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Abstract. Existing techniques for 3D action recognition are sensitive to view-
point variations because they extract features from depth images which change
significantly with viewpoint. In contrast, we directly process the pointclouds and
propose a new technique for action recognition which is more robust to noise, ac-
tion speed and viewpoint variations. Our technique consists of a novel descriptor
and keypoint detection algorithm. The proposed descriptor is extracted at a point
by encoding the Histogram of Oriented Principal Components (HOPC) within an
adaptive spatio-temporal support volume around that point. Based on this descrip-
tor, we present a novel method to detect Spatio-Temporal Key-Points (STKPs) in
3D pointcloud sequences. Experimental results show that the proposed descriptor
and STKP detector outperform state-of-the-art algorithms on three benchmark
human activity datasets. We also introduce a new multiview public dataset and
show the robustness of our proposed method to viewpoint variations.

Keywords: Spatio-temporal keypoints, multiview action dataset.

1 Introduction

Human action recognition has many applications in smart surveillance, human-computer
interaction and sports. The Kinect and other depth cameras have become popular for this
task because depth sequences do not suffer from the problems induced by variations in
illumination and clothing texture. However, the presence of occlusion, sensor noise and
most importantly viewpoint variations still make action recognition a challenging task.

Designing an efficient depth sequence representation is an important task in many
computer vision problems. Most existing action recognition techniques (e.g., [4,21,38])
treat depth sequences the same way as color videos and use color-based action recog-
nition methods. However, while these methods are suitable for color video sequences,
simply extending them to depth sequences may not be optimal [19]. Information cap-
tured by depth cameras actually allows geometric features to be extracted to form rich
descriptors. For instance, Tang et al. [27] used histograms of the normal vectors for
object recognition in depth images. Given a depth image, they computed spatial deriva-
tives, transformed them to the polar coordinates and used the 2D histograms as object
descriptors. Recently, Oreifej and Liu [19] extended the same technique to the temporal
dimension by adding time derivative. A downside of treating depth sequences this way
is that the noise in the depth images is enhanced by the differential operations [31].
Histogramming, on the other hand, is analogous to integration and is more resilient to
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Fig. 1. Two sequences of 3D pointclouds of a subject performing the holding head action. No-
tice how the depth values (colours) have significantly changed with the change in viewpoint.
Simple normalization cannot compensate for such depth variations. Existing depth based action
recognition algorithms will not be accurate in such cases

the effect of noise. Furthermore, viewpoint variations are unavoidable in real scenarios.
However, none of the existing 3D sensor based techniques is designed for cross-view ac-
tion recognition where training is performed on sequences acquired from one view and
testing is performed on sequences acquired from a significantly different view (> 25◦).

We directly process the 3D pointcloud sequences (Fig. 1) and extract point descrip-
tors which are robust to noise and viewpoint variations. We propose a novel descriptor,
the Histogram of Oriented Principal Components (HOPC), to capture the local geomet-
ric characteristics around each point within a sequence of 3D pointclouds. To extract
HOPC at a point p, PCA is performed on an adaptive spatio-temporal support volume
around p (see Fig. 2) which gives us a 3× 3 matrix of eigenvectors and the correspond-
ing eigenvalues. Each eigenvector is projected onto m directions corresponding to the
vertices of a regular m-sided polyhedron and scaled by its eigenvalue. HOPC is formed
by concatenating the projected eigenvectors in decreasing order of their eigenvalues.

HOPC is used in a holistic and local setting. In the former approach, the sequence of
3D pointclouds is divided into spatio-temporal cells and HOPC descriptors of all points
within a cell are accumulated and normalized to form a single cell descriptor. All cell
descriptors are concatenated to form a holistic HOPC descriptor. In the latter approach,
local HOPC are extracted at candidate spatio-temporal keypoints (STKP) and a HOPC
quality factor is defined to rank the STKPs. Only high quality STKPs are retained. All
points within the adaptive spatio-temporal support volume of each STKP are aligned
along the eigenvectors of the spatial support around STKP. Thus the support volume
is aligned with a local object centered coordinate basis and extracting HOPC, or any
other feature, at the STKP will be view invariant. See Section 4.2 for details. Since
humans may perform the same action at different speeds, to achieve speed invariance,
we propose automatic temporal scale selection by minimizing the eigenratios over a
varying temporal window size. The main contributions of this paper include:

– A HOPC descriptor for 3D pointclouds.
– A spatio-temporal key-point (STKP) detector and a view invariant descriptor.
– A technique for speed normalization of actions.
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Moreover, we introduce a new 3D action dataset which has scale variations of sub-
jects and viewpoint variations. It contains thirty actions which is larger number than any
existing 3D action dataset. This dataset will be made public. Experimental comparison
on four datasets, including three benchmark ones [13,19,32], with eight state-of-the-art
methods [4,10,19,21,31,32,35,36] shows the efficacy of our algorithms. Data and code
of our technique are available [1].

