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Abstract. This paper describes an approach to reconstruct the com-
plete history of a 3-d scene over time from imagery. The proposed ap-
proach avoids rebuilding 3-d models of the scene at each time instant.
Instead, the approach employs an initial 3-d model which is continuously
updated with changes in the environment to form a full 4-d representa-
tion. This updating scheme is enabled by a novel algorithm that infers
3-d changes with respect to the model at one time step from images
taken at a subsequent time step. This algorithm can effectively detect
changes even when the illumination conditions between image collections
are significantly different. The performance of the proposed framework
is demonstrated on four challenging datasets in terms of 4-d modeling
accuracy as well as quantitative evaluation of 3-d change detection.

1 Introduction

This paper proposes a new approach to reconstruct the evolution of a 3-d scene
over time from imagery, i.e. image-based 4-d reconstruction. This work is tar-
geted towards modeling of complex and ever-changing urban or natural envi-
ronments. 4-d modeling of such scenes has various applications including urban
growth analysis [1,2], construction site monitoring [3], natural resource manage-
ment, surveillance and event analysis [4].

A naive approach to 4-d modeling is to reconstruct independent 3-d models
for every time instant. This naive approach is motivated by the recent success of
multi-view stereo (MVS) algorithms [5,6]. Nevertheless, 3-d reconstruction from
images is an inherently ill-posed problem and reconstructing dense and accurate
models of realistic urban or natural environments is still very challenging. Diffi-
culties include areas of uniform appearance, transient objects, reflective surfaces,
and self-occlusions. Model structure is highly dependent on illumination condi-
tions, image resolution, and camera placement, which typically vary between
data collections. Therefore, reconstructions of the same structures at different
times typically contain many inconsistencies [4,7,8]. For instance, a building may
be accurately reconstructed on an overcast day but not on a bright day with
shadows and specular reflections that cause building surfaces to be fragmented
in the model. These inconsistencies also complicate differentiating between actual
changes in the scene from false alarms caused by inconsistent reconstructions,
and therefore hinder 4-d analysis.
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Fig. 1. Overview of the proposed 4-d modeling algorithm. The 3-d model at time
T-1 is updated using the images captured at T. The algorithm first detects the 3-d
changes in the scene by fusing change evidence from multiple views. Subsequently,
surface geometry and appearance are estimated to update the evolving 4-d model.

Most importantly, this naive approach does not exploit the fact that in realistic
scenes, many objects, such as buildings and roads, persist through long periods
of time and need not be repeatedly estimated. Once a 3-d model of the scene is
obtained, no further processing is necessary until a change occurs.

Motivated by these observations, this paper proposes a 4-d reconstruction al-
gorithm based on change detection. The algorithm utilizes an initial accurate
3-d model of the scene. In subsequent frames, images from multiple (arbitrary)
viewpoints are used to detect 3-d changes in the environment. This scheme cir-
cumvents reconstruction of the entire scene and can be achieved from only a
sparse set of views. The image regions corresponding to unchanged parts of the
scene can be safely discarded and model update is targeted only on the changed
volumes. The steps of the proposed algorithm are depicted in Figure 1.

The algorithm continuously detects and incorporates changes in a scene over
time to produce a complete 4-d representation. Such changes could include vari-
ations in both geometry and surface reflectance. However, if there exist vast
illumination differences between data collections, the algorithm can effectively
discard the effects of illumination and detect changes only in geometry.

The framework employs a probabilistic representation of 4-d surface geometry
and appearance. Appearance is defined as the combination of surface reflectance
and illumination giving rise to the pixel intensity or color seen in observations of
the surface. This 4-d representation allows modeling the evolution of arbitrary
and complex 3-d shapes, with no constraints on changing scene topology. The
resulting 4-d models allow visualization of the full history of the scene from
novel viewpoints as shown in Figure 2, as well as spatio-temporal analysis for
applications such as tracking and event detection.

This paper makes three main contributions. The first contribution is a proba-
bilistic formulation to detect 3-d changes at each time step without reconstruct-
ing a 3-d model for the entire scene. This inference process generates 3-d change
volumes rather than pixel-level image change probabilities as in earlier applica-
tions of probabilistic volumetric representations [9]. The second contribution is
an algorithm to discard the effects of varying illumination to detect structural
3-d changes. The final contribution is the 4-d modeling pipeline which utilizes
this change detection algorithm to continuously incorporate changes in a 4-d
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Fig. 2. Renderings of a 4-d model reconstructed using the proposed algorithm. The
model captures the step-by-step construction of a toy Lego tower. The framework allows
visualizing the 4-d model at any time instant from novel views.

time-varying model. To the best of our knowledge, no other work has demon-
strated such continuous operation in realistic and challenging urban scenes.

