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Abstract. Identifying inliers and outliers among data is a fundamental
problem for model estimation. This paper considers models composed
of rotation and focal length, which typically occurs in the context of
panoramic imaging. An efficient approach consists in computing the un-
derlying model such that the number of inliers is maximized. The most
popular tool for inlier set maximization must be RANSAC and its nu-
merous variants. While they can provide interesting results, they are not
guaranteed to return the globally optimal solution, i.e. the model lead-
ing to the highest number of inliers. We propose a novel globally optimal
approach based on branch-and-bound. It computes the rotation and the
focal length maximizing the number of inlier correspondences and con-
siders the reprojection error in the image space. Our approach has been
successfully applied on synthesized data and real images.

Keywords: Consensus set maximization, branch-and-bound, inlier de-
tection, RANSAC.

1 Introduction

Distinguishing inliers and outliers among data is a fundamental problem and
constitutes a necessary step for model estimation, notably in computer vision.
An efficient approach to identify inliers and outliers consists in estimating the
underlying model in such a way that the number of inliers is maximized. The
most popular technique must be RANSAC [8] and has been applied for numerous
computer vision tasks ranging from 3D reconstruction to object recognition.
Despite its popularity and that interesting results can be obtained, RANSAC
is not guaranteed to maximize the number of inliers in a globally optimal way.
This paper is dedicated to rotational homography with unknown focal length,
i.e. models composed of rotation and focal length, which typically occurs in the
context of panoramic imaging [5]. We propose a globally optimal approach that
computes the camera rotation and the focal length so that the maximum number
of inlier correspondences between two images is guaranteed to be obtained.

Previous work investigated how to maximize the number of inliers. First,
several variants of RANSAC have been proposed, for example MLESAC, LO-
RANSAC and preemptive-RANSAC [22,17,19,7]. While they generally perform
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better than the original RANSAC in terms of the number of identified inliers,
they are not guaranteed to obtain the optimal result. In contrast to random
sampling, Li [13] applied an optimal branch-and-bound technique in combination
with convex and concave envelops [15]. However this approach is limited to
distance definitions and constraints that are strictly linear with respect to the
sought model. Kahl et al. [12] proposed an optimal method also based on branch-
and-bound in combination with L1-norm to partially reduce the sensitivity to
outliers. A post-validation step was proposed by Olsson et al. [18]. While this
approach is useful to verify the optimality of a potential solution, it does not
provide a mechanism to explicitly compute the optimal solution. Bazin et al. [2]
proposed an approach to maximize the number of inliers under a pure rotational
model. In contrast to their work, (i) we do not assume that the focal length is
known in advance, (ii) we compute the focal length, in addition to the rotation,
(iii) instead of the angular error, we consider the meaningful Euclidian distance
in the image space in pixels [10], which requires deriving the reprojection bounds
in the image, and (iv) we introduce a rotation parametrization that permits to
reduce the correlation between the focal length and the rotation parameters.
Yang et al. [23] recently proposed a globally optimal Iterative Closest Point (ICP)
algorithm for rigid registration (rotation + translation) of two 3D point sets and
can be applied to maximize the number of inlier correspondences between these
two sets. This method is dedicated to 3D point sets (e.g. registration error in
3D space) and thus cannot be straightforwardly generalized for unknown focal
length and used for our application in the image space.

2 Formulation

Let us note xi = (xi, yi) and x′
i = (x′

i, y
′
i) the ith input pair of 2D feature

points in correspondence (e.g. obtained by SIFT [14]), respectively in the first
and second images, with i = 1 . . .N and where N is the number of matches.
The two images are taken with a camera located at a fixed position and turning
with any 3D rotation R. It is assumed that the camera is intrinsically calibrated
(e.g. camera center is known), except for the focal length f which is unknown
and same for the two images. In the following, all the measurements (xi,x

′
i)

are centered, i.e. the camera center’s coordinates (Cx, Cy) are subtracted to the
points’ coordinates in pre-processing, and thus the intrinsic calibration matrix
is reduced to Kf = diag(f, f, 1) [10]. In the absence of noise and outliers, any
two measurements (xi,x

