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Abstract. Detecting activities which involve a sequence of complex pose
and motion changes in unsegmented videos is a challenging task, and
common approaches use sequential graphical models to infer the human
pose-state in every frame. We propose an alternative model based on
detecting the key-poses in a video, where only the temporal positions
of a few key-poses are inferred. We also introduce a novel pose summa-
rization algorithm to automatically discover the key-poses of an activ-
ity. We learn a detection filter for each key-pose, which along with a
bag-of-words root filter are combined in an HCRF model, whose param-
eters are learned using the latent-SVM optimization. We evaluate the
performance of our model for detection on unsegmented videos on four
human action datasets, which include challenging crowded scenes with
dynamic backgrounds, inter-person occlusions, multi-human interactions
and hard-to-detect daily use objects.

Keywords: Activity detection, Key-poses, CRFs, Latent-SVM.

1 Introduction

There has been considerable research in classifying segmented videos, however
there has been comparatively less progress on the more challenging task of activ-
ity detection, where multiple instances of an activity are simultaneously localized
and classified in un-segmented videos. Detection is an important task, as in real
world applications like surveillance, the activities of interest occur only for a part
of the video. We propose a novel activity detection algorithm based on automat-
ically discovering the key-poses in the activity, and learning a key-pose filter
based Hidden Conditional Random Field (HCRF) model. We focus on activities
primarily defined by a sequence of complex pose and motion changes, which can
involve interactions with objects or other humans in the scene.

Activity recognition algorithms can be broadly categorized based on their
structure modeling capabilities. A common class of approaches [9,26] train clas-
sifiers on video-wide statistics of local features, and ignore the local temporal
dynamics of the activity. To classify unsegmented videos, they typically use an
inefficient sliding window approach [30], which can be sensitive to window size. A
complementary approach [11,12] learns a sequential motion model, and performs
classification based on state assignments inferred from every frame in the video;
to keep the inference tractable, these further require a Markovian assumption
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Fig. 1. Flow diagram of our proposed algorithm

between adjacent frames, and fail to capture long range dynamics in the activity,
making them sensitive to variations in activity styles and action-durations.

We argue that for activity detection, it is sufficient to determine the presence
or absence of certain key states in an observation sequence, and whether certain
temporal relationships between the state detections are satisfied. Recognizing
actions using a subset of the frames has been explored previously [3,15,20,21],
however these do not address the problem of automatically discovering the im-
portant states/sub-sequences of an activity, and either perform exhaustive search
over all possible sub-sequences [20], rely on hand annotations [3,21], or use a
manually defined list of relevant poses [15], requiring separate annotated pose
data for each pose-detector. There exist methods for automatic discovery of key-
states [11,31], however [11] relies on hard to obtain mocap data, and [31] ignores
temporal structure.

We propose a novel graphical model for activity detection, where the random
variables to be inferred are the temporal locations of the key-poses. Key-poses
represent the important human pose configurations in an activity, and are a
natural choice for defining a key-state in our model. Our algorithm automatically
discovers the relevant key-pose definitions in an activity, and learns a set of key-
pose detection filters, and pools their detection responses, while satisfying the
temporal relationships between them.

Our contributions are multi-fold: (1) The relevant key-poses are discovered
automatically, (2) the key-pose detection filters are learned jointly in a discrim-
inative HCRF framework, and do not require manually annotated pose-specific
training data, (3) the temporal locations of the key-pose detections correspond
to the active segments in the video stream, enabling activity detection in un-
segmented videos, and (4) the key-poses correspond to a natural semantic in-
terpretation. We show results on 4 datasets, which include challenging crowded
scenes with dynamic backgrounds and inter-person occlusions, multi-person in-
teractions, and actions involving hard-to-detect daily use objects.

