at three budget operating points. For the tree, this is not illustrative since the best
accuracy is achieved at .33 budget point.

w1 w2 w3 w1 w2 w3

@simple model: frgb @complex model: frgb,hog2

Fig. 5. Here, we examine the histogram at .62 budget from Fig. 4c. We provide exam-
ples of three different words being classified at the cheapest/simplest model (frgb) and
at the complex/expensive model (frgb,hog2). As expected, more obscure and rotated
words require the complex model.

Discussion: We report average error for different values of average budget (see
Fig. 4b). For simplicity, we normalize the units to the fraction of the maximum
budget allowed. For example, if the system operates at budget 1 then every ex-
ample is routed to the most expensive model frgb,hog2 (the best accuracy). For
budget 0, every example remains with the cheapest model, frgb. An adaptive
system with a budget between 0 and 1, utilized the cheap model for some exam-
ples and the expensive model for others resulting in a lower budget but accuracy
equivalent to the expensive model.
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The experiments clearly highlight the advantages of our approach. Our LP
cascade performance matches the accuracy for all budget values of a DMS cas-
cade. However, when we introduce a more flexible tree architecture instead of
a cascade, the performance dramatically improves. Our LP tree exhibits signifi-
cant computational-savings(≥ 70%) and speedup to achieve similar accuracy as
a DMS cascade. In a cascade, an example cannot go directly to the most complex
model, frgb,hog2 while in a tree this decision is possible and results in higher cost
efficiency. In addition, our approach learns a separate decision for every internal
node in the tree allowing for more complex selection functions. In contrast in
DMS, the same policy function is used at every stage of the cascade limiting the
discriminative power of the decision system. Note that DMS does not generalize
to trees in an obvious way since it is in essence an early stopping policy.

In addition to the error vs budget performance, we explore the distribution
of examples that are being routed to the three models in our LP cascade ar-
chitecture. We examine systems corresponding to budgets: .26,.62 and .73. As
expected at a budget of .26, model utilization is evenly distributed between the
cheapest, frgb and the medium complexity model, frgb,hog1. At the other end of
the spectrum, at a higher budget of .73, most examples are being routed to the
most expensive/complex model, frgb,hog2. However, in the middle of the spec-
trum at the .62 budget system, for half of the examples, frgb is being utilized
and the rest are routed to the last model frgb,hog2. This however may not be
that surprising. Since the performance of hog1 and hog2 are similar, the system
decides to use the more expensive feature. We do not explore the distributions
for the LP Tree since the best performance is already achieved at a .33 budget.

We also report the average word length that each model sees. As expected
longer (presumably harder to classify) end up at a later more complex model.
We next look at the actual images being classified at the cheapest (simplest)
model (frgb) and at the most expensive, frgb,hog2 levels. We look at different
instances of the same word. Fig. 5 illustrates more obscure instances of the same
word are routed to the last stage (the most complex/expensive model).

4.2 Scene Recognition

Next, we apply our system to another challenging task in computer vision: scene
recognition. The problem can be posed as multi-class classification problem,
where x is an image of a scene, and y is one of L scene categories. We focus on
the popular scene dataset SUN [25].

The difficulty in this problem is due to several factors. First, the number of
classes, L, is very large, L > 700, and the number of examples per class is small,
20. Partly due to this data limitation and the difficulty of the task itself, auto-
matic visual recognition features such as HoG or GIST do not achieve suitably
high accuracy rates. In an attempt to improve performance, authors in [15] pro-
posed exploring human annotated attributes. Amazon Mechanical Turk workers
were asked to vote whether images fit certain descriptions such as: camping,
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cluttered space, fire. For each attribute, an average of three votes is reported,
with a total of 102 attributes. The attributes are then grouped into three sets:
(1), functions (camping, hiking, biking...), (2), materials (trees, clouds, grass,...),
and (3) surface/spatial properties (dirty, glossy, rusty,open area, warm,...).

To simplify our experiment, we use the second level of the class hierarchy,
which groups the scenes into more general categories, and then we discard the
indoor categories, resulting in only 10 classes. From this data, we randomly
construct an even training/test split, resulting in around 400 training and 400
test points per class.

We then train 3 models: f1, f1,2, f1,2,3, with the subscripts indicating which
attribute groups are used to construct the model. Since attributes are acquired
by paying AMT workers, the goal is to make accurate predictions while using
the smallest number of total attributes. Additionally, due to the nature of the
system, dynamic model selection must be performed in a streaming test data
setting as opposed to collecting data for all test examples before acting.

Cascade

f1,2

2

3

f1

1

f1,2,3

(a)

Cost Savings (%)

Accuracy Loss LP DMS Fixed

0% 5.4 3 0
1% 27 12 6
2% 32 32 24
10% 65 65 65

(b)

1 2 3

budget fraction: 0.9463

1 2 3

budget fraction: 0.3547

1 2 3

budget fraction: 0.7314

f1,2f1 f1,2,3

65%

5.4%

27%

(c)

Fig. 6. SUN Scene Categorization Results. (a) shows cascade structure used in the
experiment. In (b), we report cost savings for four accuracy levels. Loss is the difference
between the accuracy of the most complex model and the dynamic model at different
budget points. Cost savings is the percent saved from the most expensive model. In
(c), we display example distribution among stages.

f1,2f1 f1,2,3

Fig. 7. Sample images from the railroad category sent to different models
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We compare the performance of our system to a DMS cascade and non-
adaptive fixed-length systems. Note that the DMS cascade cannot be applied
to individual test examples, as the system ceases to dynamically select the mod-
els. To accommodate for this shortcoming, we randomly partition the test data
into subsets of 10 examples, with performance of the learned DMS cascades
averaged over all subsets. In contrast, the system learned using the proposed
LP operates on single examples allowing for streaming/parallel application as
opposed to a batch/centralized strategy.

Table 6b compares change in classification accuracy vs. cost reduction for the
three approaches. For all 4 changes in classification accuracy, the proposed LP
approach matches or exceeds the performance of the fixed-length systems or the
adaptive DMS system. In particular, the proposed LP approach produces an
adaptive system that reduces the budget by 27% while reducing accuracy by
only 1%. In comparison, the DMS cascade is only able to reduce the budget by
12% when maintaining a classification performance within 1% of the full system.
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