′
i) in correspondence verify:

x′
i = Txi = Kf R K

−1
f xi and dR,f(xi,x

′
i) = 0 ∀i (1)

where dR,f (x,x
′) = ‖Kf RK−1

f x − x′‖2, that is the Euclidian distance in pixels
between the measurement in the right image x′ and the measurement of the left
image x projected into the right image by the transformation T that depends
on the camera rotation R and the focal length f . In the following, dR,f(x,x

′) is
called the reprojection error.
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Due to noise and outliers, these relations might not be verified for all the
input matches. Following the “residual tolerance method” [8], we define a match
(xi,x

′
i) as an inlier if the reprojection error is lower than a residual tolerance δ,

i.e. dR,f(xi,x
′
i) ≤ δ. Otherwise the match is considered an outlier.

Let S represent the set of input matches: S = {(xi,x
′
i), i = 1 . . .N}. The

set S is partitioned into an inlier-set SI ⊆ S containing the inlier matches and
an outlier-set SO ⊆ S with SO = S − SI . The cardinality of SI corresponds to
the number of inlier matches. Maximizing the number of inliers with unknown
rotation and unknown focal length can now be formulated as:

max
SI ,R,f

card(SI ) (2a)

s.t. dR,f(xi,x
′
i) ≤ δ, ∀i ∈ SI ⊆ S (2b)

R ∈ SO(3) (2c)

Solving System 2 in a globally optimal way is a challenging task mainly due to
the non-linearity, the non-convexity and the rotation constraint. System 2 can
also be considered as a typical chicken-and-egg problem: if the inliers are known,
then the underlying model (rotation and focal length) can be computed [6],
and reciprocally, if the model is known, the inliers can be retrieved (simple
check of the inlier constraint at Eq. (2b)). Unfortunately neither the inliers
nor the model is known apriori. A method would be to test all the possible
combinations of inliers/outliers. While the number of combinations is finite (2N),
it is generally untractable in practice. Another naive method would be to test all
the possible models but the model search space has an infinite cardinality and
thus is untractable. In practice, a popular method to solve System 2 is to apply
RANSAC in combination with a 2-point algorithm [4], but as explained above,
RANSAC is not guaranteed to return the globally optimal solution.

3 Proposed Approach

This section presents the proposed approach to solve System 2 in a globally
optimal way. We start by introducing a particular parametrization of the trans-
formation T, then study the projection bounds when the parameters of the trans-
formation lie in a given range, and finally explain how to use these bounds in
the framework of branch-and-bound.

3.1 Parametrization

Rotation can be parameterized in several ways such as Euler angles, quaternion
and axis-angle. In our work, we propose to use a parametrization of the form

R = Rz(θ) Rr Rz(φ) (3)

where Rz(θ) is a rotation about the z-axis (optical axis) by an angle θ and Rr is
a rotation about the y-axis to be explained presently.
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One key advantage of this parametrization is the way it interacts with Kf in
the definition (1) of T. One may easily verify that Kf commutes with a rotation
Rz , i.e. KfRz = RzKf . This important observation provides a simple form for T:

T = Kf R K
−1
f = Kf Rz(θ)RrRz(φ) K

−1
f

= Rz(θ) KfRrK
−1
f Rz(φ) .

(4)

We define Rr as the rotation about the y-axis with the property that KfRrK
−1
f

takes origin (0, 0, 1)� to the point (r, 0, 1)�. The mapping KfRrK
−1
f is of the form

Kf Ry(α)K
−1
f =

⎡
⎣

cos(α) 0 f sin(α)
0 1 0

− sin(α) /f 0 cos(α)

⎤
⎦ =

⎡
⎣

1 0 f tan(α)
0 1/ cos(α) 0

− tan(α) /f 0 1

⎤
⎦

(5)
up to (irrelevant) scale. In order to take (0, 0, 1)� to (r, 0, 1)�, it follows that

tan(α) = r/f , so cos(α) = f/
√
f2 + r2. For easier notation, let us consider

the reciprocal focal length g = 1/f instead of the focal length. After some
mathematical manipulations, we finally obtain the mapping

U(g, r) = Kf RrK
−1
f =

⎡
⎣

1 0 r

0
√
1 + r2g2 0

−rg2 0 1

⎤
⎦ . (6)