2 Related Work

The proposed 4-d reconstruction pipeline performs 3-d change detection using
the current set of images and the 3-d model from the previous time step. This 3-d
change detection expands on the probabilistic and volumetric modeling (PVM)
framework of Pollard and Mundy [9]. Their model encodes occupancy (surface)
probability and an appearance distribution of each voxel in a volumetric grid,
which is similar to other probabilistic voxel-based algorithms [10,11]. The sur-
face and appearance distributions are jointly estimated using online Bayesian
learning. The resulting 3-d model allows computing the probability of observing
a given intensity or color, from an arbitrary (but known) viewpoint and without
reference to training imagery. This probability can be used to compute the prob-
ability of change of each pixel in the image. Inspired by the PVM, the proposed
framework encodes probabilistic surface and appearance information in 4-d.

The first contribution of this paper is a 3-d change detection algorithm based
on combining pixel-wise change evidence from different viewpoints to compute
the probability of change in each 3-d cell. Note that the algorithm of [9] detects
changes on the image domain, whereas the proposed formulation estimates the
volumetric structure of change in the 3-d domain.

The second contribution of this paper is an algorithm to detect changes only
in 3-d geometry, i.e. structural change detection. Earlier algorithms that utilize
the PVM for change detection assume either that illumination conditions vary
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slowly with respect to the model update rate or that illumination variations can
be removed through global normalization [12]. However, in real outdoor settings,
the variations in illumination and shadows are too complex to allow such normal-
ization schemes. The proposed algorithm estimates a new appearance model for
the PVM so as to match the appearance of the current image collection. Once
the illumination conditions in the PVM and the corresponding appearance of
surfaces as seen in the images are consistent, the 3-d change detection algorithm
can be directly utilized to detect the structural differences.

The proposed approach is motivated by “appearance transfer”-based change
detection methods [13] but at the same time, it extends them. Such methods
exploit the prior 3-d scene geometry as a proxy to transfer pixels of one image
onto the view of the other image and then compare the corresponding pixels.
Matching pixels indicate where the geometry is still valid, i.e. background. Non-
matching pixels indicate a foreground object. Kosecka exploit the appearance
transfer concept for change detection in urban environments using StreetView
images [14]. Deguchi et al . present a similar method where the uncertainty during
depth estimation is also utilized [4]. Taneja et al . employs a surface mesh for
appearance transfer between pairs of wide-baseline images [15,8]. Their approach
also fuses the foreground maps in 3-d, using a similar approach to multi-view
silhouette fusion [16]. The foreground estimate is then used as a coarse update to
the initial mesh. Such methods compare pairs of images on the image domain. In
contrast, the proposed method incorporates all image evidence simultaneously
in 3-d using a probabilistic representation of surface geometry.

The third contribution of this paper is the 4-d modeling pipeline suitable for
realistic urban or natural scenes. Another approach which utilizes the PVM in
modeling 4-d scenes is by Ulusoy et al . [17], which generates 4-d models by re-
constructing full 3-d models (PVMs) at each time step. Their results are limited
to indoor studio data, which has static cameras as well as foreground segre-
gation, that allows producing high-quality independent reconstructions. Such
independent reconstruction is highly undesirable in realistic urban scenes for
two reasons. First, such scenes contain many static or slowly varying structures
which need not be repeatedly estimated at every frame. Second, 3-d reconstruc-
tion from images is an ill-posed problem and variations in imaging conditions
typically result in significantly different reconstructions of the same structures.
In contrast, the proposed pipeline estimates updates to the previous time step’s
PVM from subsequent imagery in two phases. In the first phase, the 3-d change
detection algorithm is used to compute the probability of change in each 3-d
cell. Then, reconstruction is targeted at cells with significant change probability
so as to estimate only their changed surface and appearance distributions.