2 Related Work

We briefly survey classification methods using subsequence based models, and
methods for activity detection.
[Subsequence Models]The discriminative advantage of short snippets of video
for activity classification has been recognized before [21]. There exist approaches
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that identify the single most important subsegment of a video [21], while others
represent the video as a sequence of manually annotated atomic actions [3], or a
set of discriminative spatio-temporal patches [5], while ignoring their temporal
ordering and distribution. [14,24] extended the deformable part object detector
[2] to the temporal domain for activity classification, and decompose the video
into discriminative sub volumes based on their correlations to a global feature
distribution. The sub-volumes need not correspond to any semantic interpreta-
tion, and classify pre-segmented videos only. [15,25] propose a closely related
model for learning discriminative key-pose sequences, with focus on interactions
between a pair of humans. These models ensure only ordering constraints, but
ignore the uncertainty in temporal placement of the poses and do not detect
multiple instances of the activity in a video. [15] also manually defines a list
of relevant poselets, where each poselet detector requires separate annotated
training data, placing a practical limit on the range of poses it can model.
[Activity Detection] Structure models like in [11,13] perform automatic video
segmentation by learning densely linked finite state machines, which combine
all the activities in a single model. They do not scale well with the number of
activities (inference is quadratic in the number of states), and require extensive
manual annotations. Spatio-temporal volumetric feature based algorithms [6,29]
rely on global statistics to detect action events, with no semantic reasoning of
the underlying activity. [6] further requires enumeration of all possible sub vol-
umes, and resorts to sub-sampling for tractable learning. There exist techniques
[17,22] based on maximizing the volumetric correlation of 3D templates to lo-
calize single primitive actions, however it is unclear how multiple templates for
complex activities can be combined.

3 Model Overview

We define a human activity as a sequence of key-poses. Pose inference is a diffi-
cult problem in itself; instead, we compute features that are related to pose but
do not make the pose information, such as joint positions, explicit. We intro-
duce a novel Pose Summarization Algorithm (PSA) to discover the key-poses in
an activity during training, along with their expected temporal positions. Key-
pose detection filters are discriminatively learned from the observed HoG-HoF
features at the discovered key-pose locations. We also define a probabilistic tem-
poral position distribution for each key-pose, to model its detection uncertainty.

The pose features in a video are quantized to a vocabulary of pose-codewords.
The global distribution of the poses present in the sequence is learned using a
root filter, which is a function of the histogram of pose-codewords. The multiple
key-pose filters, root filters and their corresponding temporal relationships are
jointly modeled in a probabilistic framework, resulting in an HCRF model. The
parameters of this model are learned in a discriminative max margin framework
using a latent support vector machine. Figure 1 shows the flow diagram of our
proposed algorithm. Final classification and detection is performed by inferring
the class labels, and temporal positions from the HCRF model.



714 P. Banerjee and R. Nevatia

While there exist methods [6,17,22,29] which perform detection in both space
and time dimensions, we argue that spatial detection of the human is better
solved by dedicated pedestrian trackers. We use trajectory results x = {xt} from
a standard tracking algorithm [4] as input to our activity detection framework,
where xt is the human detection box in the tth frame. HoG/HoF [2] features
f(xt) ∈ RD are computed from the detection box xt centered around the human,
and hence the features capture the human pose configuration at time t.

4 Key-Pose Discovery

Automatic decomposition of an activity in a video segment into its constituent
key-poses is defined as the Key Pose Discovery problem. This is a prerequisite for
learning a key-pose detector, as we need to first discover what are the important
key-poses in an activity, and determine their expected temporal position in an
activity sequence, before learning how to detect them. Algorithms for automatic
key pose discovery rely on variants of change detection in the pose dynamics
[11], however they require accurate human limb estimates from motion capture
data, which are difficult to obtain. Another approach is to perform hierarchical
clustering of the pose features [31], followed by vector quantization to learn a
vocabulary of pose based codewords. However these codewords do not take into
account the temporal structure present in the pose sequence of an activity.

Inspired by existing techniques for video summarization [10], we solve the key
pose discovery problem using pose sequence summarization. Given N poses in an
activity sequence, our task is to select the K < N subset of poses, which best
summarize the complete pose sequence w.r.t. a cost function defined on the pose
space.

4.1 Pose Summarization Algorithm (PSA)

Let f(xt) ∈ RD define aD dimensional feature vector describing the human pose
present in the window xt. Let τ1 · · · τK define the temporal location of the K key
poses in an activity segment. By definition, each key pose f(xτk) best summarizes
the poses present in the pose sequence

{
f(xbk) · · · f(xbk+1

)
}

present between
frames bk and bk+1. Hence, for a given temporal range [bk, bk+1), the optimal
key-pose location τk is computed as τk = argminτ̂ C(τ̂ , bk, bk+1), where function

C (τ̂ , bk, bk+1) =
∑bk+1−1

t=bk
‖f (xt) − f (xτ̂ )‖22 is the Pose Summarization Error.

The total cost incurred in summarizing the entire pose sequence using justK key-
poses is given by the error function E(K, {τk} , {bk}) =

∑K
k=1 C (τk, bk, bk+1).

