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Abstract. Interactive image segmentation is an important computer
vision problem that has numerous real world applications. Models for
image segmentation are generally trained to minimize the Hamming er-
ror in pixel labeling. The Hamming loss does not ensure that the topol-
ogy/structure of the object being segmented is preserved and therefore
is not a strong indicator of the quality of the segmentation as perceived
by users. However, it is still ubiquitously used for training models be-
cause it decomposes over pixels and thus enables efficient learning. In
this paper, we propose the use of a novel family of higher-order loss
functions that encourage segmentations whose layout is similar to the
ground-truth segmentation. Unlike the Hamming loss, these loss func-
tions do not decompose over pixels and therefore cannot be directly used
for loss-augmented inference. We show how our loss functions can be
transformed to allow efficient learning and demonstrate the effectiveness
of our method on a challenging segmentation dataset and validate the
results using a user study. Our experimental results reveal that training
with our layout-aware loss functions results in better segmentations that
are preferred by users over segmentations obtained using conventional
loss functions.

Keywords: structured prediction, image segmentation, loss-based
learning, max-margin learning, perceptual error metrics.

1 Introduction

Interactive image segmentation is an important problem in Computer Vision that
involves separating an object (foreground ‘fg’) of interest, specified by some user
provided seeds, from the rest of the image (background ‘bg’). Like many other
problems in Computer Vision, and Machine learning in general, fg-bg segmenta-
tion can be formulated in terms of learning a prediction function f : X → Y that
maps a set of inputs x ∈ X (e.g. images or features) to some desired outputs
y ∈ Y (eg. locations or pixel-wise segmentations of one or more objects in the
image). The prediction function for image segmentation is typically assumed to
take the form of a minimization of a low order (typically pairwise) energy func-
tion. Such prediction functions have become very popular in computer vision
because certain classes of pairwise energies can be efficiently minimized (either
exactly or approximately) using Min-cut/Max-flow algorithms [14].
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(a) (b) (c)

(d) (e) (f)

Fig. 1. The left column shows 2 images from “twigs and legs” dataset [10]. The second
left column shows the zoomed ground-truth labelings. The other columns correspond
to different distortions of the ground truth: (a) and (d) – morphological opening of the
ground truth; (b) and (e) – averaging over 5x5 window; (c) and (f) – thinning of “fat”
parts of the ground truth. Table 1 shows 4 different loss functions computed for these
segmentations

Table 1. Different losses computed for segmentations (a)-(f) in figure 1 (the lower the
loss is the better the segmentation is w.r.t. it)

Loss 1a 1b 1c 1d 1e 1f

Hamming 0.19 0.20 0.24 0.11 0.10 0.12
Jaccard 3.91 4.18 4.95 5.14 4.91 5.83
Area 0.20 0.05 0.21 0.11 0.06 0.12

Skeleton 3.72 0.71 0.45 2.90 1.53 0.59

Most discriminative methods for learning prediction functions such as Max-
Margin Markov Networks (M3N) [23], and Structured Support Vector Machines
(SSVMs) [24] are based on the principle of Empirical Risk Minimization (ERM).
This technique has gained wide-spread acceptance in Computer Vision by pro-
ducing impressive results for many vision problems including image segmenta-
tion [18,21] and object detection [3,6]. ERM requires choosing the prediction
function that makes the best predictions under some metric or loss function.
More formally, given a family of prediction functions fw : X → Y parameterized
by w and a training set of examples of input/output pairs D = {(xn,yn);n ∈
{1, ..., N},xn ∈ X ,yn ∈ Y}, the learning algorithm tries to find the optimal
weight vector w∗ that minimizes the total task-dependent loss as:

w∗ = argmin
w

L(w) = argmin
w

1

N

N∑

n=1

Δ(yn, fw(xn)) (1)

where loss function Δ(yn, ŷn) denotes the cost of predicting output ŷn when
the correct prediction is yn. The Hamming distance (number of mislabelled
pixels) between the prediction and the ground truth is widely used as the loss
for training models for image segmentation. One of the reasons for this choice is
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the fact that Hamming distance decomposes over pixel variables and thus results
in a tractable learning problem (see sec. 2). Although the choice of the Hamming
loss allows efficient learning, it also poses a problem. The Hamming loss is not a
strong indicator of the quality of the segmentation results as perceived by users.
This point is illustrated in figure 1 and table 1.

