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Abstract. Feature matching between pairs of images is a main bottle-
neck of structure-from-motion computation from large, unordered im-
age sets. We propose an efficient way to establish point correspondences
between all pairs of images in a dataset, without having to test each
individual pair. The principal message of this paper is that, given a suf-
ficiently large visual vocabulary, feature matching can be cast as image
indexing, subject to the additional constraints that index words must be
rare in the database and unique in each image. We demonstrate that
the proposed matching method, in conjunction with a standard inverted
file, is 2-3 orders of magnitude faster than conventional pairwise match-
ing. The proposed vocabulary-based matching has been integrated into
a standard SfM pipeline, and delivers results similar to those of the con-
ventional method in much less time.
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1 Introduction

Recent developments in large-scale structure-from-motion (SfM) from unordered
datasets make it possible to automatically construct 3D models from tens or
even hundreds of thousands of photos downloaded from Internet photo-sharing
sites [1,4]. The two most expensive subtasks in unordered SfM are (i) feature
matching between images and (ii) bundle adjustment. The efficiency required
to process such large image sets is achieved mainly by limiting those two tasks
to cleverly selected subsets of images, and massively parallelizing them. Specifi-
cally, even with parallelization it would be prohibitive (quadratic in the size of
the image set) to match all pairs of images, hence the set of candidate pairs to be
matched is first pruned to only those pairs for which it is likely that enough cor-
respondences can be found. There are two popular ways of reducing the number
of candidate image pairs: either image indexing via shared visual words [20,14],
or clustering with global image descriptors such as GIST [15] to select a subset
of “iconic” images. Both methods bring a significant speed-up, but also tend to
miss some image pairs that could in fact be matched, leading to unnecessary
fragmentation of the resulting models.

Here, we propose an efficient way to match all pairs of images in a database
without the need to exhaustively test each individual image pair. The method

D. Fleet et al. (Eds.): ECCV 2014, Part III, LNCS 8691, pp. 46–60, 2014.
c© Springer International Publishing Switzerland 2014



VocMatch: Efficient Multiview Correspondence for SfM 47

Fig. 1. Colosseum and Arch of Constantine, one of 13 models in the ROME dataset
computed with Bundler from feature point matches of the proposed VocMatch method.
Finding matches between all 13,049 images of Rome took ≈ 2 hours on a single CPU
core. Red pyramids denote camera poses, the 3D point cloud is visualized by small
dots colored from the respective images.

builds upon a simple observation: if we employ a visual vocabulary to quantize
the feature descriptors from an image, then similar features will be mapped to
the same visual word. As we increase the size of the vocabulary, fewer features
will map to each word, until eventually most visual words will only be found
once in a given image. We show that with a huge vocabulary the quantization
is fine enough to directly define the multi-view matching: many visual words
appear in multiple images, but are unique in every one of them, hence no sub-
sequent matching step is required to establish correspondence. By construction,
the approach directly finds a list of matches for the same point across multiple
images. Following [12] we call such a list a “track”, borrowing the term from
sequential SfM. The set of all discovered tracks can be fed into a standard SfM
pipeline to reconstruct camera poses and a sparse 3D reconstruction. Although
the clustering and export steps required for this integration are still quadratic
in the size of the image set, they only require simple operations and are orders
of magnitude faster than full matching.

We make the following contributions: (i) we show that, with a sufficiently large
vocabulary, exhaustive feature matching in large image sets can be cast as image
indexing, subject to the additional constraints that index words must be rare in
the database and unique in each image; (ii) we demonstrate that the proposed
matching method, in conjunction with a standard inverted file, yields a speed-up
by three orders of magnitude, and along the way delivers the clustering of the
image set into independent 3D models for free; (iii) we integrate the proposed
matching scheme into a standard SfM pipeline, and obtain results comparable
with the conventional approach in much less time, see Figure 1.
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2 Related Work

An essential prerequisite for any feature-based SfM method is to find tracks,
i.e. lists of corresponding feature points in different images that tentatively are
projections of the same 3D point. A standard incremental SfM pipeline like
Bundler [21] or VisualSFM [22], starts by detecting salient image points and
encoding them with a descriptor, typically SIFT [11]. For unordered datasets
no assumptions about the ordering of images can be made to constrain the
matching problem—unlike SfM from video, where feature points are tracked over
time [18], or SfM supported by external navigation sensors, where approximate
camera poses are known before matching [8]. Hence, tracks are generated by
finding two-view correspondences between all pairs of images and transitively
chaining them to multiview correspondences.

