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Abstract. Sparse feature matching poses three challenges to graph-
based methods: (1) the combinatorial nature makes the number of possi-
ble matches huge; (2) most possible matches might be outliers; (3) high
computational complexity is often incurred. In this paper, to resolve
these issues, we propose a simple, yet surprisingly effective approach
to explore the huge matching space in order to significantly boost true
matches while avoiding outliers. The key idea is to perform mode-seeking
on graphs progressively based on our proposed guided graph density. We
further design a density-aware sampling technique to considerably accel-
erate mode-seeking. Experimental study on various benchmark data sets
demonstrates that our method is several orders faster than the state-of-
the-art methods while achieving much higher precision and recall.

Keywords: Feature matching, Mode-seeking.

1 Introduction

Matching sparse features between two images is a longstanding research problem
for a variety of applications in computer vision, such as motion estimation, object
recognition, image retrieval and 3D reconstruction [8]. Since the matches have
meaningful interrelations and structures, they are often used to construct an
association graph in which graph nodes represent candidate matches while graph
edges represent relationships between them. As a result, feature matching is
modeled as a node selection problem in an association graph. Although there
are many other feature matching algorithms, we restrict ourselves to the ones
based on the association graph in this paper.

There have been a myriad of algorithms proposed to address this problem,
ranging from classical methods like graph matching [8,2,10,16,22] and hyper-
graph matching [23,9,15], through various agglomerative clustering approaches
[1,24], to recently popular mode-seeking methods [17,14,3,4]. While tremendous
progress has been made, current methods are still far from being practical when
dealing with many real-world images due to three challenges.

(1) The combinatorial nature makes the matching space of all the possible
matches huge. Let n1 and n2 denote the numbers of sparse features of two images
P and Q respectively, there are n1 × n2 possible candidate matches. Generally,
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(a) (b) (c)

Fig. 1. (a) Input images P and Q. (b) Two types of feature detectors (MSER [19] and
Harris-Affine [20]) extract 2539 SIFT features from image P and 3013 SIFT features
from image Q. The 2539 matches produced by SIFT feature matching include only 64
true matches shown with green lines and 2475 false matches shown with black lines. (c)
All the 281 true matches. Since there are 2539×3013 possible matches, the probability
of true matches is much less than 1%.

we have n1, n2 > 1000 and n1×n2 > 1000, 000. Building a full association graph
GF of millions of nodes is not tractable. To address this issue, most methods
establish candidate matches by using discriminative features, such as SIFT [18],
at a relatively low cost. However, those candidate matches usually include only
a small portion of all the true matches, as shown in Fig.1.

(2) Most possible matches might be outliers. For many real-world image pairs,
there are only several hundreds of true matches which account for less than 1%
of the total candidate matches, as shown by Fig.1. To detect the inlier nodes
from the full association graph is like looking for a needle in a haystack.

There have been a few attempts to handle the outliers. A popular method is
to first solve an affine transform by using RANSAC, and then remove outliers
with the affine. This naive scheme often fail when there exist significant outliers,
non-rigid transforms or many-to-many object correspondences. Graph-matching
methods [8,2,10,16,22] impose pair-wise constraints and the hyper-graph match-
ing methods [23,9,15] impose high-order constraints (e.g., projective invariance)
on graph nodes. The nodes that do not satisfy those constrains are consid-
ered as outliers. These methods work well for rigid transformations but perform
poorly in the case of large non-rigid motions. Agglomerative clustering methods
[1,24] cluster nodes with a bottom-up aggregation strategy and filter out out-
lier clusters with small sizes. Such methods are based on a set of heuristic rules
and therefore global optimum often cannot be achieved. Recently, mode-seeking
methods [17,14,3,4] have received a lot of attentions because they have appealing
advantages over other techniques: the structure of the clusters may be rather ar-
bitrary [4], the number of clusters does not need to be known in advance, and the
convergence can be guaranteed. They assume that inlier nodes for true matches
have larger graph density [17](or authority[4]) than outliers, and remove outliers
by eliminating the clusters with small density (or authority). They work very
well for the small graph constructed from the SIFT feature matching. When
exploring the huge matching space which includes all possible matches, however,
they might completely fail because the probability of true matches can be so
small (e.g.,< 1%) that their assumptions do not hold anymore.