A number of loss functions have been proposed in the literature as a replace-
ment for the Hamming loss. Lempitsky et al. [16] balance costs for false positives
and false negatives in order to compensate for differences in prior probabilities.
The PASCAL VOC segmentation challenge [5] uses Jaccard distance (the inter-
section/union metric). Pletscher and Kohli [18] use a loss that encourages seg-
mentations to be of the correct size (area loss). All the above-mentioned losses
can be computed using the confusion matrix of the mislabeled pixels. These loss
functions consider how many errors were made but ignore where these errors
were made, i.e. they do not care if the topology/structure of the object being
segmented is preserved.

In this paper, we address the problem of computing layout preserving segmen-
tations. We propose a skeleton-based loss function that allows to learn a low order
model using higher order loss functions that penalize segmentations that differ
from the ground truth in terms of the layout. This approach can be combined
for further improvement with recently proposed high-order models (e.g. [17,1])
or densely-connected pairwise models [15]. Our work generalizes the loss func-
tions used in [18] to a much larger family of layout-aware losses that still allow
efficient training. We propose two layout-aware loss functions: the Row-Column
loss and the Skeleton loss. Both losses take into account the spatial relationships
between image pixels. Figure 1 and table 1 show examples of segmentations that
are ranked differently using Hamming, Jaccard, Area, and Skeleton losses. It
can be observed that only the skeleton loss selects the segmentation with the
preserved structure as the best.

We evaluate the proposed loss functions together with several other baseline
losses on a challenging interactive image segmentation dataset. We perform a
user study to quantify the difference between the human notion of similarity of
image segmentations and the similarities defined by our loss functions. Experi-
mental results reveal that the skeleton loss leads to better segmentation results
that are considered better by users.

2 Loss-Based Training

In this section we introduce our notation and review the loss-based max-margin
approach [24,23]. For a given input x ∈ X we consider a model that predicts
output y ∈ Y1 by maximizing a linearly parameterized score function:

fw(x) = argmax
y∈Y

〈w, ϕ(x,y)〉 (2)

1 Formally the set of possible labelings Y itself depends on the object x, e.g. the
number of variables in each y depends on the resolution on image x. In this paper
we omit the dependency of Y on x to lighten the notation.
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where w is a vector of the model parameters and ϕ(x,y) is a mapping of a
joint input/output space to a space of so-called generalized features. Generalized
features are usually predefined and depend on the nature of the task.

In computer vision, problems are very often formulated using graphical models
which represent the factorized form of a score function. We consider a pairwise
model with structure specified by graph G = (V , E), where V is a set of nodes
(each node i ∈ V corresponds to a variable yi in output space Y) and E is a
set of edges that correspond to direct dependencies between the variables. Each
variable yi can take values from set K = {0, 1}. The score function (negative
energy) of the model takes the following form:

〈w, ϕ(x,y)〉 =
∑

i∈V
ψi(yi,x,w

u) +
∑

(ij)∈E
ψij(yi, yj,x,w

p) (3)

where ψi and ψij are linear function w.r.t. model parameters w. For convenience
the set of model parameters is separated into unary (wu) and pairwise (wp)
parameters. It is well known that if the score function is supermodular w.r.t.
variables y than it can be maximized efficiently over labelings y using min-
cut/max-flow algorithms [14].

Having defined the form of the predictor function we formulate the problem
of learning the model parameters w given the set of input/output pairs

{
(x1,y1), . . . , (xN ,yN )

}
.

The margin-rescaled version of the max-margin approach (also referred to as
structured SVM, SVM-struct) formulates a convex upper bound on the regular-
ized empirical risk in the following way:

λ

2
‖w‖2 + 1

N

N∑

n=1

(
max
y∈Y

(〈w, ϕ(xn,y)〉 +Δ(y,yn))− 〈w, ϕ(xn,yn)〉
)
. (4)

Here Δ(y,yn) is a loss function, specifying the penalty for prediction y in place
of ground-truth labeling yn.