2 Related Work

Based on the input data, human action recognition methods can be divided into three
categories including RGB based, skeleton-based and depth based methods. In RGB
videos, in order to recognize actions across viewpoint changes, mostly view inde-
pendent representations are proposed such as view invariant spatio-temporal features
[2,20,22,23,25,33]. Some methods infer the 3D scene structure and use geometric trans-
formations to achieve view invariance [5,9,15,26,39]. Another approach is to find a
view independent latent space [7,8,12,14] in which features extracted from the actions
captured at different view points are directly comparable. Our proposed approach also
falls in this category. However, our approach is only for 3D pointclouds captured by
depth sensors. To the best of our knowledge, we are the first to propose cross-view
action recognition using 3D pointclouds. We propose to normalize the spatio-temporal
support volume of each candidate keypoint in the 3D pointcloud such that the feature
extracted from the normalized support volume becomes view independent.

In skeleton based methods, 3D joint positions are used for action recognition. Multi-
camera motion capture (MoCap) systems [3] have been used for human action recogni-
tion, but such special equipment is marker-based and expensive. Moreover, due to the
different quality of the motion data, action recognition methods designed for MoCap
are not suitable for 3D pointcloud sequences which is the focus of this paper [32].

On the other hand, some methods [36,31,37] use the human joint positions extracted
by the OpenNI tracking framework (OpenNI) [24] as interest points. For example, Yang
and Tian [37] proposed pairwise 3D joint position differences in each frame and tempo-
ral differences across frames to represent an action. Since 3D joints cannot capture all
the discriminative information, the action recognition accuracy is compromised. Wang
et al. [32] extended the previous approach by computing the histogram of occupancy
pattern of a fixed region around each joint in a frame. In the temporal dimension, they
used low frequency Fourier components as features and an SVM to find a discrimina-
tive set of joints. It is important to note that the estimated joint positions are not reliable
and can fail when the human subject is not in an upright and frontal view position (e.g.
lying on sofa) or when there is clutter around the subject.

Action recognition methods based on depth maps can be divided into holistic
[19,21,13,38,29] and local approaches [32,35,11,31]. Holistic methods use global fea-
tures such as silhouettes and space-time volume information. For example, Li et al. [13]
sampled boundary pixels from 2D silhouettes as a bag of features. Yang et al. [38] added
temporal derivative of 2D projections to get Depth Motion Maps (DMM). Vieira et al.
[29] computed silhouettes in 3D by using the space-time occupancy patterns. Recently,
Oreifej and Liu [19] extended histogram of oriented 3D normals [27] to 4D by adding
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time derivative. The gradient vector was normalized to unit magnitude and projected
on a refined basis of 600-cell Polychrome to make histograms. The last component of
normalized gradient vector was inverse of the gradient magnitude. As a result, infor-
mation from very strong derivative locations, such as edges and silhouettes, may get
suppressed [21]. The proposed HOPC descriptor is more informative than HON4D as
it captures the spread of data in three principal directions. Thus, HOPC achieves more
action recognition accuracy than exiting methods on three benchmark datasets.

Depth based local methods use local features where a set of interest points are ex-
tracted from the depth sequence and a feature descriptor is computed for each interest
point. For example, Cheng et al. [4] used interest point detector proposed by Dollár et
al. [11] and proposed a Comparative Coding Descriptor (CCD). Due to the presence
of noise in depth sequences, simply extending color-based interest point detectors such
as [6] and [11] may degrade the efficiency of these detectors [19].

Motion trajectory based action recognition methods[30,34] are also not reliable in
depth sequences [19]. Therefore, recent depth based action recognition methods re-
sorted to alternative ways to extract more reliable interest points. Wang et al. [31] pro-
posed Haar features to be extracted from each random subvolume. Xia and Aggarwal
in [35] proposed a filtering method to extract spatio-temporal interest points. Their ap-
proach fails when the action execution speed is faster than the flip of the signal caused
by the sensor noise. Both techniques are sensitive to viewpoint variations.