Finally, the complete transformation T gets simplified to:

T = Rz(θ)

⎡
⎣

1 0 r

0
√
1 + r2g2 0

−rg2 0 1

⎤
⎦ Rz(φ) . (7)

Interpretation. The two rotations Rz(φ) and Rz(θ) carry out rotations about
the image origin. One may think of these as being rotations in the left and right
hand images respectively. Thus, the way a point is transformed by T is as follows:

1. The point in the left image is rotated around the origin by an angle φ by
Rz(φ).

2. Then it is mapped into the right image by U(g, r) (see (6)), parameterized
by g and r (i.e. f and α).

3. Finally, it is rotated around the origin of the right image by an angle θ by
Rz(θ).

An interesting observation is that in order to test a correspondence between
points xi (in the left image) and x′

i (in the right image), one may do a pre-
rotation of xi by φ and x′

i by −θ. In this operation, the circular inlier neigh-
bourhoods (of radius δ) remain circular and the radius is unchanged.

All this is possible thanks to the rotation parametrization of (3) that permits
Rz to commute with Kf , and in turn, to “separate” Rz and f . This reduces the
correlation of f and the rotation parameters, which is desirable in the reduction
of the error bound, and also simplifies the derivations of the bounds in pixel
error (more details in the next sections).
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Additional Properties. The mapping U(g, r) applied to a point x = (x, y, 1)�

provides a point x′ given by

x = (x, y, 1) → x′ = (x+ r, y
√
1 + r2g2, 1− rxg2)� . (8)

After dehomogenizing, this becomes

(x, y) → (x′, y′) =

(
x+ r

1− rxg2
,

y
√
1 + r2g2

1− rxg2

)
. (9)

An important note is that x′ depends only on x, and not on y. In particular,
this mapping takes a (vertical) line of the form x = c to a new line x′ = (c +
r)/(1− rcg2). This will be used for a quick-and-easy way of checking whether a
match is a potential inlier given a certain transformation.

Another important property is the “trajectory” of the point (x, y)� mapped
into the right image as r varies. From (9), one can show that this trajectory is
a hyperbola with the equation

(1 + g2x2
0) (y

′)2 − (g2y20) (x
′)2 = y20 (10)

where (x0, y0) represents the initial point when r = 0. The initial point (x0, y0)
is the same as (x, y), but written with the subscript so as to indicate that this
point is constant here and (x′, y′) are the variables.

3.2 Intervals of r and g

This section investigates where a point x = (x, y) is mapped to under a trans-
formation U(g, r), when the parameters r and g lie in a range. Let us suppose
that rmin ≤ r ≤ rmax and gmin ≤ g ≤ gmax. With these intervals, the mapped
point U(g, r)x must lie inside some bounded region in the right image and in the
following, we compute the bounds on its x and y coordinates.

Bounds on y. Based on the above observations and derivations, U(g, r)x must
lie between the two hyperbolas defined by (10) for g = gmin and g = gmax. This
gives a very convenient way to determine whether the mapping of x into the right
image passes “close” to (i.e. up to δ) its putative corresponding point x′ for any
value of r. The hyperbolas are illustrated in Figure 1. This figure shows that
for values of g close to zero (very large focal lengths), the point moves almost
horizontally, whereas for larger values of g (shorter focal lengths) the trajectory
becomes more curved.

Bounds on x. As shown previously, where a point x = (x, y) maps to does not
depend on y, only on x (see (9)). As y varies in the point (x, y), the mapped
point (x′, y′) varies along a vertical line as well. Thus, U maps vertical lines to
vertical lines. Taking derivatives of the line x′ = (x+ r)/(1− rxg2) with respect
to r and g gives

∂x′

∂r
=

1 + g2x2

(−1 + g2rx)2
and

∂x′

∂g
=

2grx(r + x)

(−1 + g2rx)2
. (11)
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Fig. 1. Hyperbolic trajectories of a point transformed by U(g, r) with different values
of g, given the initial point (x0, y0) = (5, 2) and for any values of r.

The derivative with respect to r is always positive. Therefore, the minimum value
xmin of x′ will be achieved at r = rmin and the maximum xmax at r = rmax.