The traditional approach to minimize (4) is to formulate it as a quadratic
program (QP) with exponentially many constraints,

min
wξ

λ

2
‖w‖2 +

N∑

n=1

ξn (5)

s.t. 〈w, ϕ(xn,y)〉 +Δ(y,yn)− 〈w, ϕ(xn,yn)〉 ≤ ξn,

∀n = 1, . . . , N, ∀y ∈ Y, (6)

and to solve it via a cutting plane algorithm [24]. Algorithm 1 states the simplest
version of this approach.

3 Choosing the Loss Function

The choice of loss function Δ(y,yn) is a crucial component of the max-margin
formulation (4). The only requirement that algorithm 1 imposes on the loss
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Algorithm 1. Cutting plane algorithm to solve SSVM problem (5)-(6) [24]

Input:
{
(x1,y1), . . . , (xN ,yN )

}
, λ, ε.

Output: w∗ – the solution of 5-6;
1: Sn = ∅, ∀n = 1, . . . , N ;
2: repeat
3: for n = 1, . . . , N do
4: H(y) := Δ(y,yn) + 〈w, ϕ(xn,y)− ϕ(xn,yn)〉;
5: ŷ = argmaxy∈Y H(y); // find the most violated constraint
6: ξn = max{0,maxy∈Sn H(y)}; // compute the current slack
7: if H(ŷ) > ξn + ε then
8: Sn := Sn ∪ {ŷ};
9: w ← optimize (5) with constraints defined by

⋃
n Sn

10: until no Sn has changed during iteration

function is that it should allow the solution of the loss-augmented MAP inference
problem in step 5:

max
y∈Y

(
〈w, ϕ(xn,y)〉 +Δ(y,yn)

)
. (7)

In this section we review the loss functions typically used to evaluate segmenta-
tion quality and describe new layout-aware losses.

3.1 Decomposable Loss Functions

From a computational stand-point, the simplest loss functions are the ones that
can be represented as the sum of the unary potentials w.r.t. labeling y. In this
case, the loss-augmented inference problem (7) is as hard as the vanilla MAP-
inference problem (2). Arguably the simplest and most often used decomposable
loss function is the Hamming distance to the ground-truth labeling:

ΔH(y,y
n) =

1

|V|
∑

i∈V
[yi 	= yni ]. (8)

Here [·] is the Iverson bracket notation: [A] equals 1 if a logical expression A is
true and 0 otherwise.

A more flexible version of Hamming loss can be obtained by associating
weights to all terms in (8) as follows:

∑

i∈V

∑

k∈K
cik[yi = k][yni 	= k]. (9)

In this formulation weights cik can be conditioned on the ground-truth labeling
yn without making optimization w.r.t. y harder. This manipulation allows us to
construct the more general weighted Hamming loss (wH) function.

The weighted Hamming loss follows the intuition that the pixels at the bound-
ary of the object are harder to segment correctly [12] and thus are more valuable:
cik = 1 + A exp (−di(yn)/B), where di(y

n) is the distance between pixel i and
the closest point on the foreground-background boundary in the labeling yn, and
A, B are distance parameters. In our experiments we use A = 10 and B = 7.
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3.2 High-Order Loss Functions

The Hamming loss (and even its weighted variant) do not represent the “percep-
tual quality” of the segmentation well. This has led researchers to adopt other
metrics for evaluating results. For instance, the PASCAL VOC segmentation
challenge [5] uses the Jaccard distance (also known as “the intersection/union
metric”) between the sets of pixels belonging to the object according to the pre-
dicted and the ground-truth segmentations. This metric is defined as follows:

ΔJ (y,y
n) = 1− TP

TP + FP + FN
= 1−

∑
i∈V yiy

n
i∑

i∈V yiy
n
i + yi(1− yni ) + (1− yi)yni

(10)
where TP, FP, FN denote the number of True Positives, False Positives, and False
Negatives, correspondingly. Jaccard loss (10) is not decomposable which makes
the loss-augmented MAP-inference (7) problem different from MAP inference.
Tarlow and Zemel [22] proposed a message passing scheme that can approxi-
mately solve the loss-augmented MAP-inference problem with the Jaccard loss
function.