Ulusoy et al . define an efficient representation for 4-d volumetric scenes, which
is also used in the algorithms proposed here. The representation,based on shal-
low octrees with binary time trees at each leaf is well-matched to highly parallel
GPU processing. It is emphasized that the change-driven 4-d modeling algo-
rithms proposed here represent a significant departure from their approach of
reconstructing a full 3-d model at each time step.
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3 4-d Reconstruction Pipeline Overview

The proposed framework encodes a occupancy (surface) probability and an ap-
pearance distribution of each cell in 4-d. These quantities are stored in the 4-d
data structure proposed by Ulusoy et al . [17]. In brief, a volume is decomposed
as an octree and the temporal variation in each cell is modeled by a binary tree.
This 4-d representation is initialized with a PVM (3-d model) that represents the
initial state of the scene. At subsequent times, imagery taken roughly simultane-
ously from arbitrary viewpoints are input to the 3-d change detection algorithm.
The images are registered to the 3-d model using standard tools. The details of
registration can be found in the experiments section. The proposed change detec-
tion algorithm and its extension to varying illumination conditions are explained
in Sections 4 and 5 respectively. These algorithms compute the probability of
change in each 3-d cell. Subsequently, the new surface and appearance distri-
butions of cells with significant change probability estimated from the current
set of images to update the current 3-d model. Namely, the binary time trees
of the changed cells in the 4-d representation are sub-divided to allocate new
memory for the update. The cells to be updated are initialized as empty (low
surface probability) and the online learning algorithm of [9] is used to estimate
the surface probabilities and appearance distributions. It should be noted that
this process does not estimate the changed parts of the model in isolation, but
uses the entire PVM for visibility and occlusion reasoning. This 3-d context sup-
ports change analysis in cases where objects are heavily occluded by background
surfaces. These steps of 3-d change detection and model update are repeated for
each time instant to achieve a complete 4-d model.

4 3-d Change Detection

This section describes 3-d change detection in the PVM from subsequent images
captured from multiple viewpoints. The simplest situation is where illumination
conditions are assumed to vary slowly such that the appearance encoded in the
PVM at frame T − 1 is similar to that of the images captured at T . Note that
this assumption does not require the appearance of the initial PVM and all
subsequent frames to be similar; it only requires the appearance of neighboring
times to be similar. The assumption of slowly varying illumination will later be
relaxed but enables a straightforward description of the algorithm. Based on
this assumption, events that vary the appearance of the scene qualify as change.
Such events include structural changes, e.g. a new building, as well as changes
in surface colors, e.g. new paint on a wall.

The PVM is represented in a grid of cells, where each cell X contains a
surface probability, p(XS), and an appearance distribution, p(XI). Appearance
is defined as the intensity or color of surface voxels as seen in the image pixels.
The problem is to compute the presence or absence of change in each cell given
subsequent images {Ii}Ni=1. A binary random variable, XC is defined for each
cell, where XC = 1 denotes the presence of change and XC = 0 denotes no
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change. The problem can be posed as maximum a-posteriori estimation,

{XC}∗ = argmax
{XC}

p({XC}|{I}) ∝ p({I}|{XC}) p({XC}) (1)

The likelihood term, p({I}|{XC}), models evidence from the images. The prior
term, p({XC}), represents all previous knowledge regarding which parts of scene
may contain changes. Such information can be obtained from various sources
including semantic cues, e.g. a construction site is likely to contain many changes,
whereas the Eiffel tower is almost surely static. However in the work here, a
uniform prior is assumed, i.e. each voxel is equally likely to change.

For tractability, the change probability of each cell is considered conditionally
independent given the images. This assumption leads to a simple solution to
eq. (1) where a cell is labeled as containing change if,

p({I}|XC = 1)

p({I}|XC = 0)
>

p(XC = 0)

p(XC = 1)
(2)

Note that this solution is the likelihood ratio test arising from Bayesian decision
theory. The terms p({I}|XC = 1) and p({I}|XC = 0) model image evidence in
the presence and absence of change respectively. Assuming conditional indepen-
dence, the terms are simplified as follows,

p({I}|XC) =

N∏

i=1

p(Ii|XC) (3)

The image intensities (or color) observed at a pixel are either due to back-
ground (PVM) or foreground (change). In general, no a-priori information is
available about the appearance of a “change” and therefore, the intensities are
assumed to be uniformly distributed. On the other hand, if the pixel is gener-
ated by the background, the PVM allows computing the probability of observing
intensity I along ray R as follows:

p(I) =
∑

X∈R

p(I|V = X) p(V = X) (4)

p(V = X) = p(XS) p(X is visible) (5)

p(X is visible) =
∏

X′<X

(1− p(X ′
S)) (6)

where V denotes the cell along the ray that is responsible for producing the pixel
intensity and p(I|V = X) is the appearance distribution of the cell.