The optimal assignments of key-poses {τk}, and their respective temporal
boundaries {bk} are determined by minimizing E(·). A dynamic programming
algorithm for video summarization was proposed in [10], which is easily adapted
for our purpose. The key insight is that given the temporal boundaries {bk},
the corresponding key-pose locations {τk} can be determined in O(T 2) time
for a video segment of length T . This suggests an algorithm which recursively
determines the optimal temporal boundary locations. The dynamic program has
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Fig. 2. (a) PSA discovers the key-poses for K=3 in a video segment. (b-d) Sample
results for K={3, 5}. (Detection boxes xt are omitted for clarity).

a computational complexity of O
(
KT 3

)
, and hence is efficient for reasonably

sized video segments with T < 200 frames.
We present results of the key-pose discovery on a sample video in Fig. 2, and

observe that the discovered key-poses match closely to an intuitive definition of
key-poses by humans. Note that with increasing K, adjacent key poses are more
similar in appearance, and harder to distinguish from each other. The optimum
value of K varies depending on the activity. The expected temporal location of
the kth key-pose in an activity segment is given by the temporal anchor position

τak = N−1
∑N

n τ
(n)
k computed over N videos. This is analogous to the anchor

position of parts in object detection frameworks [2].

5 Pose Filter based HCRF Model (PF-HCRF)

We define temporal distributions to model the location of the key-poses relative
to their anchor positions, and define an HCRF model to learn a set of dis-
criminative key-pose detection filters by searching in the neighborhood of their
corresponding anchor positions. Running inference on the HCRF model solves
the detection and classification tasks simultaneously. HCRFs have been used be-
fore for part-based object and action classification [27]. We define the individual
key-pose filters as the ’parts’ in our HCRF model, resulting in a Pose Filter
Hidden Conditional Random Field (PF-HCRF) model. Let y be a binary class
variable signifying the presence/absence of an activity class. Our objective is to
learn a distribution P (y|x) to infer the class label y, given the trajectory x:

y∗ = argmax
y∈{+,−}

P (y|x) ∝ argmax
y,z

P (y|z,x)P (z|x) (1)

where z = {tr, t1, t2 · · · tK} are the latent variables in our model. tr determines
the starting position of the action segment in the trajectory, while the variables
{tk} determine the temporal location of the key poses constituting the activity.
Figure 3(a) shows the factor graph representation of the PF-HCRF. Solving eqn.
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1 provides us with localization of the activity segment in the trajectory, along
with the class label. The key-pose locations also provide us with a description
of the activity in terms of its key-poses. We model the probability distribution
P (y, z|x) using root θT

RΦR and key-pose appearance θT
AΦA filters, as follows:

P (y+1|z,x) ∝ exp

{

θT
RΦR(x, tr) +

∑

k∈K
θT
Ak

ΦA(x, tk)

}

P (z|x) ∝ P (tr|x)
∏

k∈K
P (tk|x) ∝ C

∏

k∈K
N (

tk|τak + δk, σ
2
k

)

where N (x|μ, σ2) is the standard normal distribution with mean μ and variance
σ2. The filters {θR, θA} are a single dimensional template specifying the weights
of the features {ΦR,ΦA} appearing in a segment of the trajectory. Their dot
product is the filter score when applied to the segment.

5.1 Root Filter

The root filter θT
RΦR captures the global distribution of poses present in a given

activity segment. First, a vocabulary of codewords W is learned over the pose
features f(xi) extracted from all the videos in the training set. Then, each tra-
jectory window xi is assigned to the closest pose-codeword w ∈ W , the mapping
being defined by a function g(xt) : RD → W . An activity segment is said to start
from time tr and has a length of L frames. The root filter computes the histogram
of pose-code words (Fig. 3 c,d) present in the temporal window [tr, tr + L], and
is defined as:

θT
RΦR(x, tr) =

∑

w∈W
ηw

tr+L∑

t=tr

1g(xt)=w (2)

where 1g(xt)=w returns 1 if g(xt)=w is true, otherwise returns 0. Parameter L
is the temporal bandwidth of the root filter, and is set to the average length of
an activity segment determined from training examples.