3.3 Supermodular Loss Functions

Pletscher and Kohli [18] make the observation that certain high-order loss func-
tions Δ(y,yn) are supermodular and can thus be maximized in polynomial time.
They used a supermodular higher-order loss function that penalized segmenta-
tions that differed in terms of the area of the foreground segment:

ΔA(y,y
n) =

1

|V|

∣∣∣∣∣
∑

i∈V
yi −

∑

i∈V
yni

∣∣∣∣∣ . (11)

They showed that the loss-augmented MAP-inference problem can be solved by
solving an equivalent st-mincut/maxflow problem.

3.4 Layout Dependent Losses

High-order losses (11), (10) and the decomposable Hamming loss (8) view the
segmentation as a sequence of pixels and are unaware of the spatial layout of the
pixels. Weighted Hamming loss (9) is in some sense smarter and tries to introduce
the notion that for “good” segmentation not all pixels are equally important:
the closer the pixel is to the ground-truth boundary the more important it is.
We believe that for human perception, layout and topology of the segmentation
are very important criteria for the segmentation to be “good”. In this section
we present two new higher-order loss functions that take the spatial layout of
pixels into account.
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(a) (b) (c)

Fig. 2. The initial image – (a); pixel sets that form groups for the row-column loss –
(b), and skeleton loss – (c)

Row-Column loss. One way to characterize a segmentation is through its silhou-
ette: an orthogonal projection of the 2-D set of pixels in a certain direction. The
silhouette-based loss requires that for each line in a certain direction the number
of pixels that belong to the object should be as close to the number of pixels of
the ground-truth segmentation as possible. Formally, this loss can be expressed
as follows:

ΔRC(y,y
n) =

∑

d∈D

∑

S∈Sd

∣∣∣∣∣
∑

i∈S

yi −
∑

i∈S

yni

∣∣∣∣∣ . (12)

Here Sd is a set of all lines in direction d that intersect the image domain and
D is a set of directions considered. In our experiments we restrict ourselves to 2
directions: horizontal and vertical. Figure 2b illustrates the pixel sets included in
one group for the row-column loss for the case where D = {Horizontal, Vertical}.

Skeleton loss. A skeleton of the object segment is an important morphological
characteristic for human perception. The notion of skeleton is well-known in the
image processing and mathematical morphology communities (see e.g. [8] for a
review).

Our skeleton-based loss function is motivated from the intuition that pix-
els around the skeleton of the ground-truth segmentation are very important
and should be segmented correctly. We achieve this by using the following loss
function:

Δs(y,y
n) =

∑

d∈D

∑

S∈Sd

adS

∣∣∣∣∣
∑

i∈S

yi −
∑

i∈S

yni

∣∣∣∣∣ (13)

where D is a set of all points on the skeleton, Sd is a set of all pixel sets associated
with pixel d of the skeleton, adS are the weighting coefficients.

For each pixel on the skeleton, we define the following three sets: a circle
centered at the pixel with a radius 25% larger than the distance to the boundary,
and circles with the radius equal to 50% and 25% of the radius of the first
circle. To make the number of sets smaller, we sub-sample the points on the
skeleton such that the loss only considers 25% of the points. We set the weighting
coefficients in such a way that all the sets have equal impact regardless of their
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size: adS = 1/
∑

i∈S y
n
i . Figure 2c illustrates the pixel sets included in one group

for the skeleton loss.
As defined in equation 13, the skeleton loss does not penalize segmentations

for mislabeling pixels that are not contained in any of the circles. To compensate
for this bias instead of the pure skeleton loss we use a composite loss which is a
weighted sum of Skeleton and Hamming losses and is defined as:

Δskel(y,y
n) = αΔs(y,y

n) + (1 − α)ΔH(y,y
n) (14)

where α is a mixing coefficient. In our experiments we use α = 0.5 and normalize
both losses in such a way that the maximum possible loss equals 1.