Assuming the cell X back-projects into a single pixel in image Ii, predicates
Bi

X and F i
X can be defined for each pixel, indicating whether the pixel was

generated by background or change respectively. The term p(Ii|XC = 1) can be
expressed using these predicates as follows,

p(Ii|XC = 1) = p(Ii|F i
X) p(F i

X |XC = 1) + p(Ii|Bi
X) p(Bi

X |XC = 1) (7)
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where p(Ii|F i
X) is the uniform distribution and p(Ii|Bi

X) is computed as in
eq. (4). The term p(Bi

X |XC = 1) is the probability of observing background
in the pixel when cell X along the ray contains change. It is expanded by apply-
ing the Bayes rule,

p(Bi
X |XC) =

p(XC |Bi
X) p(Bi

X)

p(XC |Bi
X) p(Bi

X) + p(XC |F i
X) p(F i

X)
(8)

where p(F i
X) and p(Bi

X) can be set to 0.5 in the absence of prior knowledge.
The likelihood term p(XC = 1|Bi

X) can be expressed based on the following
intuition. Given the pixel is background, the voxels between the camera and
the surface voxel, i.e. visible voxels, can be labeled as containing no change.
However, nothing can be said about the voxels after the surface voxel along the
ray, i.e. occluded voxels. Thus, the term can be expanded as follows,

p(XC |Bi
X) = p(XC |vis, Bi

X) p(vis|Bi
X) + p(XC |¬vis, Bi

X) p(¬vis|Bi
X) (9)

where vis|Bi
X is shorthand for “X is visible” given the pixel is generated by

background. Note that p(XC = 1|vis, Bi
X) = 0, since a visible voxel that back-

projects into a background pixel cannot contain change. However, when the
voxel is not visible, the term p(XC = 1|¬vis, Bi

X) is set to 0.5 to denote the
uncertainty. The probability of visibility, p(vis|Bi

X), can be computed exactly
as in eq. (6). However, note that this computation is only possible because the
pixel is known to be background, i.e. the PVM geometry along the ray is still
accurate. In general, visibility or other measurements in the PVM may no longer
be correct due to the changes in the scene. The likelihood is simplified as,

p(XC |Bi
X) = 0.5 p(X is not visible) (10)

Finally, p(XC = 1|F i
X) is set to 1. Since the pixel is foreground, the geometry

in the PVM is no longer accurate and therefore, nothing can be said regarding
visibility of change. In the absence of such information, it is best to assume
change may be present in any cell along the ray.

Overall, this formulation incorporates change evidence from all viewpoints
while reasoning about visibility and occlusions. The solution, eq. (2), allows
processing each image separately and then making a decision locally at each 3-d
cell. Note that this framework can be augmented with spatial priors. However,
such priors typically require large scale global inference algorithms. Moreover,
traditional priors such as smoothness or planarity are often not valid in complex
urban settings with changes due to construction or transportation.

5 Structural 3-d Change Detection

The change detection algorithm described in the previous section utilizes 3-d
appearance in the PVM to detect 3-d changes in the model. When the illumi-
nation conditions of a new image collection are significantly different from that
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of an existing PVM, this algorithm can no longer be used. In such cases, the
entire scene might have changed in appearance and therefore, changes only in
geometry are considered. This section describes a method to effectively discard
the effects of illumination change between collections to detect changes only in
geometry.

In such cases, the appearance distributions stored in the PVM do not directly
relate to the new appearance of the scene. Therefore, the proposed algorithm dis-
cards these distributions and retains only the probabilistic 3-d geometry. Then,
the algorithm estimates the current appearance probability distributions in the
PVM from the input images. Once the illumination conditions in the PVMmatch
to that of the images, the change detection algorithm of Section 4 can be applied
to detect the changes in geometry.