(3) High computational complexity is often incurred. A common starting point
for constructing an association graph is the computation of the similarity matrix.
Its time and space complexity is O(N2) with N denoting the number of graph
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nodes (N = n1×n2 in the full graph). Therefore the computational costs in both
time and memory are huge for large graphs. In addition to the similarity matrix
construction, many other steps involved in existing methods are also expensive in
terms of computational cost and memory usage. For examples, finding the prin-
cipal eigenvectors of the similarity matrix in [16], high-order power iterations
in [9], bottom-up building clusters in [1,24], shifting among the power set of a
given graph in [17,14], and computing the PageRank matrix in [3] all take at least
O(N2) time and memory. Then the usefulness of these techniques on large graphs
is hampered by the high complexity. Several techniques have been developed to
reduce the complexity of the classical mode-seeking method[7][13][21][12]. How-
ever, they are restricted to traditional data representation as points in a metric
feature space, and it is very difficult to adapt them to graph representation. As
far as we know, no work has been designed to speed up mode-seeking on graphs.

The above three challenges make detection of all the true matches in the huge
matching space extremely difficult. To resolve these challenges, we propose a
simple, yet surprisingly effective approach to explore the huge matching space
in order to significantly boost true matches while avoiding outliers. The key
idea is to perform mode-seeking on graphs progressively. Our method, called the
progressive mode-seeking algorithm (PMA), starts from a small graph built by
the matches obtained based on SIFT distances as in [1], and then explores a
huge matching space in a progressive manner. The high performance of PMA
comes from our proposed guided graph density (GGD). Totally different from the
traditional graph density [17][3][4] which is calculated based on a single graph,
our GGD of a node in one graph is calculated based on another reference graph.
More specifically, the GGD of a node in a huge graph is calculated based on
a small clean graph which mainly includes true matches. This leads the GGD
values of outliers to nearly zero, and therefore makes mode-seeking much more
robust to outliers even in a huge matching space. To reduce the complexity,
we further design a density-aware sampling technique to considerably accelerate
mode-seeking. The resultant method has a time complexity linear in the number
of graph nodes.

Our PMA is inspired by the progressive graph matching (PGM) method [5]
which performs graph matching progressively. PGM can greatly boost the num-
ber of true matches. However, it fails to handle many-to-many object corre-
spondences due to its single cluster assumption, and tends to introduce many
outliers because graph matching results are often noisy. Different from PGM,
our PMA performs mode-seeking in a progressive manner. It excels in handling
many-to-many object correspondences because each cluster of matches naturally
corresponds to one object correspondence. Furthermore, it successfully avoids in-
troducing many outliers by suppressing their graph density values.

PMA works well on a very wide variety of images. Experimental study on
several benchmark data sets shows that it is several orders faster than the state-
of-the-art mode-seeking methods on images with thousands of features, while
producing much higher precision and recall.
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: Mode-seeking on GI

: Mode-seeking on GL

(a) GI (b) G1
O

(d) G2
O

(c) GL

Fig. 2. The framework of our PMA. It performs mode-seeking on GI to produce GO
1 ,

and mode-seeking on GL based on GO
1 to produce GO

2 . GI is a small graph obtained
by the matches obtained based on SIFT distances as in [1], and GL is a much larger
graph covering most true matches. (a) GI contains 64 true matches and 2475 false
matches. (b) GO

1 contains 38 true matches and 21 false matches. (c) GL contains 252
true matches and 101308 false matches. (d) GO

2 contains 233 true matches and 48 false
matches.

To summarize, this paper has three main contributions. Firstly, we propose a
novel way to compute graph density which enables a progressive framework
for robustly exploring the huge matching space. Secondly, we bring forward
a density-aware sampling technique to significantly speed up mode-seeking on
graphs. The third is that we design a novel mode-seeking method for clustering
graph nodes in order to solve for sparse feature matching.

2 Algorithm

Following [2,4,16,18], an association graph is defined as G = (V,E,W ) which
consists of nodes V , edges E and attributes W . ω(i, j) ∈ W is the attribute of
edge e(i, j) ∈ E, characterizing similarity between node vi and node vj . In this
paper, we use N , the number of nodes, to denote the size of graph G.