4 Inference with High-Order Losses

We now describe how the loss-augmented inference problem can be solved for
the layout-aware loss functions. Both skeleton (14) and row-column (12) losses
can be written down in the following form:

Δ(y, ŷ) =
∑

S∈S
aS

∣∣∣∣∣
∑

i∈S

yi − bS

∣∣∣∣∣ (15)

where set S is a set of subsets of nodes: S ⊂ 2V , aS ≥ 0, bS are the coefficients.
Note that this form is very general. In fact, decomposable losses like the Ham-
ming loss as well as higher-order losses such as the area loss (11) can be viewed
as special cases of this general form. It is also easy to see that this general form
is supermodular and thus can be maximized in polynomial time. However, the
worst case complexity of supermodular maximization is still quite high which
prevents their application to large scale maximization problems such as the ones
encountered in this paper.

Instead, we follow the approach used in [12,18,11] to transform the problem
to the pairwise one:

∣∣∣∣∣
∑

i∈S

yi − bS

∣∣∣∣∣ = max
zS∈{0,1}

(
zS

(
∑

i∈S

yi − bS

)
+ (1 − zS)

(
bS −

∑

i∈S

yi

))

= max
zS∈{0,1}

(
(1− 2zS)

(
bS −

∑

i∈S

yi

))
. (16)

The function in the r.h.s. is supermodular and pairwise w.r.t. variables zS and yi.
Such functions can be maximized efficiently using standard max-flow/min-cut
algorithms [14].

5 Image Segmentation Model

In this section we provide the details of the pairwise random field model (3) for
image segmentation that was trained using the different loss functions. Following



Perceptually Inspired Layout-Aware Losses for Image Segmentation 671

the approach of [18], we have one variable in V for each pixel of the image. We
define the set of edges E using the 8-connected pixel grid. For each node and
edge in the model we compute a set of unary and pairwise features respectively.
Afterwards, we combine corresponding unary features of each pixel to form a
vector of unary generalized features (which is later multiplied by unary weights
wU ). The pairwise features define the Potts pairwise potentials combined into
the two groups for each pairwise feature: diagonal and horizontal/vertical edges.

Unary potentials. For every node in the model we compute the following 51 unary
features: 3 RGB channels, the likelihood from 5-component Gaussian mixture
models fitted to the predefined foreground and background seeds in RGB and
CIELUV spaces independently, 3 CIELUV color channels, 40 distance transform
features, and 1 constant bias feature. Every feature fk(i) is used to define a unary
potential:

ψi(yi,x,w
u) =

∑

k

(
wu

kfk(i)[yi = ‘fg’]− wu
kfk(i)[yi = ‘bg’]

)
. (17)

All the features are normalized in such a way that the maximum value equals 1,
and the minimum value – 0. We use the approach from [9] to learn the GMM-
based appearance models from pixels that belong to user-specified “seed” re-
gions.

To construct the distance transform features we use generalized distance trans-
forms to background and foreground seeds. Following [9] we define the distance
from a pixel to the seed region as the minimum length of a discrete path that
leads form the pixel to the region, where the length of each path is defined as
follows:

L(Γ ) =

n−1∑

i=0

√
(1 − γ)d(Γ i, Γ i+1)2 + γ‖ΔI(Γ i, Γ i+1)‖2. (18)

Here Γ = {Γ i}ni=0 is a discrete path connecting point Γ0 and Γn. All neighboring
elements of the path are connected in 8-connectivity sense and d(·, ·) is the
Euclidian distance between them. ΔI(·, ·) is a vector in color space equal to
the color difference of the corresponding points; γ is a weight factor between
Euclidian and color differences. We construct features using distance transforms
to both foreground and background seeds with the following parameters: γ = 0
(Euclidian distance); I – CIELUV color channels, γ = 1; I – RGB color channels,
γ = 1; I – appearance model response channel, γ = 1. Two feature responses for
an example image are shown in figure 3e and 3f. In addition we threshold each
of the distances at 5 levels uniformly distributed between the minimum and the
maximum values. In total we get 40 distance transform features.