In a set of N images there are 1
2N(N − 1) different pairings, thus as the size

of the image set increases one quickly is faced with millions of image pairs. It
thus becomes necessary to prefilter the possible pairs with some proxy that is
much faster than feature matching. A popular method is to represent images
as tf-idf vectors (weighted bags-of-words [20]) and compute the scalar product
between those vectors [6,1]. That scalar product (i.e. the cosine between the two
high-dimensional tf-idf signatures) is often a good proxy for the the amount of
overlap between the images’ fields of view, and thus an indication how likely
it is to find corresponding scene points. Pairwise feature matching still needs
to be done, but only for the smaller set of image pairs that have similar tf-idf
signatures. Since the proxy is not perfect it can (and often does) happen that
some matchable image pairs are discarded, too. In some cases this will disconnect
image blocks that show the same scene and lead to unwanted fragmentation of
the 3D model.

Another group of methods aims at reducing the size of the image set, and as a
consequence also the set of possible pairs. Data from Internet photo-sharing sites
such as Flickr [23] often contain many similar views of the same scene. For the
purpose of reconstruction these are redundant (3D reconstruction can reliably
be performed using only one of them), therefore it has been proposed to cluster
images based on a cheap signature such as the GIST descriptor [15] and only
retain one best representative per cluster [9,4]. Alternatively, one can construct
a camera graph in which edges connect images with high tf-idf similarities, and
search for the minimum dominating set of that graph, i.e. the smallest subset
of images that adequately covers the entire camera network [7]. When pruning
images rather than image pairs there is an even greater risk of fragmentation,
because in most cases removing an image disconnects several possible pairs.

Our proposed method is orthogonal to the two approaches described above.
We neither reduce the number of images nor restrict the set of possible pairings,
but rather present a way to greatly speed up the multiview matching itself. In
particular, our method naturally fits with most works described above, since it
also starts with quantizing descriptors into visual words, which existing meth-
ods [6,1,7] do anyway. Given the quantization we then generate an inverted file,
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in time linear in the number N of images. The trick in our method is to make
the quantization so fine that the file entries directly correspond to feature tracks.

Our way of generating tracks can be seen as a limiting case of [19], where
conventional matching is performed, but only between those features that map
to the same visual word of a smaller vocabulary. Instead, we make sure that
every image contains at most one instance of every relevant word, such that the
matching becomes trivial.

Another view of the proposed method is as an extreme representative of a
class of image retrieval methods which, given a large image database, aim to
find images showing the same location [17,3]. These methods also index and
query the database with tf-idf vectors w.r.t. a large visual vocabulary, verify
the retrieved images using the spatial layout of feature points, and optionally
expand the retrieved set by resubmitting the results as further query images. The
verification step amounts to robustly fitting a geometric transformation which
aligns corresponding feature points. Our method could be seen as a retrieval
system that submits every image of the database as query so as to directly get
maximally expanded sets of spatially related images, and then runs full SfM on
these sets as geometric verification.

3 Method

The method builds on a huge, publicly available visual vocabulary that allows for
a fine quantization into 16 million visual words [12]. The vocabulary has 2 layers
(4,096×4,096 words) and was trained on a database of 11 billion SIFT descrip-
tors computed at Hessian-Affine interest points [16]. To use the vocabulary we
resample all images in the database to a common resolution, extract the same
features, and quantize them with two rounds of approximate nearest-neighbor
search (FLANN, [13]). Note that all these operations are linear in the number
of images and can be massively parallelized.