5.2 Key-Pose Appearance Filter

Filter θT
Ak

ΦA models the appearance of the kth key-pose. Accurate key-pose
detection requires the HoG-HoF descriptors to be computed from detections
centered at the human figure. Misaligned detections (Fig. 4(c)) capture only
the partial human image, and produce noisy HoG-HoF features, which in turn
leads to inaccurate key-pose detections. We incorporate a scale-alignment search
around the trajectory detection box xtk = [c, w, h], where c is the center of the
detection box and (w, h) are its width and height:

θT
Ak

ΦA(x, tk) = max
s∈S,p∈P

γT
k f (xtk = [c+ p, sw, sh]) (3)
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Fig. 3. Panel (a) shows the factor graph representation of the PF-HCRF model for K =
2 key-poses. Panel (b) shows the two key-poses identified by the pose summarization
algorithm, with their corresponding anchor times: τa

1 , τ
a
2 . Panel (d) shows the feature

descriptors xt, and their corresponding codewords assignments wt ∈ W below. The
root filter θT

RΦR is shown in cyan, being applied between frames tr and tr +L where it
models the pose-codeword frequencies, as shown in panel (c). Sample results of key-pose
filters θT

Ak
ΦA learned by the LSVM are shown in panel (e). Their temporal location

is modeled with a normal distribution about their corresponding anchor location τa
k ,

shown in panel (d).

where S is the scale pyramid and P is the alignment search grid. We learn a
conditional model, and hence the weight vector γk corresponds to the discrimi-
native ability of the appearance of the kth key-pose to classify the overall activity
segment. Figure 3(e) show examples of appearance models learned for detect-
ing key-poses. The weight magnitudes show a clear visual correlation with the
discriminative key-pose present in the video.

5.3 Temporal Location Distribution

The latent variables z = {tr, t1, t2 · · · tK} define the temporal location of the
activity segment, and its constituent key-pose locations. As we do not have
prior knowledge of the global temporal location of the activity segment, we set
its distribution to a constant : P (tr|x) ∝ C.

The temporal distribution of the key-poses P (tk|x) is modeled using a stan-
dard normal distribution N (·) with mean τak + δk and variance σ2

k:

logP (tk|x) ∝ θT
Dk

ΦD (tk, tr) ∝ logN (
tk|τak + δk, σ

2
k

)
(4)

where parameter τak is the temporal anchor position (section 4.1) of the kth

key-pose, and remains unchanged during model training. The optimal key-pose
locations τk in each video (determined by the pose summarization algorithm)
need not be centered within their corresponding temporal boundaries [bk, bk+1)
(see Fig. 2). Parameter δk accounts for this offset, and measures the linear shift in
the key-pose location from its anchor position τak , while parameter σ2

k measures
the uncertainty in the temporal location. Figure 3(d) shows the parameterization
of the normal distribution. Both δk and σk are learned during model training,
however it is more convenient to learn the equivalent log-probability parameters
ak = 1/σ2

k and ck = 2δkak.
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6 Model Training

The HCRF model is trained using Max-margin criteria:

θ∗ = argmax
θ

Λ : ∀i maxzi P (yi, zi|xi; θ)

1−minzi P (yi, zi|xi; θ)
> Λ (5)

where Λ is the margin between the positive and negative examples. It has been
argued [27] that the max-margin criteria is better suited for the classification
task compared to the traditional Max Likelihood criteria. Solving equation 5
is equivalent to optimizing a Latent Support Vector Machine [28] in the log-
probability domain. Transforming the probability distributions to the log domain
results in the following energy function:

E(x, z) = logP (y = +1, z|x) = θTΦ(x, z) (6)

= θT
RΦR(x, tr) +

∑

k∈K

{
θT
Dk

ΦD (tk, tr) + θT
Ak

ΦA(x, tk)
}

6.1 Latent Support Vector Machine

A Latent Support Vector Machine (LSVM) incorporates latent variable inference
in the SVM optimization algorithm. Yu et al [28] proposed a Concave-Convex
Procedure (CCCP) for efficiently solving the LSVM optimization:

min
θ

[
1

2
‖θ‖22 + C

n∑

i=1

max
ŷ,ẑ

[
θTΨ (xi, ŷ, ẑ) +ΔL(yi, ŷ, ẑ)

]
]

−
[

C

n∑

i=1

max
z̃

θTΨ (xi, yi, z̃)

]