Pairwise potentials. We use one constant pairwise feature and 5 contrast depen-
dent features. All the pairwise features define Potts pairwise potentials with sep-
arate weights for diagonal and horizontal/vertical edges (12 pairwise generalized
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(a) (b) (c)

(d) (e) (f)

Fig. 3. (a) – the initial image from the dataset; (b) – the ground truth; (c) – the initial
seed provided by [9]; (d) – the extended seeds that we use in out experiments; geodesic
distance from the foreground seeds in the (e) RGB channels; (f) appearance model
response channel

features in total). Formally, the pairwise potentials of the image segmentation
model are defined as follows:

ψij(yi, yj ,x,w
p) =

∑

k

exp
(−ckβ‖Ii − Ij‖2

)
[yi 	= yj] (19)

where Ii is the color of the i-th pixel in the RGB color space, β is the inverse aver-
age difference between the neighboring pixels on the current image (as suggested
in [19]), ck is a weighting coefficient that we varied to get different features; we
used the following values of ck: 0, 0.1, 0.3, 1, 3, 10.

6 Experiments

In this section we present the details of our experimental evaluation including
the dataset, the implementation details and the results.

Dataset. We perform our experiments on a subset of the dataset provided by [9],
which is an extended version of the GrabCut dataset [2]. The dataset contains 151
images, their ground-truth segmentations, and user-defined object/background
seeds. Prior to all experiments we’ve chosen 60 images which seemed to be hard
for the model and on which different losses seemed to show different properties:
objects with thin and long structure, mixed color statistics, etc. Figure 3 shows
an image from the data set (a), the corresponding ground truth (b), and the
predefined seeds (c). To avoid model mis-specification we’ve enlarged the user
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defined seeds, making them more similar to tight trimaps [13] (see fig. 3d). To
do this we apply the following morphological operations. We dilate the user
defined seeds by 50% of the maximum distance to segment boundary, intersect
the obtained region with 10 pixel eroded segment, union the result with 20 pixel
eroded segment.

Implementation details. We implemented algorithm 1 in Matlab. In all our ex-
periments, finding the most violated constraints (step 5) was the computational
bottleneck. We used the interior-point method provided by MATLAB Optimiza-
tion Toolbox to solve the QP (step 9) and called the QP-solver after adding each
individual constraint. To solve the min-cut/max-flow problem we used the C++
code connected to Matlab via the MEX interface. Following [18] we use the IBFS
algorithm [7]2 instead of the popular Boykov-Kolmogorov [4] algorithm. The lat-
ter is slower for denser graph structures. For the majority of image processing
operations mentioned in section 5 we use the software provided by [9]3 and [18].4

All the losses in our experiments are normalized to [0, 1] segment. Although the
worst possible configuration w.r.t. the skeleton and the row-column losses can be
non-trivial we can always obtain it by solving the loss-augmented inference (7)
with weights w fixed to 0.

Experimental evaluation. We split our dataset half and half 8 times into train
and test sets. We train the segmentation algorithm (2) on each training set
with Hamming loss (8), weighted Hamming loss (9), area loss (11), row-column
loss (12), and skeleton loss (14). For each loss we select a value of regularization
parameter λ using the cross-validation over the generated 8 sets.

For each combination of train and test losses we report the test-loss value
averaged over all generated train/test datasets and images within one dataset
(table 2). As a baseline we add the GrabCut method [2] implemented in the
OpenCV library. Note that the best performance with respect to a certain loss
is achieved not necessarily with training with the same loss. Figure 4 shows some
qualitative results of images achieved via training with different losses.

User study. To evaluate the quality of the proposed loss functions, we conducted
a user study. The user study consisted of 2 stages. In the first stage, a participant
not associated with the project was shown all segmentations and asked to select
images in the test set (selected randomly prior to the study) where the difference
in the segmentation results was most significant. The person was not told about
the objective of the research. The resulting 15 images were used for the second
stage of the user study.