Fig.2 shows the progressive framework of our PMA. First, n1 and n2 salient
features are extracted from two input images P and Q respectively with multiple
types of detectors. NI candidate matches are then established by the matches
obtained based on SIFT distances as in [1], and are taken as the nodes of a
small initial graph GI . We also build a much larger graph GL and ensure that
it covers most of all the true matches. Here, GL is much smaller than the full
graph GF . Different from other methods, we do not compute the full similarity
matrix W . Instead, we only compute the similarity between each node in GL

and each node randomly sampled in GL, as will be detailed later. Second, we
perform mode-seeking on the small graph GI similar to [17,14,3,4] in order to
detect the inlier clusters GO

1 . We find out that this kind of method works well
because SIFT distance at low cost can increase the probability of true matches
greatly. Finally, we perform mode-seeking on the large graph GL guided by GO

1 ,
producing graph GO

2 . A density-aware sampling technique is proposed to con-
siderably accelerate the mode-seeking process. We can further run mode-seeking
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Fig. 3. (a) Top 8 max CDP values. (b)The clusters for top 8 max CDP values. The
inlier clusters (denoted with green lines) have CDP values significantly larger than
those of the outlier clusters.

on GL iteratively guided by GO
2 to detect more true matches. In most cases, the

first iteration brings significant performance improvement. For efficiency we use
only two iterations which already produce satisfying results.

2.1 Mode-Seeking on GI

Recent methods [3,17,4] define the graph density based on node characteristics
such as the probability of visits by the random walker, and are therefore quite
different from the classical kernel density estimate (KDE)[7] defined in a metric
space. The high computational complexity hampers their usefulness for huge
matching spaces. Differently, we define the graph density similar to KDE by
representing the kernel on a joint domain. This frames a graph-based analogue
to the classical KDE, and therefore makes the fast methods designed to accelerate
KDE applicable to the graph density, as will be shown. Our graph density at
node vj is defined as

f(j) =
1

NI

NI∑

i

K(i, j) (1)

with K(i, j) = g(dS(i, j), hS)g(dG(i, j), hG). g(d, h) is a Gaussian function of d
with h denoting the standard deviation. dS is the Euclidean distance in spatial
domain on the image. dG is the node distance in graph domain and is set as the
Symmetric Transfer Error (STE) used in [5,15,1,4]. hS and hG denote the kernel
bandwidths which determine the resolution of the mode detection. Here we set
hG = 20 and hS = H/10 with H2 denoting the image size.

As pointed out by [7], a truncated Gaussian kernel always provides satisfac-
tory performance, that is, only the nearest neighbors vi ∈ Ω(j) are adopted to
calculate the graph density. Let Ω(j) = {vi ∈ GI |dS(i, j) ≤ γhS, dG(i, j) ≤ γhG}
with γ = 2, Eq.(1) becomes f(j) = 1

nj

∑
vi∈Ω(j) K(i, j) with nj denoting the size

of Ω(j). To efficiently find Ω(j), we firstly use axis-aligned box windows [7] to
obtain the nearest neighbors in the spatial domain, and then test each one in
the graph domain.
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Similar to the classical methods [7], our mode-seeking is achieved by shifting
each node to the local mode in which the local maximum of graph density is
attained. The node-shifting NS(j) of vj is formulated as

NS(j) = arg max
vi∈Ω(j)

p(j, i)(f(i)− f(j)), (2)

where p(j, i) = K(j, i)/
∑

vi∈Ω(j) K(j, i) denotes the probability of the transition

from node vj to node vi. NS(j) refers to the neighboring node of vj with the
highest expected graph density increment. Therefore node-shifting is the steep-
est ascent over the graph density within Ω(j). Similar to other mode-seeking
methods [14,4,3], ours is guaranteed to converge, as proved below.

Theorem 1. A finite sequence of node-shifting from any node converges to a
graph density mode.

Proof. Since Ω(j) of any node vj includes itself, the graph density values of
a sequence of shifts from vj keep strictly increasing until the shifts attain a
node whose node-shifting is itself. The final node, therefore, is the density mode
DM(j), and the length of the sequence is the graph size NI at most.