In contrast to previous interest point detection methods, the proposed STKP detector
is robust to variations in action execution speed, sensor viewpoint and the spatial scale
of the actor. Since the proposed HOPC descriptor is not strictly based on the depth
derivatives, it is more robust to noise. Moreover, our methods do not require skeleton
data which may be noisy or unavailable especially in the case of side views.

3 Histogram of Oriented Principal Component (HOPC)

LetQ = {Q1, Q2, · · · , Qt, · · · , Qnf
} represent a sequence of 3D pointclouds captured

by a 3D sensor, where nf denotes the number of frames (i.e. number of 3D pointclouds
in the sequence) and Qt is the 3D pointcloud at time t. We make a spatio-temporal
accumulated 3D pointcloud by merging the sequence of individual pointclouds in the
time interval [t − τ, t + τ ]. Consider a point p = (xt yt zt)

�, 1 ≤ t ≤ nf in Qt. We
define the spatio-temporal support of p,Ω(p), as the 3D points which are in a sphere of
radius r centered at p (Fig. 2). We propose a point descriptor based on the eigenvalue
decomposition of the scatter matrix C of the points q ∈ Ω(p):

C =
1

np

∑

q∈Ω(p)

(q− μ)(q− μ)�,where μ =
1

np

∑

q∈Ω(p)

q, (1)

and np = |Ω(p)| denotes the number of points in the spatio-temporal support of p.
Performing PCA on the scatter matrix C gives us CV = EV , where E is a diagonal
matrix of the eigenvalues λ1 ≥ λ2 ≥ λ3, and V contains three orthogonal eigenvectors
[v1 v2 v3] arranged in the order of decreasing magnitude of their associated eigen-
values. We propose a new descriptor, the Histogram of Oriented Principal Components
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(HOPC), by projecting each eigenvector onto m directions obtained from a regular m-
sided polyhedron. We use m = 20 to make a regular icosahedron which is composed
of 20 regular pentagonal facets and each facet corresponds to a histogram bin. Let
U ∈ R3×m be the matrix of the center positions u1,u2, · · · ,um of facets:

U = [u1,u2, · · · ,ui, · · · ,um] (2)

For a regular icosahedron with center at the origin, these normalized vectors are
(±1
Lu

,
±1
Lu

,
±1
Lu

)
,

(
0,
±ϕ−1
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,
±ϕ
Lu

)
,

(±ϕ−1

Lu
,
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)
,

(±ϕ
Lu

, 0,
±ϕ−1

Lu

)
, (3)

where ϕ = (1 +
√
5)/2 is the golden ratio, and Lu =

√
ϕ2 + 1/ϕ2 is the length of

vector ui, 1 ≤ i ≤ m. The eigenvectors are basically directions of maximum variance
of the points in 3D space. Thus, they have a 180◦ ambiguity. To overcome this problem,
we consider the distribution of vector directions and their magnitudes within the support
volume of p. We determine the sign of each eigenvector vj from the sign of the inner
products of vj and all vectors within the support of p:

vj = vj .sign

⎛

⎝
∑

q∈Ω(p)

sign(o�vj)(o
�vj)

2

⎞

⎠ (4)

where o = q − p and the sign function returns the sign of an input number. Note
that the squared projection ensures the suppression of small projections, which could
be due to noise. If the signs of eigenvectors v1,v2, and v3 disagree i.e. v1 × v2 �= v3,
we switch the sign of the eigenvector whose |∑np

w=1 sign(o
�
wvj)(owvj)

2| value is the
smallest. We then project each eigenvector vj onto U to give us:

bj = U�vj ∈ Rm, for 1 ≤ j ≤ 3. (5)

In case vj is perfectly aligned with ui ∈ U , it should vote into only ith bin. However, all
ui’s are not orthogonal, thereforebj will have non-zero projection in other bins as well.
To overcome this effect, we quantize the projection of bj . For this purpose, a threshold
value ψ is computed by projecting any two neighbouring vectors uk and ul,

ψ = uk
�ul =

ϕ+ ϕ−1

Lu
2 , uk,ul ∈ U. (6)