Next, a simple loop through all processed images generates an inverted file,
i.e. for each visual word a list of all images in which that word appears, see
Figure 2. For our purposes two additional conditions must be fulfilled to include
an image in the list: (i) the word must be unique (appear only once) in the
respective image; and (ii) the word must be rare (appear in ≤1% of all images
of the database). Condition (i) is used for technical reasons: it avoids having to
resolve ambiguous correspondences, which would mean to again revert to some
form of explicit matching. Due to the fine quantization the condition rejects
only a negligible fraction of feature points—in our experiments on average 2.5%
of the detected features in an image, which corresponds to what was observed
in [2]. Condition (ii) on the other hand improves both the quality and the ef-
ficiency of the method. The idea behind this condition is similar to the one
behind tf-idf weighting: words that appear rarely are more informative and/or
more discriminative than those which are present in too many images. If a word
appears in, say, 10% of all images then it is unlikely that the hundreds of image
points are projections of the same 3D feature, even if the word is unique in each



50 M. Havlena and K. Schindler

1 2 3 4 5 6 7

(a) SIFT quantization
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(b) inverted file generation

Fig. 2. Records of the inverted file correspond to feature tracks. Every record stores
all instances of a visual word that were found in the database. If each instance is
from a different image then this implies that their associated feature points are in
correspondence (assuming the quantization were perfect).

image. Moreover, for later steps one needs to restore matches between image
pairs.1 Since the number of pairwise matches is combinatorial in the length of
the inverted file records, limiting that length also improves efficiency. Again, the
large vocabulary size ensures that only few words are affected—in our exper-
iments ≈ 3,500 out of 16M words were eliminated because they appeared too
frequently, whereas more than 600,000 words did not form a track because they
were not detected in any of the database images. For simplicity, whenever we
talk about “visual words” or the “vocabulary” in the following, we only mean
those visual words which fulfill both conditions.

3.1 Clustering

Even though our method in principle generates matches between all images,
most crowd-sourced image collections naturally decompose into several smaller
clusters that are disconnected (i.e. there are no matches between different clus-
ters, or so few matches that there is no point in reconstructing them together).

1 The step back to two-view or three-view correspondences is necessary anyway, be-
cause incremental SfM pipelines work by chaining epipolar or trifocal geometries.
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(a) image clustering
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(b) export of matches

Fig. 3. Extracting clusters and pairwise matches from the inverted file. (a) Images
belong to a cluster if they share a sufficient number of unique visual words (i.e. matches)
with at least one of its members. (b) Finding two-view correspondences amounts to
enumerating, in each record of the inverted file, all 2-element subsets that fall in the
same cluster.

A sensible, and widely used strategy for SfM is to reconstruct each cluster sepa-
rately. The clustering into independent models can be done using only informa-
tion present in the inverted file, therefore the clusters fall out naturally in the
proposed vocabulary-based matching framework. It is easy to count the number
of putative matches for each pair of images (words detected in both images) and
record them in a symmetric N ×N matrix Q, by iterating through all records in
the inverted file. To find clusters that are only weakly connected to each other,
all one has to do is threshold the matrix with a minimum desired number of
matches Qmin. The resulting binary adjacency matrix B indicates which images
have enough matches to be part of the same cluster, and connected component
search on B yields the independent clusters. Note, if Qmin is set to the minimum
number of correspondences that the SfM pipeline demands for epipolar geom-
etry estimation, then no two-view connections are lost. In practice we set the
threshold slightly higher, Qmin = 50, since very weak connections in the cam-
era network are a potential source of drift and gross pose errors. Clusters with
< 100 images are discarded and not considered further. This weeds out small sets
of isolated or unrelated images, which are invariably present in crowd-sourced
datasets.
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The threshold Qmin would perhaps be sufficient for more controlled datasets.
On the contrary, for images downloaded from photo-sharing sites the number
of feature points can vary drastically, even if image sizes are normalized. To
counter this issue, we additionally compute the fraction of matching features:
given a pair of images i and j that have Fi, respectively Fj visual words, we
normalize the number of putative matches Qij (shared visual words) with the
maximum possible number of matches min(Fi, Fj). For images i and j to be
connected we then require not only the absolute count of putative matches Qij ,
but also the normalized count Qij/min(Fi, Fj) to be above a threshold (set to
1.5% in our experiments).

3.2 Integration with SfM

The purpose of our matching procedure is to utilize the correspondences in an
incremental SfM pipeline. Here we use Bundler [21], which provides a simple in-
terface to plug in our matcher. To feed the incremental relative pose estimation,
our tracks must be converted to pairwise matches, which we do by once more iter-
ating through the records of the inverted file, and exporting all possible two-view
combinations in a track to the list of matches for the corresponding image pairs.
Obviously, two-view matches must only be exported for image pairs that both
fall into the same cluster, see Figure 3. Note that some tracks may extend across
more than one cluster. In that case (and assuming that the clusters are correct),
clustering also helps to break down incorrectly merged tracks into correct ones,
see Online Resource 1. Following the default setting of Bundler, we only export
two-view matches if an image pair has at least 16 putative matches, otherwise
no relative pose is computed. Having generated all two-view correspondences
we run Bundler with the default settings, using the focal length specified in the
EXIF tag as approximation whenever there is one available.