First, assume that the 3-d geometry represented by the PVM is unchanged.
Under this assumption, the appearance of a surface voxel can be estimated from
the images it is visible in. Each image provides an intensity or color observation,
as well as a weight (see eq. 5) for each voxel in its field of view. An appearance
distribution is fit to the set of weighted samples. The weight prevents occluded
voxels from being trained with occluding surfaces’ color. Under the Lamber-
tian reflectance assumption, a Gaussian distribution is sufficient to explain the
intensities observed from different viewpoints.

In general, the scene will contain geometric changes (additions or removals)
that are currently not modeled in the PVM. The changes will cause the ap-
pearance models of some voxels to be trained with erroneous observations. This
situation can be analyzed in Figure 3, where the addition and removal of a blue
object are shown in Figures 3a and 3b respectively. In the case of addition, the
appearance model of the occluded voxel X1 is incorrectly trained with the object
color. When the object is removed voxel X2, which no longer contains a surface,
is trained with colors from different parts of the surface behind. Also, X1 is no
longer occluded in the middle camera but the pixel observation is still weighted
with an incorrect low visibility probability.

The challenge of appearance estimation is then to segregate in each voxel, the
actual color of the surface from the pixel observations caused by changes. Note
that this problem is very similar to background modeling in the image domain.
Inspired by Stauffer and Grimson’s approach [18], the appearance of each voxel

X1

(a)

X1

X2

(b)

Fig. 3. A simple scene to study the effects of appearance estimation when new object
(blue square) is added (a) or removed (b) from the scene
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is modeled using a mixture of Gaussians distribution. The training follows the
online EM based algorithm of [18]. The “background” mixture modes, which
correspond to the actual surface color, are chosen to be those with high mixture
weight and low variance. The rest of the modes, caused by changes in the scene,
can be discarded for the purposes of this algorithm.

This scheme relies on being able to classify the actual color modes of surfaces,
which depends on the scene and camera poses. In general, multiple observations
of the surface are needed to form “background” modes such that any other
mode created by the changes can be classified as otherwise. Consider voxel X1

in Figure 3a, which receives one incorrect and two correct observations, resulting
in a low variance mode for the actual color and a higher variance mode for the
occluding object color. Hence, the appearance of X1 can be correctly computed.

A demonstration of appearance estimation is provided in Figure 4 on a street
scene. A rendering of the initial PVM is presented in Figure 4a. Subsequent
images (see Figure 4b) were captured under significantly different illumination

(a) (b) (c)

(d) (e) (f)

Fig. 4. Demonstration of estimating the new appearance of the PVM from subsequent
images. (a) The rendering of the initial PVM. (b) One of eight subsequent images
captured under different illumination conditions than that of the PVM. Note the ad-
ditional object (speed camera) next to the tree. (c-e) The rendering of the PVM after
having discarded the old appearance model and estimated the new appearance with a
single image (c), two images (d) and eight images (e). (f) Rendering of the PVM after
3-d model update.
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and reveal the addition of a speed camera next to the tree. Note that this object
is not present in the initial PVM. Figure 4c displays the PVM after having dis-
carded the old appearance models and using a single image to estimate the new
appearance. The image pixels corresponding to the speed camera get projected
onto the wall since the speed camera’s 3-d geometry is not yet modeled in the
PVM. Figures 4d and 4e display renderings of the PVM after using two and eight
images respectively. As more images are used, the ghosting effects of the speed
camera fade away and the correct (current) color of the wall can be estimated.
Once the new appearance distributions are estimated, the change detection al-
gorithm of Section 4 can applied directly to detect changes in geometry, such as
the shape of the speed camera.

6 Experiments

The framework is evaluated on four different datasets. Each dataset consists
of imagery captured from multiple arbitrary viewpoints at each time instant.
All datasets except the last one contain multiple time steps to demonstrate
continuous operation of the 4-d reconstruction framework.

The images for the first three datasets were captured using a handheld cam-
era with 1 megapixel resolution. The images were calibrated with incremental
Structure-from-Motion using the VisualSFM software [19]. The initial set of
images were calibrated using the standard SfM pipeline. The resulting image
matches and point cloud are used to register subsequent images. In all three
datasets, this procedure achieved sub-pixel reprojection error. These datasets
are available at http://www.lems.brown.edu/~au/4d_datasets.