Starting from any node, successive shifts progress toward its graph density
mode. The shifting trajectory of nodes sharing a common density mode builds
a tree, and leads to a natural cluster. For each node, we only need to compute
its node-shifting once. This makes the next node-shifting for any node already
exist. Then the cluster label of all nodes associated with each disjoint tree can
be assigned in a single tree traversal.

As observed by [17,4], the nodes for true matches usually have larger graph
density values than outliers for the graph built by the matches obtained based
on SIFT distances[1]. So we can utilize this observation to detect outlier clusters
in the small graph GI . We define the cluster density of each cluster as the sum
of the graph density values of its members, and its cluster density percentage
(CDP) as the ratio between its cluster density and the sum of all the nodes’ graph
density values. According to the above observation, the outlier clusters usually
have small cluster densities and therefore have small CDP. So CDP provides a
reliable measure for detecting and eliminating outliers, as shown in Fig.3. We
remove outlier clusters whose CDP is less than a small threshold t = 0.03. The
final output is the inlier clusters of nodes which compose graph GO

1 with size
NO

1 .

2.2 Mode-seeking on GL

We build GL by using top Z matches for each feature based on the SIFT feature
distances. By testing the ETHZ toys dataset[11], we plot the percentage of all
the true matches that GL includes as a function of Z in Fig.4(a). It can be seen
that over 90% true matches for each image pair are included in GL when Z = 40.
This suggests that we can perform the mode-seeking on GL rather than on the
full graph GF to achieve great complexity reduction since the size of GL is only
Zn1 as opposed to n1 × n2 for GF .
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Fig. 4. (a) The percentage of all the true matches included by GL as a function of
Z. (b) The probability of true matches in GL as a function of Z. Z = 1 in SIFT
matching[18].

We also give the probability of the true matches in GL as a function of Z
in Fig.4(b). As can be seen, the probability attains the maximum when Z = 1.
This indicates that SIFT distance (Z = 1) at low cost can greatly increase the
probability of true matches. When Z become very large (Z > 40), the probability
of true matches gradually reduces to a small value (0.0028) and keeps almost
unchanged. This is because most matches are overlapped by each other for large
Z. It further verifies that exploring the full graph GF might be unnecessary.

For each node vj in GL, we define its guided graph density (GGD) as
f(j) = 1

nj

∑
vi∈Ω(j,GL,GO

1 ) K(i, j) with

Ω(j,GL, GO
1 ) = {vi ∈ GO

1 |vj ∈ GL, dS(i, j) ≤ γhS, dG(i, j) ≤ γhG} (3)

Our GGD searches for Ω in another reference graph, i.e., Ω ⊂ GO
1 . This is in

sharp contrast with the traditional methods in which Ω ⊂ GL. As can be seen
in Fig.2(b), GO

1 is mainly composed of inliers. Then the GGD values of most
outliers in GL become nearly zero because: (1) the dS and dG between outliers
and inliers are often very large, and (2) the nodes of GO

1 might be far away from
many outliers so that the nearest neighbor set Ω of many outliers are empty.
Many mode-seeking methods fail when exploring huge matching space because
their assumption that inlier clusters often have larger graph density than outliers
does not hold when the probability of inliers is very low, say the case in GL. Our
GGD solves this problem nicely because it makes the assumption hold again by
suppressing the graph density of outliers. Then we can perform mode-seeking
based on GGD to detect and eliminate outliers, as done in Section 2.1. The
output NO

2 nodes compose a GO
2 . Fig.5 shows the impact of GGD.

The mode-seeking on GL is guaranteed to converge, and the proof is the same
as that for Theorem 1. So our PMA is guaranteed to converge.

2.3 A Density-Aware Sampling Technique

To accelerate the classical mode-seeking method, D.Freedman et al.[12] approx-
imate the whole feature space by using a greatly reduced number of points
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(a) (b)

Fig. 5. (a) Mode-seeking result on graph GL with Ω ⊂ GL. None of the top 8 clusters
is inlier cluster. Each color indicates on cluster of matches. (b) Mode-seeking result on
graph GL with GGD (Ω ⊂ GO