Note that for any uk ∈ U , we can find a ul ∈ U such that ψ = (ϕ+ ϕ−1)/Lu
2. The

quantized vector is given by

b̂j(z) =

{
0 if bj(z) ≤ ψ
bj(z)− ψ otherwise,

where 1 ≤ z ≤ m. We define hj to be b̂j scaled by the corresponding eigenvalue λj ,

hj =
λj · b̂j

||b̂j ||2
∈ Rm, for 1 ≤ j ≤ 3. (7)
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We concatenate the histograms of oriented principal components of all three eigenvec-
tors in decreasing order of their eigenvalues to form a descriptor of point p:

hp = [h�
1 h�

2 h�
3 ]

� ∈ R3m. (8)

The spatio-temporal HOPC descriptor at point p encodes information from both
shape and motion in the support volume around it. Since the smallest principal com-
ponent of the local surface is in fact the total least squares estimate of the surface nor-
mal [18], our descriptor, which inherently encodes the surface normal, is more robust
to noise than gradient-based surface normal used in [27,19]. Using this descriptor, we
propose two different action recognition algorithms in the following section.

4 Action Recognition

We propose a holistic and a local approach for human action recognition. Our holistic
method is suitable for actions under occlusions, more inter-class similarities of local
motions, and where the subjects do not change their spatial locations. On the other
hand, our local method is more suitable for cross-view action recognition and in cases
where the subjects change their spatial locations.

4.1 Action Recognition with Holistic HOPC

A sequence of 3D pointclouds is divided into γ = nx × ny × nt spatio-temporal cells
along X , Y , and T dimensions. We use cs,where s = 1 · · · γ, to denote the sth cell.
The spatio-temporal HOPC descriptor hp in (8) is computed for each point p within the
sequence. The cell descriptor hcs is computed by accumulating hcs =

∑
p∈cs

hp and
then normalizing hcs ← hcs/||hcs ||2. The final descriptor hv for the given sequence is

a concatenation of hcs obtained from all the cells:hv = [h�
c1 h�

c2 ... h
�
cs ... h

�
cγ ]

�
. We

use hv as the holistic HOPC descriptor and use SVM for classification.

Computing a Discriminative Cell Descriptor. The HOPC descriptor is highly cor-
related to the order of eigenvalues of the spatio-temporal support volume around p.
Therefore, for each point a pruning approach is introduced to eliminate the ambiguous
eigenvectors of each point. For this purpose, we define two eigenratios:

δ12 =
λ1
λ2
, δ23 =

λ2
λ3
. (9)

For 3D symmetrical surfaces, the values of δ12 or δ23 will be equal to 1. The principal
components of symmetrical surfaces are ambiguous. To get a discriminative hp, the
values of δ12 and δ23 must be greater than 1. However, to manage noise we choose
a threshold value θ > 1 + ε, where ε is a margin and select only the discriminative
eigenvectors as follows:

1. If δ12 > θ and δ23 > θ: hp = [h�
1 h�

2 h�
3 ]

�.

2. If δ12 ≤ θ and δ23 > θ: hp = [0� 0� h�
3 ]

�.

3. If δ12 > θ and δ23 ≤ θ: hp = [h�
1 0� 0�]�.

4. If δ12 ≤ θ and δ23 ≤ θ: In this case, we discard p.
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4.2 STKP: Spatio-Temporal Key-Point Detection

Consider a point p = (xt yt zt)
� within a sequence of 3D pointclouds. In addition to

the spatio-temporal support volume around p defined in section 3, we further define a
spatial only support volume around p as the 3D points of Qt that fall inside a sphere
of radius r centered at p. Thus, we perform PCA on both the spatial and the spatio-
temporal scatter matrices C′ and C.

Let λ′1 ≥ λ′2 ≥ λ′3 and λ1 ≥ λ2 ≥ λ3 represent the eigenvalues of the spatial C′ and
spatio-temporal C scatter matrix, respectively. We define the following ratios:

δ′12 =
λ′1
λ′2
, δ′23 =

λ′2
λ′3
, δ12 =

λ1
λ2
, δ23 =

λ2
λ3
. (10)

For a point to be identified as a potential keypoint, the condition {δ12, δ23, δ′12, δ′23} >
θ must be satisfied. This process prunes ambiguous points and produces a subset of
candidate keypoints. It reduces the computational burden of the subsequent steps. Let
h′
p ∈ R3m represent the spatial HOPC and hp ∈ R3m represent the spatio-temporal