For the first two datasets, the illumination conditions vary slowly with respect
to the time step such that the appearance of the scene does not change much
between collections. Both datasets contain small-scale objects so that changes
can be easily produced, but were captured outdoors under natural illumination.
The 3-d change detection algorithm of Section 4 is employed here to reconstruct
the 4-d model. The final two datasets contain image sets captured under sig-
nificantly different illumination in real ground-level urban scenes and are used
to evaluate the framework with the structural change detection algorithm. The
choice of which change detection algorithm to use is decided manually for now.
The last dataset, which consists of two time steps, was taken from Taneja et al .
[8] where they used it to demonstrate their structural change detection approach.
This dataset is used to compare the proposed algorithm to this previous work.

The first dataset captures the step by step construction of a Lego Big Ben
tower. The scene initially contains the base plate and the tower is erected in
a total of six time steps. Each time step is modeled from roughly forty images
taken around the object in two circles. Renderings from the resulting 4-d model is
displayed in Figure 2. The proposed algorithm effectively captures the evolution
of the scene with high resolution.

Example 3-d change detection and model update results are displayed in Fig-
ure 1. It can be observed that the detections are correctly localized on the two

http://www.lems.brown.edu/~au/4d_datasets
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Fig. 5. Comparison of 3-d change detection results for the first dataset. Volume ren-
dering of changes predicted by the proposed approach (a) and the approach of inde-
pendently reconstructing PVMs (b). The ROC curve is displayed in (c).

new blocks added to the tower. The change detection results are compared to the
approach of reconstructing 3-d models for each time step in Figure 5. Separate
PVM models are reconstructed for T − 1 and T and the models are compared in
3-d, where the change probability of a cell is computed as the difference between
the corresponding surface probabilities at T − 1 and T . The resulting change
probabilities are displayed using volume rendering in Figure 5b, where the in-
consistencies between the models can be observed. The comparison is quantified
using an ROC curve shown in Figure 5c. The ground truth 3-d changes are delin-
eated manually and the detection threshold in eq. (2) is varied to construct the
curves. The significant inconsistency between individually reconstructed PVM
models results in a high number of false positives. This comparison was also
repeated using PMVS[20]+Poisson[21] reconstruction instead of the PVM ap-
proach. The resulting meshes were voxelized for 3-d binary change detection,
which yields a single point on the ROC curve. The PMVS+Poisson result is
similar to that of the PVM. These results demonstrate the inherent ill-posed
nature of inferring 3-d geometry from images. Small imaging differences (slight
variations in illumination and camera poses) produce larger 3-d model surface
variations which lead to dissimilarities in the reconstructions of unchanged re-
gions. These dissimilarities complicate distinguishing between actual changes in
the scene from false alarms. In contrast, the proposed algorithm is robust to
these imaging differences due to its probabilistic multi-view change reasoning.

This dataset was also used to assess the computation time of the proposed
algorithm with respect to reconstructing 3-d models from scratch. Both methods
were implemented based on the code made available in [17], which provides
an implementation of the 4-d representation optimized for computation in the
GPU. The change detection algorithms and the model update algorithm were
implemented to exploit this parallelism. All algorithms process images in an
online fashion. On average, reconstructing 3-d models from scratch takes roughly
7 minutes while the proposed pipeline takes 5 minutes. The computation time
is improved because during model update, only the changed pixels are used to
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(a) (b) (c) (d)

Fig. 6. Results from the model town dataset. (a) The initial time step. (b-d) Renderings
from frames 1, 3 and 5 respectively. The colors of pixels that do not observe a change
are converted to grey to highlight the dynamic objects. The column to the right of (b)
shows a close up view of the changes for that time step. Please zoom in the images to
appreciate the reconstruction quality.

cast rays to update the volume. Moreover, since many structures in the scene
are already reconstructed, the update algorithm converges much faster.

The second dataset contains toy cars moving on a lifelike miniature model
town. The initial time step consists of only the model town and is modeled from
roughly fifty images. The initial PVM is presented in Figure 6a. For each of the
rest of the time steps, only ten images are available. In the second time step, the
cars are placed on the model town. Then, in each subsequent frame, the cars are
moved gradually along the road. This dataset poses additional challenges due to
the limited number of views at each time step. Moreover, the scene contains many
complex structures, such as the buildings and trees, that frequently occlude the
cars. The resulting 4-d model is displayed from a novel viewpoint for three time
steps in Figures 6b-6d. The detected 3-d changes are used to grey out the pixels
that do not observe a change. It can be seen that the moving cars are accurately
detected and reconstructed.