1 ). The inlier cluster is detected in a clean manner.
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Fig. 6. Impact of our density-aware sampling (DAS) technique. (a)Two kinds of sim-
ilarities as functions of sub-sampling factor Zn1/m are shown. One similarity is be-
tween the result by original mode-seeking method (without sampling) and the result
by the naive sampling method. The other similarity is between the result by original
mode-seeking method (without sampling) and the result by our density-aware sam-
pling (DAS) method. (b)The result by the naive sampling method with m = 200.
Three outlier clusters are detected. The result by our DAS with m = 200 is given in
Fig.2(d).

randomly sampled from the distribution defined by KDE. The speed-up is pro-
portional to the sub-sampling factor. However, different from sampling metric
feature space for KDE, directly sampling the graph density in Eq.(1) can not
produce graph node samples. A naive sampling method to solve this issue is to
randomly sample from the set of graph nodes. Since most graph nodes might be
outliers, the number of samples need to be sufficiently large in order to cover the
modes of inliers with a large probability. Then the complexity reduction will be
limited. To solve this problem, we propose a simple approach called the density-
aware sampling (DAS) technique which samples graph nodes according to the
graph density in mode-seeking on GI (or the GGD in mode-seeking on GL).
In DAS, the probability of accepting vi is f(i)/

∑
i f(i). As mentioned before,

inliers often have larger graph density values (or GGD values) than outliers, so
DAS tends to sample more inliers, thus solving the problem of the naive sampling
method nicely.

We use DAS to sample m nodes of G (G can be GI and GL) to approximate
G, obtaining graph Gsample. Then instead of computing modes directly on G,
we perform mode-seeking on Gsample to obtain the density modes. We further
map backwards from each node vi in G to the closest sample si∗ by si∗ =
argmaxsi∈Ω(i) K(i, si) with Ω(i) ⊂ Gsample. Finally, we set the graph density
mode DM(i) of vi to DM(si∗) in order to obtain the final clustering results.
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We adopt DAS in the mode-seeking on both GI and GL. When performing
it on GL, we randomly sample R = min(m,NO

1 ) nodes from GO
1 which is the

mode-seeking result on GI to further reduce the complexity. The details are
given in Algorithm 1.

To show the impact of our DAS, we measure the similarity between the re-
sult obtained by the original mode-seeking method and those obtained by two
sampling techniques: the naive sampling method and our DAS. The similarity
between any two graphs G1 and G2 is calculated by the normalized intersect
|G1 ∩G2|/|G1∪G2| with |G| denoting the size of G. Fig.6(a) plots the similarity
as a function of the sub-sampling factor Zn1/m. As can be seen, DAS greatly
reduces the required sample number m, thus leading to a significant speed-up
Zn1/m. Generally, we set m = 200 to get Zn1/m > 500. The result obtained
by the naive sampling method with m = 200 is shown in Fig.6(b), and that
obtained by our DAS is given in previous Fig.2(d). The improvement by our
DAS can be clearly seen.

Algorithm 1: mode-seeking on GI (GL)
Input GI (GO

1 and GL)
Output GO

1 (GO
2 )

1. Sampling: sample m nodes of GI

(sample m nodes of GL and R nodes of GO
1 )

2. Node-shifting: solve for the node-shifting for all the m matches with Eq.(2)
3. Tree traversal: assign each sample si to its density mode DM(si) by a tree

traversal along NS(si)
4. Map backwards: for each node vi, find si∗ by argmaxsi∈Ω(i) K(i, si), then

let DM(i) = DM(si∗)
5. Remove outliers: compute CDP for each cluster, and remove outlier clusters

with CDP < t

3 Analysis

Complexity. In mode-seeking on GI , in order to cluster m samples, we need
to search for the nearest neighbors Ω(j) for each node vj . Assuming that the
matches are uniformly distributed in image, the time complexity for finding Ω(j)
is O(mr) by using the axis-aligned box windows, with r = (2γhS)

2/H2 denoting
the area ratio of the region we explore to the whole image. Then computing the
graph density for all them nodes takes O(m2r) time, and node-shifting also takes
O(m2r) time. Mapping backwards takes O(NImr) time. Therefore the time com-
plexity of mode-seeking on GI reaches O(2m2r+NImr) ≈ O(NImr) since NI �
m. In mode-seeking on GL, searching for Ω(j) on graph GO