(7)

where ΔL is the loss function, and Ψ is the class augmented feature function.
The optimization is solved using CCCP, which minimizes f(θ) − g(θ) where
both f and g are convex. To map our activity model into the LSVM formulation
while satisfying the convexity requirements of f and g, the feature function
Ψ is defined as: Ψ (xi, yi, ẑ) = Φ(x, z) for positive examples, and equal to 0
for negative examples. The CCCP algorithm requires solving two sub-problems
iteratively: (1) Latent Variable Completion , and (2) Loss-Augmented Inference.
Latent variable completion is equivalent to MAP inference on the HCRF model,
defined as:

max
z̃

θTΦ(x, z̃) = θT
RΦR +

∑

k∈K
max
tk

tr=0

{
θT
Dk

ΦD + θT
Ak

ΦA

}
(8)

where tr is set to zero as training videos are pre-segmented. Maximization over tk
can be solved in O(N) time (N is length of a trajectory) using distance transform
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algorithms [2]. The Loss Augmented Inference problem with zero-one loss for a
binary decision problem is solved as follows:

max
ŷ,ẑ

[
θTΨ (xi, ŷ, ẑ) +Δ(yi, ŷ, ẑ)

]
=

{
max

{
1,maxẑ θ

TΦ(x, ẑ)
}

if yi = +1

max
{
0, 1 + maxẑ θ

TΦ(x, ẑ)
}

if yi = −1

[Weight Initialization] LSVM optimization is non-convex, and careful ini-
tialization of the weights has been suggested in previous work [2,14]. We train
standard SVMs separately on the root filter and the appearance filter features,
and initialize θR and θA respectively to the learned weights. ck is initialized
using the mean displacement of the key-pose locations τk (obtained from Pose
Summarization Algorithm) from the anchor position τak . Parameter ak is initial-
ized using the pose-boundary locations (bk, bk+1), as it represents the variance
in the key pose location.

7 Model Inference for Multiple Detections

Detecting and tracking humans in cluttered and crowded environments is a
challenging problem. We use a standard appearance based pedestrian tracker
[4], trained independently of the datasets used here. Figure 4(a-d) shows some
representative results highlighting the challenges. Common inaccuracies include
false positive tracks, missed tracks, misaligned tracks, and track fragmentations.
The PF-HCRF detector is less sensitive to false positive trajectories, and treats
it as a valid human track where ideally no human activity will be detected.
However, missed tracks are impossible to recover from; hence we prefer tracking
algorithms with higher recall at the expense of precision. Misaligned tracks cause
noisy key-pose detections, and hence we perform scale-alignment search (eqn. 3)
around the detection box. Figure 4(e) shows the scale-alignment search about
a candidate detection (blue ellipse), with the optimal box shown in red. In our
experiments, we use a single octave scale pyramid S with 5 levels centered at
the original scale, and a 3× 3 alignment search grid P with 10 pixel step width.
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Track fragmentations are frequently caused by human subjects undergoing
non-pedestrian pose transitions, which commonly occur during actions such as
pickup. To counter the effects of premature track termination, we extend the
trajectories beyond their start and end positions. Figure 4(f) shows an example
of track fragmentation, and our proposed track extension (shaded-dashed detec-
tions in blue and magenta). We note that the extensions may not correspond
to human subjects in the video (magenta colored extensions in figure), in which
case they are equivalent to false positive tracks, and should not adversely affect
our performance.

Detection and classification on a test video is performed by inferring the op-
timal class labels and root filter location: {y∗, t∗r} = maxy,z P (y, z|x; θ∗). The
optimal root filter location t∗r is the detected position of the activity segment.
For pre-segmented videos, tr is fixed to zero, and only the optimal class label
y∗ is inferred. In an activity detection task, multiple instances of the same ac-
tivity class can exist in a single video. The optimum t∗r will return only a single
detection result. To incorporate multiple detections, we infer the time series
A(t) = maxz/tr P (y = +1, tr = t|x; θ∗), representing the detection confidence
at each time t. Following object detection algorithms, we apply a Non-Maxima
Suppression (NMS) filter to A(t), and declare the resulting maximas as our pre-
dicted activity detections.