The sign of the derivative with respect to g corresponds to the sign of 2grx(r+
x), which depends on the values of x and r (note that g = 1/f ≥ 0 since focal
length is always positive). Let us study the minimum of x′. As explained right
above, it is achieved with r = rmin. Let note s = sign(rminx(rmin+x)). Thus the
sign of the derivative is the same as s: if s ≥ 0 (rec. s ≤ 0) then the derivative
is positive (rec. negative), then the minimum of x′ is obtained at g = gmin (rec.
g = gmax). Concretely, the minimum value of x′ is achieved at one of the two
parameter values (r, g) = (rmin, gmin) or (rmin, gmax) depending on the sign of
rminx(rmin + x). A similar derivation can be followed for the maximum of x′:
the value at which x′ takes its maximum value is at either (r, g) = (rmax, gmin)
or (rmax, gmax) depending on the sign of rmaxx(rmax + x).

Summarizing this, the minimum and maximum of x′ are achieved at two of
the four corners of the rectangle defined by the range of the parameters r and g.
Thus, we see that we can bound the range of the point x′ = (x′, y′) to lie
between two vertical lines x′ = xmin and x′ = xmax and to lie between the two
hyperbolas corresponding to the values of gmin and gmax. This gives a simple
test to see whether the point x can transform to the target point x′ within a
suitable radius (i.e. up to δ). Concretely, the test can be conducted as follows:

1. In terms of the initial point x = (x0, y0) compute the bounds xmin and xmax

and test if x′ lies between them.
2. Test if x′ lies between the two hyperbolas defined for gmin and gmax and with

the initial point (x0, y0).

If either of these two tests fails, then it is sure that x′ is not within range.
Otherwise, x′ might be within range: (x,x′) is a potential inlier match but this
has to be confirmed with further investigations, as detailed in the next section.

3.3 Branch-and-Bound

To efficiently deal with bounds, we follow the branch and bound algorithm (noted
BnB in the following). BnB is a general framework for global optimization [11]
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that recently gained popularity in the field of computer vision [21,24,9]. Given
a search space of the model to estimate, BnB iteratively subdivides this search
space into smaller subspaces, identifies and removes the subspaces that do not
contain the optimal solution via a feasibility test and refines the remaining sub-
spaces, i.e. the subspaces that can potentially contain the optimal solution.

Our search space is composed of the rotation space SO(3) parameterized by
the angles (θ, φ, α) (see Section 3.1) and the focal length range. We call “cube”
a delimited part of that space. We now ask the question: how to estimate the
lower and upper bounds of the number of inliers that can be obtained by any
models in a given cube?

Lower bound. Let us start with the lower bound. The center of a given cube C
corresponds to a specific point in the search space and thus corresponds to known
rotation angles (θ, φ, α) and focal length f , which in turn provides R and Kf .
Then we can simply count the number of matches (xi,x

′
i) verifying the inlier

constraint (2b). One may note that this number does not necessarily correspond
to the lowest number of inliers that could be obtained in the cube C, but provides
a practical lower bound of the maximum number of inliers that can be obtained
in the cube C.

Upper bound. Computing the upper bound is more challenging. We note [θl, θu],
[φl, φu], [αl, αu] and [fl, fu] the definition ranges of these parameters in a given
cube C. The rotation of a point xi (in the left image) by Rz(φ) with φ ∈ [φl, φu]
defines a circular arc centered at the origin and of length φu − φl. The x and
y bounds of this arc can be easily obtained analytically and we note them
([xi], [yi]) = ([xi,l, xi,u], [yi,l, yi,u]) where l and u stand for lower and upper val-
ues. Similarly, let us note ([x′

i], [y
′
i]) = ([x′

i,l, x
′
i,u], [y

′
i,l, y

′
i,u]) the bounds of the

point x′
i (in the right image) rotated by Rz(θ) with θ ∈ [θl, θu].