HOPC. A quality factor is computed at each candidate keypoint p as follows:

ηp =
1

2

3m∑

i=1

(h′
p(i)− hp(i))

2

(h′
p(i) + hp(i))

. (11)

When h′
p = hp, the quality factor has the minimum value of ηp = 0. It means that the

candidate keypoint p has a stationary spatio-temporal support volume with no motion.
We define a locality as a sphere of radius r′ ( with r′ � r) and a time interval

2τ ′+1 (with τ ′ ≤ τ ). We sort the candidate STKPs according to their quality values and
starting from the highest quality keypoint, all STKPs within its locality are removed.
The same process is repeated on the remaining STKPs. Fig. 2 shows the steps of our
STKP detection algorithm. Fig. 3-a shows the extracted STKPs from three different
views for a sequence of 3D pointclouds corresponding to the holding head action.

4.3 View-Invariant Key-Point Descriptor

Let p = (xt yt zt)
� represent an STKP. All points within the spatio-temporal support

volume of p i.e., Ω(p), are aligned along the eigenvectors of its spatial scatter matrix,
B = PV ′, where P ∈ Rnp×3 is a matrix of points within Ω(p) and V ′ = [v′

1 v′
2 v′

3]
denotes the 3 × 3 matrix of eigenvectors of the spatial scatter matrix C′. Recall that
the signs of these eigenvectors have a 180◦ ambiguity. As mentioned earlier, we use
the sign disambiguation method to overcome this problem. As a result, any feature (e.g.
raw depth values or HOPC) extracted from the aligned spatio-temporal support volume
around p will be view invariant.

In order to describe the points within the spatio-temporal support volume of keypoint
p, the spatio-temporal support of p is represented as a 3D hyper-surface in the 4D space
(X,Y, Z) and T . We fit a 3D hyper-surface to the aligned points within the spatio-
temporal support volume of p. A uniform mx ×my ×mt grid is used to sample the
hyper-surface and its raw values are used as the descriptor of keypoint p.
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Fig. 2. STKP: Spatio-Temporal Key-Point detection algorithm

We use the bag-of-words approach to represent each 3D pointcloud sequence and
build a codebook by clustering the keypoint descriptors using K-means. Codewords are
defined by the cluster centers and descriptors are assigned to codewords using Euclidean
distance. For classification, we use SVM with the histogram intersection kernel [16].

5 Adaptive Support Volume

So far we have used a fixed spatial (r) and temporal (τ ) support volume to detect and
describe each keypoint p. However, subjects can have different scales (in height and
width) and perform actions with different speeds. Therefore, simply using a fixed spatial
(r) and temporal (τ ) support volume is not optimal. Large values of r and τ enable the
proposed descriptors to encapsulate more information about shape and motion of a
subject. However, this also increases sensitivity to occlusion and action speed.

A simple approach to finding the optimal spatial scale (r) for a STKP is based on
the subject’s height (hs) e.g. r = e × hs, where e is a constant that is empirically
chosen to make a trade-off between descriptiveness and occlusion. This approach is
unreliable and may fail when a subject touches the background or is not in an upright
position. Several automatic spatial scale detection methods [28] have been proposed for
3D object recognition. In this paper, we use the automatic spatial scale detection method
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Fig. 3. (a)-STKPs projected onto XY dimensions on top of all points within a sequence of 3D
pointclouds corresponding to the holding head action (from three different views). Note that a
large number of STKPs are detected only where movement is performed. (b)-Sample pointclouds
at different views from the UWA3D Multiview Activity dataset.

proposed by Mian et al. [17] to determine the optimal spatial scale for each keypoint.
The optimal spatial scale (rb) is selected as the one for which the ratio between the
first two eigenvalues of the spatial support of a keypoint reaches a local maximum. Our
results show that the automatic spatial scale selection [17] achieves the same accuracy
as the fixed scale when the height (hs) of each subject is available.