Figure 4(g) shows an example of the multiple detection inference procedure
for the two-handed wave action, where the outputs of the separate key-pose fil-
ters, root filters, and the inferred time series A(t) are shown. The ground truth
row shows the activity segments for two-handed wave action with positive labels
(red), negative labels (green) for other actions and segments with no activity
(cyan). The NMS output is given by pink bars, with the inferred key-pose lo-
cations marked in yellow, along with the key-pose frames shown above. The
sequence of detected key-poses are consistent across segments and describe the
activity. The video sequence contains action segments with partial occlusions,
where some of the key-poses are not visible. We observe that the individual
key-pose and root filter detection confidences are not sufficient for detecting the
activity segments, whereas the combined inference result A(t) provides a clear
segmentation of the video, hence validating our algorithm. The NMS algorithm
also detects a false positive due to the local maxima occurring in that segment;
choosing an appropriate confidence-threshold for the detected maximas will re-
move the weakly scored false positives. We set the threshold to the confidence
value corresponding to the maximum F1 score of each detector.

8 Results

We evaluate our algorithm on 4 datasets: UT-Interaction[18], USC-Gestures[13],
CMU-Action[7] and Rochester-ADL[12]. The model is trained using a pose-
codeword vocabulary size of 500, and by selecting an appropriate number of
key-poses K ∈ {3, 4, 5} based on action complexity. PF-HCRF model inference
runs at 0.05 fps on a standard PC, and at 2 fps without scale-alignment search.
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Fig. 5. (a) UT-Interaction: Classification accuracy for observing the initial 50% of the
video, and the full video. Result tables for (b) USC-Gestures and (c) Rochester-ADL.

8.1 UT-Interaction [18]

The UT-Interaction Set-1 dataset was released as a part of the contest on Seman-
tic Description of Human Activities (SDHA) [18]. It contains 6 types of human-
human interactions: hand-shake, hug, kick, point, punch and push. The dataset
is challenging as many actions consist of similar human poses, like “outstretched-
hand” occurs in point, punch, push and shake actions. There are 10 video se-
quences shot in a parking-lot, with 2-5 people performing the interactive actions
in random order.
[Classification] SDHA contest [18] recommends using a 10-fold leave-one-out
evaluation methodology. PF-HCRF achieves an average classification score of
97.50%, and outperforms all existing approaches (Figure 5a). We also evalu-
ate our model on the streaming task (or activity prediction task), where only
the initial θ fraction of the video is observable. This measures the algorithm’s
performance at classifying videos of incomplete activity executions. Figure 6a
plots the classification accuracy for different values of observation ratio θ. The
PF-HCRF model out-performs other methods, which can be attributed to its
learning a small set of discriminative key-poses, where detecting even the first
few key-poses helps in classifying the action. Moreover, the model returns the
most likely position of key-poses in the unobserved section of the video, and
hence is capable of “gap-filling”. [15] also uses a key-frame based algorithm,
however it is unable to perform gap-filling, as they only learn the temporal or-
der of the key-frames, whereas PF-HCRF employs a probabilistic model for the
key-pose locations, which is learned in a discriminative manner.
[Detection] SDHA contest [18] recommends evaluating the detection perfor-
mance on the 10 videos using precision-recall curves for the 6 actions, and we
present the same in Figure 6b. None of the contest participants report detection
PR curves [18], making us the first ones to do so. [15] report detection results
while assuming that each video contains one and only one instance of each action
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(c) Two−Handed−Wave
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(d) Hand−Wave
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Fig. 6. UT-Interaction:(a) Streaming video performance and (b) Precision-Recall
curves for activity detection. (c-g) Precision-Recall curves on CMU-Action.

type, and report an accuracy rate of 86.70% averaged over all actions, where the
predicted action has a 50% temporal overlap with the groundtruth. Using the
same metric, PF-HCRF model achieves an average detection accuracy of 90.00%.

8.2 USC-Gestures [13]

The dataset consists of 8 video sequences of 8 different actors, each performing
5-6 instances of 12 actions, resulting in 493 action segments. The actions corre-
spond to hand gestures like attention, left-turn, right-turn, flap, close-distance,
mount etc. The dataset has a relatively clean background with stationary hu-
mans, however it is still challenging due to relatively small pose differences be-
tween actions, causing pose-ordering to become a key discriminative factor in
recognizing actions.
[Classification] Following [13,23], we evaluate the classification performance
using two different train-test ratios: 1:8, and 3:5, averaged over all folds. The
PF-HCRF algorithm outperforms previous results (Figure 5b) in all split ra-
tios. Furthermore, [13,23] require manual construction of activity models using
2.5D joint locations for manually identified key-poses; the models also contain
pre-defined motion styles and durations. PF-HCRF avoids cumbersome manual
annotation of motion styles, while also automatically identifying the key-poses.
[Detection] The dataset has 8 videos (∼12000 frames per video) containing
continuous executions of 493 action segments. The action segments consist only
∼10% of total video frames, and are interspersed with gesture actions other
than the 12 gestures used for classification, making it a challenging dataset
for activity detection. For baseline comparison, we implemented a Root-filter
classifier (Sec.5.1), where a standard SVM is trained using the histogram of
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pose-codewords. Figure 5b shows the Mean Average Precision score averaged
over 12 actions for the detection task. The root-filter does not capture temporal
dynamics, and fails to differentiate between gestures with similar key-poses, but
different temporal ordering, which explains their lower performance compared
to PF-HCRF.