In Section 3.2, we investigated how the ranges of r and g (i.e. α and f)
influence the mapping U and we derived the x and y bounds of the point x
mapped by U. This approach can be easily generalized to an interval of point
([xi], [yi]) instead of a given point x. The “extended” x and y bounds of the
interval ([xi], [yi]) mapped by U can be computed in a similar way, analytically
or by simple interval arithmetics [16]. This provides the interval of xi mapped
by U in the right image (obtained by the definition ranges of φ, α, f) and we
compare this interval to the interval of ([x′

i], [y
′
i]) (obtained by the definition

range of θ). If the intervals intersect (up to δ), then the match (xi,x
′
i) is a

potential inlier under a model contained in C. If they do not intersect, then it
is definitively an outlier for the cube C. We conduct this procedure for all the
input matches and count the number of potential inliers, which in turn provides
an upper bound of the number of inliers for C.

Search strategy. We explained above how to compute the lower and upper bounds
of the number of inliers for a given cube. We now discuss how to iteratively
discard the non-feasible cubes and conduct the search strategy.
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First of all, the search starts with a cube list L that is initialized with one
cube covering the entire search space (see above). During the subdivision of a
cube Cj , each dimension of this cube is split into two intervals of equal length,
which provides, in total, 24 = 16 disjoint smaller cubes whose side length is half
of the side length of the original cube Cj . The cube Cj is removed from L and
replaced by its subdivided cubes.

Let l∗ be the highest lower bound obtained so far or the number of inliers
computed beforehand by any existing methods. Let us note lj and uj the lower
and upper bounds of the number of inliers of a cube Cj . If uj < l∗ then it
is sure that the optimal model (i.e. the model leading to the highest number
of inliers) is not contained in Cj because Cj does not contain any models that
can lead to at least or more than l∗ inliers. Thus the cube Cj is considered
non-feasible and can be removed from the search space. On the contrary (i.e.
if uj ≥ l∗) then the cube Cj is subdivided for further investigation. In case
lj > l∗ then l∗ is updated by lj . This procedure is applied iteratively for all the
cubes contained in the cube list L. We define the maximum upper bound u∗

as the highest upper bound among the feasible cubes currently present in the
list L. Along the BnB iterations, the non-feasible cubes are discarded (the search
space reduces), the size of the cubes decreases (by subdivision), the gap between
the lower and upper bounds lj and uj computed for each cube Cj diminishes,
and l∗ and u∗ converge. The search stops when the list L contains at least one
cube C∗

j whose lower bound lj equals the maximum upper bound u∗ because
it means that the model at the center of C∗

j (i.e. used to compute lj) provides
the maximum number of inliers u∗. Finally the BnB procedure simply returns
the model (R∗, f∗) associated to the center of C∗

j and this model leads to the
maximum number of inliers u∗ that can be obtained inside the search space.

4 Results

This section presents some experimental results obtained for synthesized data
and real images. Implementation details, additional algorithmic explanations
and supplementary results are available on the authors’ website. Our branch-and-
bound approach has been implemented in C++ and ran on a computer equipped
with an Intel Core i7 CPU 2.8GHz (a single core is used) and 12GB RAM. We
run BnB on the whole rotation search space SO(3) and a conservative realistic
range for the focal length [200 , 4500], unless otherwise stated. Our approach
takes between a few seconds and a few minutes depending mainly on the number
of points and the search space size.

We compare our approach to the conventional RANSAC and the optimized
LO-RANSAC [7], both being referred to as RANSACs. They both embed the
state-of-the-art minimal solution approach of Brown et al. [4], that we refer to as
the 2-point algorithm. We consider LO-RANSAC in addition to the conventional
RANSAC, because it is known to perform very well in practice. Among the ver-
sions of LO-RANSAC, we apply the inner RANSAC with iteration because it has
been shown that it provides the best results [7]. The number of RANSAC itera-
tions is automatically computed with the true outlier ratio (if not available, e.g.
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Fig. 2. Comparison between RANSACs and the proposed approach. Left: distribution
of the number of inliers obtained by RANSAC and LO-RANSAC. Their best run leads
to 88 and 89 inliers respectively. Right: convergence of the BnB bounds to 90 inliers.
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Fig. 3. Distribution of the execution time of our approach for N = 30 (left) and
N = 300 data points (right) with 70% of outliers

for real data, set to 80%), a guaranteed accuracy of 99% and a minimal sampling
of 2 points for the 2-point algorithm [10]. Since different runs of RANSACs might
lead to different results (because of the random data sampling), we repeat each
experiment over 1000 runs with the same input data and parameters. Finally,
the algorithms are compared with respect to the number of inliers detected.