1 takes O(Rr) time,
and clustering the m samples takes O(2Rmr) time. Mapping backwards takes
O(Zn1mr) time. Then the time complexity is about O(Zn1mr) since Zn1 � R.
So the total time complexity of our PMA is O(NImr + Zn1mr) ≈ O(Zn1mr)
which is linear in the number of graph nodes Zn1.
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Fig. 7. The effect of our guided graph density (GGD) (Ω ⊂ GO
1 ) on eliminating

outliers. (a) The result by mode-seeking with Ω ⊂ GL. With the increase of outliers,
the max CDP for outlier clusters becomes much larger than the CDP for the inlier
cluster. (b) The result by our mode-seeking with Ω ⊂ GO

1 . The CDP for the inlier
cluster is nearly independent of the number of outliers, and accounts for the majority
of all the graph density values. No outlier cluster whose CDP is larger than t is detected.

Revisiting the literature on the subject, mode-seeking by using the methods
[17,14,3,4] takes O((Zn1)

2) time on graph GL. So the speed-up by our PMA is
a factor of (Zn1)

2/(NImr + Zn1mr). In practical cases of interest, n1 is about
2000, and N1 is set to 2000. Then we have (Zn1)

2/(NImr+Zn1mr) ≈ 2439. So
this is quite an impressive speed-up.

Effect of our GGD. Taking the image pair in Fig.1(a) as an example, we
gradually increase the percentage of outliers by increasing Z. Fig.7 shows the
results by mode-seeking with Ω ⊂ GL and with our GGD (Ω ⊂ GO

1 ). With
the increase of outliers, the max CDP for outliers becomes larger than the CDP
for the inlier cluster. This is why many existing mode-seeking methods fail. By
using GGD, no outlier cluster is detected at all because the GGD values of
outliers become nearly zero. Then the CDP for the inlier cluster accounts for
the majority of all the graph density values, and is almost independent of the
number of outliers, as shown in Fig.7(b).

Limitations. Our method starts from mode-seeking on a small graph GI built
the matches obtained based on SIFT distances as in [1], and assumes that the
nodes for true matches usually have larger graph density values than outliers
in the small graph GI . Although this assumption has been widely used [17,4],
we did find that it does not hold for two extreme cases: large smooth regions
such as white plates with little texture, and tiny-sized objects with few features
extracted. To handle these cases will be our future work.

4 Experiments

We compare our PMA with three leading graph-based feature matching methods:
the progressive graph matching (PGM) [5], the agglomerative correspondence
clustering (ACC) [1] and the mode-seeking via random walk (RRWM) [4]. PGM
improves the true matches progressively by exploring the full matching space
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(c) ACC on GL (d) MSRW on GL (e) ACC on GI

(f) MSRW on GI (g) PGM (h) Ours

(i) ACC on GL (j) MSRW on GL (k) ACC on GI

(l) MSRW on GI (m) PGM (n) Ours

(a) Input image pair (b) Input image pair

Fig. 8. Comparison on two image pairs of ETHZ toys dataset [11]. True matches are
shown with green lines and outliers are shown with black lines.

based on an initial graph. We set GI as its initial graph as done by our PMA.
Both ACC and RRWM are only based on the similarity matrix of the association
graph. We perform ACC and RRWM on graph GL as done by PMA. We also
run ACC and RRWM on graph GI as their original work did for comparison.
The algorithms of [17,3] were not compared in this paper because the source
code provided by the authors on the internet produce ’out of memory’ problem
when handling our data sets.

We tested the above methods on three challenging benchmark data sets:
ETHZ toys dataset [11], Co-recognition dataset [6] and Intra-class dataset [1].
ETHZ toys dataset includes 9 different rigid/non-rigid object pairs with signifi-
cant transforms and clutters. Co-recognition dataset contains 6 image pairs with

Table 1. Precision/Recall (%) by four methods. ACC and RRWM denote their results
on graph GI . Since both ACC and RRWM fail to handle GL, we do not show their
results on GL.