8.3 CMU-Action [7]

This dataset contain events representing real world activities such as picking up
object from the ground, waving for a bus, pushing an elevator button, jump-
ing jacks and two handed waves. The dataset consists of ∼20 minutes of video
containing 110 events of interest, with three to six actors performing multiple
instances of the actions. The videos were shot using hand held cameras in a clut-
tered/crowded environment, with moving people and cars composing a dynamic
background. The dataset is challenging due to its poor resolution (160×120),
frequent occlusions, high variability in how subjects perform the actions, and
also significant spatial and temporal scale differences in the actions.

We evaluate our performance using a 1:2 train:test split. Fig. 6 shows the
Precision-Recall curves for the 5 action classes, and for four different method
variations. First, PF-HCRF model is applied to manually annotated ground
truth tracks (M1). Next it is applied to tracks computed from a pedestrian
tracker [4] (M2), and then reapplied without “scale-alignment search and track
extensions”(M3). Lastly, the Root-filter based SVM classifier is applied to the
computed tracks (M4). We compare our performance to previously published
results [7,22,29] on this dataset. Ke et al [7] show results using a flow consistency
based correlation model of [22], and three variants of their super-pixel part-based
method. Note, that these methods use only a single activity instance for training.
Yuan et al [29] combine the two-handed-wave and jumping jack actions, and show
results only on this single combined action.

Results on ground truth tracks (M1) provides an upper-bound on our per-
formance in terms of reliance on tracks, and we achieve the best results using
PF-HCRF across all actions. With computed tracks (M2), PF-HCRF still out-
perform other existing techniques across all actions, showing our model’s tol-
erance to noisy tracks. Without “scale-alignment search and track extensions”
(M3), the performance on hand-wave and pickup activities is poorer, which we
attribute to misaligned and fragmented tracks caused by non-pedestrian poses,
however, we still have good results for the other three activities. Lastly the results
with the Root-filter classifier (M4) are significantly lower, which validates that
our performance improvement is over and above simply using tracking results.

8.4 Rochester ADL [12]

The Activities of Daily Living (ADL) dataset contains 150 videos performed by
5 actors in a kitchen environment, and consists of 10 complex daily-living activi-
ties, involving interaction and manipulation of hard to detect objects: answering
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Fig. 7. Key-pose sequences inferred by PF-HCRF gives a semantic description of ac-
tivity with high consistency

phone, dialing phone, looking up phone directory, writing on whiteboard, drink-
ing water, eating snacks, peeling banana, eating banana, chopping banana and
eating using silverware. As we do not have access to an upper-body tracker, the
PF-HCRF is applied to the entire frame instead of tracks. Figure 5c summarizes
our results on the dataset. PF-HCRF achieves an accuracy rate of 88.67% using
only HoG-HoF features. The choice of features is important for this dataset, as
special features can be designed to capture elements of the kitchen scene and the
various objects, like yellow-banana, white-board, phone-near-face etc. Messing et
al [12] augment their model with color and face-detection based features, improv-
ing their accuracy from 67% to 89%. Similarly, [26] augments their HoG-HoF
descriptors with contextual-interaction based features, causing their accuracy to
improve from 85% to 96%; we expect that the PF-HCRF model will also benefit
from using simmilar contextual features. Furthermore, PF-HCRF localizes the
key-poses of the complex activities, and we observe high consistency in the key-
pose appearance across actors (Fig.7), and they seem to correspond to a natural
semantic interpretation. Such decompositions are not obtainable using [12,26].

9 Conclusion

We proposed a key-pose filter based HCRF model for detecting multiple in-
stances of activity in unsegmented videos, and generate semantic descriptions.
We presented a novel pose summarization algorithm to automatically identify
the key poses of an activity sequence. Our model training does not require man-
ual annotation of key-poses, and uses video segment level class labels only.
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