For temporal scale selection, most previous works [19,35,21,29,6] used a fixed num-
ber of frames. However, we propose automatic temporal scale selection to make our de-
scriptor robust to action speed variations. Our proposed method follows the automatic
spatial scale detection method by Mian et al. [17]. LetQ={Q1, Q2, · · · , Qt, · · · , Qnf

}
represent a sequence of 3D pointclouds. For a point p = [xt yt zt]

�, we start with
points in [Qt−τ , · · · , Qt+τ ] for τ = 1 which are within its spatial scale r (note that
we assume r as the optimal spatial scale for p) and calculate the summation of ratio
between the first two eigenvalues (λ2/λ1) and the last two eigenvalues (λ3/λ2) as:

Aτ
p =

λ2
λ1

+
λ3
λ2
, (12)

where λ1 ≥ λ2 ≥ λ3. This process continues for all τ = 1, · · · , Δ and the optimal
temporal scale τ corresponding to the local minimum value of Ap found for point p. A
point which does not have a local minimum is not considered as a candidate keypoint.

6 Experiments

The proposed algorithms were evaluated on three benchmark datasets including
MSRAction3D [13], MSRGesture3D [31], and ActionPairs3D [19]. We also developed
a new “UWA3D Multiview Activity” dataset to evaluate the proposed cross-view ac-
tion recognition algorithm. This dataset consists of 30 daily activities of ten subjects
performed at different scales and viewpoints (Subsection 6.4). For our algorithms, we
used k = 1000, θ = 1.12, mx = my = 20 and mt = 3 in all experiments. To test the
performance of our holistic approach, each sequence of 3D pointclouds was divided
into 6× 5× 3 spatio-temporal cells along X , Y , and T dimensions, respectively.
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Fig. 4. Sample 3D pointclouds from the MSRAction3D, MSRGesture3D, ActionPairs3D, and
UWA3D Multiview Activity datasets

The performance of the proposed algorithms was compared with seven state-of-
the-art methods including Histogram of Oriented Gradient (HOG3D) [10], Random
Occupancy Pattern (ROP) [31], Histogram of 3D joints(HOJ3D) [36], Actionlet Ensem-
ble [32], Histogram of 4D Oriented Normals (HON4D) [19], Depth Spatio-Temporal
Interest Points (DSTIP) [35], and Histograms of Depth Gradient (HDG) [21]. The
accuracy is reported from the original papers or from the authors’ implementations
of DSTIP [35], HDG [21], HOG3D [10], and HON4D [19]. The implementation of
HOJ3D [36] is not available, therefore we used our own implementation.

6.1 MSRAction3D Dataset

MSRAction3D dataset [13] consists of 20 actions each performed by 10 subjects 2-3
times (Fig. 4). The dataset is challenging due to high inter-action similarities. To test
our holistic approach, we used five subjects for training and five for testing and repeated
the experiments 252 folds exhaustively as proposed by [19]. To show the effectiveness
of our automatic spatio-temporal scale selection, we used four different settings using
fixed and varying values of r and τ . Table 1 compares our algorithms with existing
state-of-the-art. Note that the proposed algorithm outperformed all techniques under all
four settings. The maximum accuracy was achieved using constant r and adaptive τ .
Adaptive r did not improve results since there is little scale variation in this dataset.
Note that HOJ3D [36], Moving Pose [40] and Actionlet [32] use skeleton data which is
not always available.

We also evaluated our local method with automatic spatial and temporal scale selec-
tion and achieved 90.90% accuracy (subjects {1,3,5,7,9} used for training and the rest
for testing). This is higher than 89.30% of DSTIP [35] and 88.36% of HON4D [19].
Note that DSTIP [35] only reported the accuracy of the best fold and used additional
steps such as mining discriminative features which can be applied to improve the accu-
racy of any descriptor. We did not include such steps in our method.
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Table 1. Accuracy comparison on MSRAction3D dataset. Mean ± STD is computed over 252
folds. Fold 5/5 means subjects {1,3,5,7,9} used for training and the rest for testing. a Moving
Pose [40] used different setting.

Method Mean±STD Max Min 5/5

HOJ3D [36] 63.55±5.23 75.91 44.05 75.80
HOG3D [10] 70.38±4.40 82.78 55.26 82.78
ROP [31] - - - 86.50
Moving Pose [40] - - - 91.70a

Actionlet [32] - - - 88.20
HON4D [19] 81.88±4.45 90.61 69.31 88.36
DSTIP [35] - 89.30 - -
HDG [21] 77.68±4.97 86.13 60.55 83.70

Holistic HOPC
constant r, constant τ 85.45±2.31 92.39 73.54 91.64
adaptive r, constant τ 84.78±2.89 91.64 72.41 90.90
constant r, adaptive τ 86.49±2.28 92.39 74.36 91.64
adaptive r, adaptive τ 85.01±2.44 92.39 72.94 91.27