4.1 Synthesized Data

We randomly generate a set of N = 300 correspondences of 2D points between
the left and right images. To reproduce realistic settings, we corrupt the x and
y coordinates of the points by a Gaussian noise (std=0.5pixels) and create a
percentage p = 70% of outliers with δ = 2pixel. Figure 2 compares the number
of inliers obtained by the proposed approach and RANSACs. Our BnB approach
obtains 90 inliers, which corresponds to the number of synthesized inliers. On
the contrary, RANSAC spans between 61 and 88 inliers and never obtains the
number of synthesized inliers, that is 90. As expected, LO-RANSAC performs
better than RANSAC: results span between 71 and 89 inliers. While it does
not obtain the number of synthesized inliers neither, the distribution is clearly
improved: RANSAC obtained more than 84 inliers in 26% of the 1000 runs,
whereas it occurred in 72% of the runs for LO-RANSAC.

One might wonder why neither RANSAC nor LO-RANSAC managed to ob-
tain the true number of inliers. This actually happened in about 80% of our
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experiments for RANSAC and 65% for LO-RANSAC. This can be explained by
two reasons. First, the performance of RANSACs depends on the data noise:
for completeness, we conducted several experiments with noise-free data, but
still corrupted by outliers, and the true number of inliers was obtained in a
percentage of experiments similar to the selected guaranteed accuracy of 99%.
Second, RANSAC can hypothesize only models that are directly supported by
the selected points. The concrete consequence is that RANSAC cannot return
the optimal number of inliers if the associated model cannot be hypothesized
by the minimal points. Thanks to its local optimization steps, LO-RANSAC
performs better than RANSAC, but still relies on the data points support to
hypothesize models, and therefore this limitation is removed only partially.

For a complete comparison of RANSACs and our BnB approach, we conducted
more than 100,000 experiments with various data amounts (N = 10 ∼ 600
points), proportions of outliers (p = 0% ∼ 90%) and focal length ranges ([500 ,
700] to [10 , 5000]). In all the experiments, the BnB bounds always converged to
the true number of inliers, and the number of inliers obtained by our approach
was always higher than or equal to the number obtained by RANSAC and LO-
RANSAC.

We conducted 1000 different experiments with newly randomly generated data
and measured the execution time of our BnB approach for each experiment. The
distribution of the execution time for N = 30 and N = 300 data points (70%
of outliers) is illustrated in Figure 3. As expected, the execution time increases
with the number of points since there are more data to process, and the figure
shows that the approach is scalable with the data amount. RANSACs definitely
run faster than the BnB approach but we do not aim to compete with RANSACs
in terms of speed: our key goal is to obtain the globally optimal solution.

4.2 Real Data

We now present results obtained by our approach on real images. We perform
the intrinsic calibration of the camera by Bouguet’s toolbox [3], and the camera
center is then applied to the point measurements to center their coordinates.
Putative correspondences between two images are obtained by extracting and
matching SIFT features [14]. The number of RANSAC iterations is computed
with a very conservative outlier ratio of 80% and we run RANSACs 1000 times for
each experiment. In the case the focal length and its limits are totally unknown,
we use a conservative focal length range [200 , 4500]. This focal length range
covers most of the practical cases and can be enlarged if needed. Optionally, a
rough focal length estimation and/or its limits can be obtained via EXIF tags
like in [1,20] or known approximately from the camera device.