In the second stage of the user study each of the 18 participants for each image
selected in the first stage was shown a page containing the following images: the
original image, the ground-truth segmentation, and the results obtained from

2 http://www.cs.tau.ac.il/~sagihed/ibfs/
3 http://www.robots.ox.ac.uk/~vgg/software/iseg/
4 https://github.com/ppletscher/hol

http://www.cs.tau.ac.il/~sagihed/ibfs/
http://www.robots.ox.ac.uk/~vgg/software/iseg/
https://github.com/ppletscher/hol
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Table 2. Values of different losses on Train and Test sets when the model is trained
using different losses at the Training stage

Hamming HammingW Area Row-Column Skeleton

Training Stage Train Test Train Test Train Test Train Test Train Test

Hamming 7.62 9.56 10.56 12.86 6.26 8.31 10.06 12.81 20.65 23.32
HammingW 7.75 9.99 10.54 13.17 6.91 9.60 10.41 13.67 21.47 24.35
Area 7.43 9.32 10.57 12.86 3.54 7.07 9.22 12.12 17.63 19.57
Row-Column 7.22 9.40 10.27 12.82 4.39 7.24 9.07 12.30 17.79 20.37
Skeleton 7.09 9.61 10.36 13.33 4.65 7.43 9.11 12.58 13.30 15.20

GrabCut 13.14 13.14 15.97 15.97 12.08 12.08 18.17 18.17 28.04 28.04

Table 3. Results of the user study. For each training loss (Hamming, Area, Row-
Column, and Skeleton) we report (a) the percentage of times users gave the particular
loss the best rank (these numbers do not sum up to one because participants were
allowed to assign equal ranks to multiple segmentation results); (b) the mean ranks
given by participants (the lower, the better)

Hamming Area Row-Col. Skeleton

Best vote 20% 17% 12% 64%
Mean rank 2.62 2.66 2.76 1.96

the models trained with 4 different loss functions (Hamming, area, row-column,
and skeleton) in a randomized order (see fig. 5 for an example). To avoid framing
biases, no annotations were provided with the segmentations. We asked the par-
ticipants to rank the 4 segmentation results according to the “similarity” to the
ground-truth segmentation and to also specify the magnitude of the differences –
on a scale of 1 to 3 (1 being most significant).

The summary of the user-study results is presented in table 3. For each loss
function we report the percentage of times the prediction from the model trained
using the loss was marked as the best segmentation (among significant results)
and the average rank. We also applied the nonparametric Friedman’s test to-
gether with the Tukey-Kramer multiple comparison procedure [20]. The analy-
sis showed that the skeleton loss performed best5 and the other losses did not
have significant differences. Figure 6 shows the correlations between the quality
of segmentation results as perceived by users and as measured by the weighted
combination of loss functions.

5 95% confidence intervals for the difference between the ranks of
Hamming/Area/Row-Column loss and Skeleton loss are [0.39, 0.92], [0.43, 0.96],
[0.53, 1.06], correspondingly.
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(a) (b) (c) (d) (e)

Fig. 4. Results of the prediction function trained by SSVM with (a) Hamming loss;
(b) weighted Hamming loss; (c) area loss; (d) row-column loss; (e) skeleton loss.

Fig. 5. A sample slide of the conducted user study. The slide contains the initial im-
age, the ground truth, 4 segmentations produced by maximizing the score function
trained using different losses (Hamming, area, row-column, and skeleton). The order
of segmentations is random.
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Fig. 6. The analysis of the user study results. We show Spearman’s rank cor-
relation coefficient between the weighted combination of the Skeleton and the
Hamming/Jaccard/Area/Row-Column losses and rankings produced by the users.

7 Discussion and Conclusions

In this paper we have proposed the use of higher-order layout-aware loss func-
tions for learning conventional pairwise random field models for the problem
of interactive image segmentation. We have shown that models trained using
layout-aware loss functions produce segmentations that are consistent with the
layout of the ground truth while still allowing efficient MAP inference. Further,
the segmentation results produced by these models are considered perceptually
closer to the ground truth by human judges compared to the results from the
models trained using the conventional Hamming loss.

Our work throws up a number of directions for future work. The effect of
using different low- and high-order loss functions for problems such as image
denoising, optical flow, image compression are all important topics that could be
investigated. A characterization of higher-order loss functions that allow efficient
learning is another important direction.

In our experiments we have observed that the best results on the test set
according to a certain loss are not necessarily achieved when training with the
convex upper bound (4) of the same loss. This effect might be the consequence
of the fact that such convex uppers bounds are not tight and the correlation
between the bound and the target empirical risk (1) near the minimum of (4)
is not high enough. Investigation of these effects is another important direction
for future work.
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