6.2 MSRGesture3D Dataset

The MSRGesture3D dataset [31] contains 12 American sign language gestures per-
formed 2-3 times by 10 subjects. For comparison with previous techniques, we use the
leave-one-subject-out cross validation scheme proposed by [31]. Because of the ab-
sence of full body subjects (only hands are visible), we evaluate our methods in two
settings only. Table 2 compares our method to existing state-of-the-art methods exclud-
ing HOJ3D [36] and Actionlet [32] since they require 3D joint positions which are not
present in this dataset. Note that both variants of our method outperform all techniques
by a significant margin achieving an average accuracy of 96.23% which is 3.5% higher
than the nearest competitor HDG [21]. We also tested our local method with automatic
spatial and temporal scale selection and obtained an accuracy of 93.61%.

6.3 ActionPairs3D Dataset

The ActionPairs3D dataset [19] consists of depth sequences of six pairs of actions
(Fig. 4) performed by 10 subjects. This dataset is challenging as each action pair has
similar motion and shape. We used half of the subjects for training and the rest for test-
ing as recommended by [19] and repeated the experiments 252 folds. Table 3 compares
the proposed holistic HOPC descriptor in two settings with existing state-of-the-art
methods. Our algorithms outperformed all techniques with 2.23% improvement over
the nearest competitor. Adaptive τ provides better improvement on this dataset com-
pared to the previous two. We also evaluated our local method with automatic spatial
and temporal scale selection and obtained 98.89% accuracy using subjects {6.7.8.9.10}
for training and the rest for testing.
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Table 2. Comparison with state-of-the-art methods on MSRGesture3D dataset

Method Mean±STD Max Min

HOG3D [10] 85.23±12.12 100 50.00
ROP [31] 88.50 - -
HON4D [19] 92.45±8.00 100 75
HDG [21] 92.76±8.80 100 77.78

Holistic HOPC
adaptive r, constant τ 95.29±6.24 100 83.67
adaptive r, adaptive τ 96.23±5.29 100 88.33

Table 3. Accuracy comparisons on the ActionPairs3D dataset. Mean±STD are computed over
252 folds. 5/5 means subjects {6,7,8,9,10} used for training and the rest for testing.

Method Mean±STD Max Min 5/5

HOJ3D [36] 63.81±5.94 67.22 50.56 66.67
HOG3D [10] 85.76±4.66 85.56 65.00 82.78
Actionlet [32] - - - 82.22
HON4D [19] 96.00±1.74 100 91.11 96.67

Holistic HOPC
constant r, constant τ 97.15±2.21 100 88.89 97.22
constant r, adaptive τ 98.23±2.19 100 88.89 98.33

6.4 UWA3D Multiview Activity Dataset

We collected a new dataset using the Kinect to emphasize three factors: (1) Scale vari-
ations between subjects. (2) View-point variations. (3) All actions were performed in
a continuous manner with no breaks or pauses. Thus, the start and end positions of
body for the same actions are different. Our dataset consists of 30 activities performed
by 10 human subjects of varying scales: one hand waving, one hand Punching, sit-
ting down, standing up, holding chest, holding head, holding back, walking, turning
around, drinking, bending, running, kicking, jumping, moping floor, sneezing, sitting
down(chair), squatting, two hand waving, two hand punching, vibrating, falling down,
irregular walking, lying down, phone answering, jumping jack, picking up, putting
down, dancing, and coughing (Fig. 4). To capture depth videos from front view, each
subject performed two or three random permutations of the 30 activities in a continuous
manner. For cross-view action recognition, 5 subjects performed 15 activities from 4
different side views (see Fig. 3-b). We organized our dataset by segmenting the contin-
uous sequences. The dataset is challenging due to self-occlusions and high similarity.
For example, drinking and phone answering actions have very similar motion and only
the hand location in these actions is slightly different. As another example, lying down
and falling down actions have very similar motion, but the speed of action execution
is different. Moreover, some actions such as: holding back, holding head, and answer-
ing phone have self-occlusions. The videos were captured at 30 frames per second at a
spatial resolution of 640× 480.
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Table 4. Accuracy comparison on the UWA3D Activity dataset for same-view action recognition

Method Mean±STD Max Min

HOJ3D [36] 48.59±5.77 58.70 28.93
HOG3D [10] 70.09±4.40 82.78 51.60
HON4D [19] 79.28±2.68 88.89 70.14
HDG [21] 75.54±3.64 85.07 61.90

Holistic HOPC
constant r, constant τ 83.77±3.09 92.18 74.67
constant r, adaptive τ 84.93±2.75 93.11 74.67

We evaluate our proposed methods in the same-view, and cross-view action recogni-
tion settings. The holistic approach is used to classify actions captured from the same
view and the local approach is used for cross-view action recognition where the training
videos are captured from front view and the test videos from side views.