A first representative result with a small overlap is shown in Figure 4. The
images are acquired with a Sony NEX-3 camera. A rough estimate of the focal
length is available from the EXIF tag and we use a range of ±200 around this
value (we will show results without any EXIF tag information in Figure 5). 163
putative correspondences are obtained by SIFT. The number of inliers obtained
by RANSAC and LO-RANSAC span between 75 and 80, and between 77 and 80
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Fig. 4. (a) Distribution of the number of inliers obtained by RANSAC and LO-
RANSAC. (b) Convergence of the BnB bounds to 80 inliers. (c) Inlier (green) and
outlier (red) matches detected by our approach. (d) Highlighted overlap of the input
images on the resulting panoramic view. (e) The final panoramic view.
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Fig. 5. Convergence of the BnB bounds to 80 inliers with a focal length range of ±300
(a), ±500 (b), ±1000 (c) around a rough focal length estimation, and with a very
conservative focal length range of [200 , 4500] (d).
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respectively, as shown in Figure 4-(a). Their maximum number of inliers, that
is 80, is obtained during only 9% of the 1000 runs by RANSAC, and 19% by
LO-RANSAC. The BnB bounds converge to 80 inliers, as shown in Figure 4-(b).
The inlier and outlier matches identified by our BnB approach are shown in Fig-
ure 4-(c), and the resulting panoramic view in Figure 4-(d,e). For completeness,
Figure 5 illustrates the evolution of the BnB bounds with different focal length
ranges for the image pair of Figure 4. First it shows that the bounds always
converged. Also, a focal length range of ±200 took about 5.4 × 104 iterations
(see Figure 4-(b)) and a range of ±1000 took about 16× 104 iterations (see Fig-
ure 5-(c)), that is about 2.96 times more iterations while the search space is 5
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Fig. 6. Same legend as in Figure 4. The best run of RANSAC and LO-RANSAC leads
to 244 inliers and our BnB bounds converge to 248 inliers.
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times larger. This shows that the method is scalable with the focal length range.
Figure 5-(d) shows the convergence of the BnB bounds with a very conservative
focal length range, which shows that our method can be applied for practical
cases when the focal length and its limits are totally unknown.

An additional representative result with a large overlap is shown in Figure 6.
275 putative correspondences are obtained by SIFT. The number of inliers ob-
tained by RANSAC and LO-RANSAC span between 229 and 244, and between
238 and 244 respectively. Their maximum number of inliers, that is 244, is ob-
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Fig. 7. Same legend as in Figure 4. The best run of RANSAC and LO-RANSAC leads
to 69 inliers and our BnB bounds converge to 70 inliers.
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tained during only 3%, by RANSAC, and 6%, by LO-RANSAC, of the 1000
runs. In contrast, our BnB bounds converge to 248 inliers, which is 4 additional
inliers than the best result of RANSAC and LO-RANSAC among the 1000 runs.
For this image pair, the lower bound increases very quickly to 243 inliers, and
the gap between the lower and the upper bounds reduces slowly. This is because
the reprojection errors of some correspondences were close to the inlier threshold
and thus the size of the cubes (i.e. the uncertainty of the model) needs to be
sufficiently small to be able to decide whether such correspondence is inlier or
outlier, and this cube size is continuously reduced along the BnB iterations.

We also apply our approach on images acquired by a smartphone. Figure 7
shows a representative result with a conservative focal length range: the RANSAC
distribution, the convergence of the BnB bounds, the inlier/outlier correspon-
dences obtained by our approach and the resulting panoramic view. Some ad-
ditional results for different scenes and cameras are available on the authors’
website. Similarly to the experiments with synthesized data, the number of in-
liers obtained by our approach on all our experiments with real images was
always higher than or equal to the number of inliers obtained by RANSAC and
LO-RANSAC, which confirms the validity of our approach.

5 Conclusion

This paper faced the problem of inlier set maximization in the image space
with unknown rotation and focal length. The most popular approach to solve
this problem is RANSAC but it has several limitations especially the lack of
optimality. We proposed a new approach based on branch-and-bound that max-
imizes the inlier set in a globally optimal way: it returns the rotation and the
focal length leading to the highest number of inlier correspondences in the im-
age space. The validity of the approach has been confirmed by experiments on
synthesized data and real images.

An interesting direction for future work would be to estimate, in addition to
the focal length, some extra intrinsic parameters, such as the camera center. We
also plan to investigate the generalization of our approach of inlier set maxi-
mization in the image space beyond pure-rotation motion and for other models.
Especially, in the context of fundamental matrix estimation, the goal would be to
compute the rotation and translation of the camera, as well as the focal length,
in such a way that the number of inlier correspondences in the image is max-
imized, up to an inlier threshold in pixels (e.g. with respect to the distance to
the epipolar line).
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