Data sets ACC[1] RRWM[4] PGM[5] Our PMA

ETHZ 63/15 66/23 11/66 82/74

Co-recognition 67/68 69/75 13/69 88/79

Intra-class 71/24 52/22 25/81 72/83
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(a) Two input image pairs

(b) Results by ACC on GI

(c) Results by MSRW on GI

(d) Results by PGM

(e) Our results

Fig. 9. Comparison on two image pairs of Co-recognition dataset [6]

complex many-to-many object correspondences. Intra-class dataset consists of 30
image pairs of large intra-class variation. The ground truth feature matches are
manually constructed for each image pair to enable quantitatively evaluation.
Here, we use the MSER[19] and the Harris affine detectors [20] with SIFT de-
scriptor [18]. Our testing environment is MS Windows 7 Professional with Intel
Core i5-3550 CPU 3.3GHz, 16GB RAM.

Fig.8 shows the matching results for two examples of ETHZ toys dataset.
A prominent phenomenon observed is that the results on graph GL by both
ACC and RRWM are totally cluttered by the background outliers, with preci-
sions and recalls close to zero. Actually, this happens for each image pair in the
data sets. In the following parts we will not show the results on graph GL by
ACC or RRWM. The results obtained by both ACC and RRWM on graph GI

are much better, with about 20% of all the true matches detected. PGM fails to
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handle these two examples due to the significant outliers. In comparison, our
PMA successfully detects about 80% of all the true matches with much higher
precisions, despite large object transforms and outliers.

Fig.9 demonstrates a comparison on two challenging image pairs in Co-
recognition data set. These image pairs have three and four object correspon-
dences respectively. Since PGM assumes that the true matches belong to a single
cluster, it can not deal with many-to-many object correspondences. Therefore
the results on these two examples are far from being satisfactory. ACC and
RRWM accurately detect the three inlier clusters but also introduce many out-
liers. Our PMA solves this problem effectively by successfully distinguishing the
inliers from outliers.

Fig.10 illustrates feature matching for two image pairs in Intra-class data set.
To solve this, it is required to address appearance difference as well as intra-class
variation. As can be seen, PGM cannot distinguish true matches from outliers.
Both ACC and RRWM fail to recover most inlier matches. In contrast, the result
by our PMA has much more inlier matches with less outliers.

Table 1 gives quantitative results on the three benchmark data sets. As men-
tioned before, since both ACC and RRWM fail to handle GL and the precisions
are nearly zero, we do not show their results. As can been seen, our PMA largely
outperforms the other methods in both precision and recall.

Table 2. Average running time (in second) by four methods. ACC and RRWM denote
their running time on graph GL.

Data sets ACC[1] RRWM[4] PGM[5] Our PMA

ETHZ 245257 16462 23 6

Co-recognition 264379 19873 28 7

Intra-class 673 65 10 2

Table 2 gives the computational time. For ETHZ toys dataset [11] and Co-
recognition dataset [6], our PMA is more than 1000 times faster than the leading
mode-seeking method RRWM on graph GL. We also test RRWM on the small
graph GI . The average time to process each image pair in the three data sets is
4, 6 and 2 seconds respectively. As shown in Table 2, our PMA has comparable
performance. Compared with the ACC and PGM methods which are not mode-
seeking methods, our PMA is also much faster. For Intra-class dataset [1], the
feature numbers of most images are very small (in some cases, even less than
fifty). Therefore the speed-up by our method is less significant than that on the
other two data sets. However, more than 10 times speed-up over RRWM on GL

can still be observed.
The space complexity of our PMA is also linear in the number of graph nodes.

By using 16GB RAM, our method can handle about 819× 2000 nodes at most.
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(a) Two input image pairs

(b) Results by ACC on GI

(c) Results by MSRW on GI

(d) Results by PGM

(e) Our results

Fig. 10. Comparison on two image pairs of Intra-class dataset [1]

5 Conclusion

Feature matching is a long-standing and important problem for many applica-
tions in computer vision. This paper tried to address it by focusing on a novel
issue: efficiently exploring the huge matching space based on the graph-based
method. The crucial component of our proposed algorithm is to compute the
graph density for one graph based on a reference graph. This enables a progres-
sive mode-seeking framework for robustly exploring the huge matching spaces.
To reduce the complexity of mode-seeking, we utilize the property that inliers
often have larger graph density values than outliers and propose a simple density-
aware sampling scheme. Results on several standard data sets demonstrated that
our method significantly outperforms state-of-the-art methods, in terms of pre-
cision, recall and run time.
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