Same-View Action Recognition. We selected half of the subjects as training and the
rest as testing and evaluated our holistic method in two settings: (1) constant r, constant
τ , (2) constant r, adaptive τ . Table 4 compares our methods with existing state of the
art. Both variants of our algorithm outperform all methods achieving a maximum of
84.93% accuracy. The adaptive τ provides minor improvement because there is no ex-
plicit action speed variation in the dataset. To further test the robustness of our temporal
scale selection (adaptive τ ) to action speed variations we use depth videos of actions
performed by half of the subjects captured at 30 frames per second as training data and
depth videos of actions performed by the remaining subjects captured at 15 frames per
second as test data. The average accuracy of our method using automatic temporal scale
selection was 84.64% which is higher than 81.92% accuracy achieved by our method
using constant temporal scale and the 76.43% accuracy achieved by HON4D. Next, we
swap the frame rates of the test and training data. The average accuracy of our method
using automatic temporal scale selection was 84.70% which is higher than 81.01% ac-
curacy achieved by our method using constant temporal scale. The accuracy of HON4D
was 75.81% in this case.

Cross-View Action Recognition. In order to evaluate the STKP detector and HOPC
descriptor for cross-view action recognition, we used front views of five subjects as
training and side views of the remaining five subjects as test. Table 5 compares our
method with existing state-of-the- art holistic and local methods for cross-view action
recognition. Note that the performance of all other methods degrades when the subjects
perform actions at different viewing angles. This is not surprising as existing methods
assume that actions are observed from the same viewpoint i.e. frontal. For example,
HON4D achieved 86.55% accuracy when the training and test samples were in the same
view (frontal). The average accuracy of HON4D dropped to 48.89% when the training
samples were captured from front view and the test samples were captured from four
different side views. We also observed that the performance of existing methods did not
degrade only for actions like standing up, sitting down, and turning around. This is due
to the distinctness of these actions regardless of the viewpoint.
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Table 5. Cross-view action recognition on the UWA3D Multiview Activity dataset. Depth se-
quences of five subjects at 0o are used for training and the remaining subjects at 0o and 4 different
side-views are used for testing. Average accuracy is computed only for the cross-view scenario.

View angle
Method 0◦ −25◦ +25◦ −50◦ +50◦ Average

Holistic Methods
HON4D [19] 86.55 62.22 60.00 35.56 37.78 48.89
HDG [21] 79.13 60.00 64.44 33.33 35.56 48.33

Local Methods
HOJ3D [36] 63.34 60.00 62.22 37.78 40.00 50.00
DSTIP+DCSF [35] 80.80 66.67 71.11 35.56 40.00 53.33

STKP+hyper-surface fitting 87.39 81.33 82.67 71.11 71.11 76.56
STKP+HOPC 91.79 86.67 88.89 75.56 77.78 82.23

We test two variants of our method. First, we apply our STKP detector on 3D point-
cloud sequences and use the raw values of fitted hyper-surface as features. The average
accuracy obtained over the four different side views (±25◦ and ±50◦) was 76.56% in
this case. Next, we use the STKP detector combined with the proposed HOPC descrip-
tor. This combination achieved the best average accuracy i.e. 82.23%. Comparison with
other methods and the accuracy of each method on different side views are shown in
Table 5. These experiments demonstrate that our STKP detector in conjunction with
HOPC descriptor significantly outperforms state-of-the-art methods for cross-view as
well as same-view action recognition.

7 Conclusion

Performance of current 3D action recognition techniques degrades in the presence of
viewpoint variations across the test and the training data. We proposed a novel technique
for action recognition which is more robust to action speed and viewpoint variations. A
new descriptor, Histogram of Oriented Principal Components (HOPC), and a keypoint
detector are presented. The proposed descriptor and detector were evaluated for activity
recognition on three benchmark datasets. We also introduced a new multiview public
dataset and showed the robustness of our proposed method to viewpoint variations.
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