Static structures in the model town, that were reconstructed accurately in the
initial time step, are detected as unchanging, which allows their reconstructions
to persist from the initial time step to future time steps. In contrast, the method
of reconstructing individual models at each time step attempts to reconstruct
the entire scene structure from the sparse set of images. Experiments show both
PVM and PMVS+Poisson fail to produce acceptable 3-d models in this setting.
Please see the supplementary document for the comparisons.

The third dataset was captured in an urban environment. The initial five
time steps involve the process of taking two trash cans outside and then remov-
ing them, one by one. The first time step was modeled from fifteen images and
the next four time steps from six images on average. The resulting 4-d model is
rendered in Figure 7, where the appearance and disappearance of the trash cans
are modeled accurately (T 2 − T 4). Next, the scene was imaged during a con-
struction several months later (T = 5), where no major structural changes are
present. The structural change detection algorithm correctly detects no signifi-
cant changes in the scene even though the illumination has changed drastically.
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Fig. 7. Renderings of the 4-d model of the third dataset

The rendering of the scene after the new appearance can be seen in the im-
age labeled T = 5. Note the presence of direct sunlight and shadows. Finally,
the next day (T = 6), images were taken under new illumination conditions,
when a construction cone was placed on the sidewalk. The geometry of the cone
is modeled accurately as seen in the figure. Similarly to the previous dataset,
the small number of images in some time steps does not allow independent 3-d
reconstruction of each time step.

The final dataset consist of two sets of eight images of an urban environment
with (see Figure 4b) and without a speed camera, as well as a mesh model of
the scene without it. Taneja et al . exploit this mesh model as a proxy to com-
pare pairs of images and integrate image inconsistencies in the volume [8]. Their
approach assumes spatial smoothness of changed regions and exploits the out-
put of object (vegetation, human, and car) detectors to suppress false positives.
In contrast, the proposed approach employs all image evidence (not just image
pairs) simultaneously in an entirely probabilistic representation of surface geom-
etry, appearance and change. Moreover, the proposed approach does not assume

(a) (b)

Fig. 8. (a) Change detection ROC curve for the fourth dataset. (b) The rendering of
the PVM after the reverse experiment of removing the object.
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a smoothness prior or assume such semantic cues are available. The comparison
is carried out using the ground truth change masks provided in the dataset. The
3-d changes are projected onto the ground truth masks to compute true and
false positive rates. The resulting ROC curve is displayed in Figure 8a, where
rest of the curves were taken from [8]. The proposed approach performs better
than Taneja et al .’s approach (green curve), which uses a spatial smoothness
prior to regularize the detections, as well as when their approach additionally
exploits semantic cues (blue curve). However, it can be observed that the pro-
posed approach does not reach a full detection rate. The missed detections occur
at the bottom of the speed camera, where the camera (changed region) borders
the pavement (original geometry). Taneja et al .’s approach is able to detect this
region due to the spatial smoothness term in the formulation.

Figure 4f displays the updated model which includes the speed camera. The
reverse experiment was also performed, where this updated model was used
together with the images excluding the object to detect the disappearance of
the object. The resulting model is presented in Figure 8b.

7 Conclusion

This paper presented a novel image-based 4-d reconstruction algorithm suited
for capturing the evolution of ever-changing urban or natural environments. The
proposed algorithm avoids rebuilding 3-d models of the scene at each time in-
stant through detection of changes and reconstructing only the changed surfaces.
Through accurate change detection and model update, the algorithm is able to
achieve continuous operation in challenging datasets. Experiments confirm that
this approach yields higher quality 4-d models, better change detection accuracy
and running time compared to the baseline approach of independent 3-d recon-
struction of each time step. The reconstruction algorithm is based on a novel 3-d
change detection algorithm which can detect changes in geometry and appear-
ance, or only in geometry in case of significant illumination difference between
collections. The algorithm performs favorably compared to previous works.

Future work includes city-wide large scale 4-d reconstruction, where various
sources of information can be exploited, e.g. aerial, ground level and satellite
imagery, cadastral 3-d models [1], as well as LIDAR. Community photo collec-
tions also provide a great source for 4-d modeling but bring many additional
challenges yet to be addressed [22].
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