As an obvious baseline we also run Bundler with conventional matching. Cor-
responding SIFT descriptors from two images are found in the standard way
with approximate nearest-neighbor (ANN) search in KD-trees. This two-view
matching is run exhaustively over all pairs of images within a cluster. Note
that pairwise matching only within clusters is already vastly more efficient than
exhaustively checking all pairs of images in the dataset. On the contrary, in
our method the complete set of tracks is inherently available, and independent
clusters only afford small savings during the export of two-view matches. Nev-
ertheless, the proposed vocabulary-based matching is three orders of magnitude
faster than full ANN matching on our datasets, whereas the quality of the ob-
tained 3D models is nearly on par. We could not test ANN matching without
the preceding clustering step, because it turned out to be intractable for our
datasets.

4 Experiments

The proposed method is validated using two datasets sourced from Flickr [23].
The first one, MERGED, was kindly provided by the authors of [5]. It consists
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Table 1. Time spent for different steps of the method. Note, SIFT extraction would
need to be performed by any feature-based SfM method, and feature quantization is
needed by any methods that involves bag-of-words signatures [6,1]. The actual time
needed to generate tracks is less than 1 hour for both datasets. Exporting two-view
matches takes about as long as track generation.

MERGED [5] ROME [10]

number of images 9,469 13,049

SIFT extraction [16] (6 threads) 8h 40min 11h 30min
feature quantization [13] 5h 20min 6h 50min
inverted file generation 35min 41min
counting number of shared VWs 10min 17min

number of discovered clusters 3 13

export of matches 30min 1h 15min

of 9,469 images from three different landmarks: roughly one third of them de-
picts the Fontana di Trevi in Rome, another third the Duomo in Milan, and
the last third the Old Town Square in Prague. All images are resampled to a
size of ≈ 3 Mpix for further processing, a standard practice for SfM with un-
controlled data. The second dataset, ROME, is very similar to the one of [10].
The small difference is caused by the fact that the authors only provide feature
descriptors on the project website. Since their interest point detector and SIFT
implementation are incompatible with the pretrained vocabulary we use, we had
to download the original images again from Flickr. A small number of images
were no longer available, which causes the difference. In total our version consists
of 13,049 images depicting several famous landmarks of Rome (Colosseum, St.
Peter’s Basilica, Fontana di Trevi, Pantheon, etc.). Again all images are resized
to ≈ 3 Mpix.

We point out an important difference between the two datasets. MERGED is
the raw result of searching Flickr with text tags, whereas ROME contains only
images that were connected to a 3D model in [10], i.e. for these images SfM
computation already succeeded once. The more realistic situation is the one
without pre-filtering, where the matching and clustering must also cope with
unusable and unrelated images, as in the MERGED set. Still we also test on the
ROME data, which it is more widely known and used, in order to better put our
method into context.

4.1 Feature Extraction and Clustering

As described in Section 3, we extract Hessian-affine interest points in all input
images, convert them to SIFT descriptors, and quantize them against the 2-layer
(4,096×4,096) visual vocabulary of [12] with ANN search using FLANN [13]. One
can exploit the hierarchical nature of the vocabulary to gain some efficiency, by
grouping the features from several images together in order to lower the number
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Table 2. Clustering results for MERGED. The dataset contains a significant number of
clutter images not directly related to the query. The recovered clusters cover the large
majority of relevant images. The wrongly included images in M3 are mostly caused by
similarly decorated Christmas trees that were present at different sites.

# img M1 M2 M3

DITREVI 3,110 1,973 0 1
DUOMO 3,104 0 580 11
OLDTOWN 3,255 0 0 1,402

Table 3. Clustering results for ROME. The dataset mainly contains related images
because they were connected to a 3D model in [10]. With few exceptions (one of which
is a mistake in the ground truth) the recovered clusters are clean. See text for details.

# img R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13

COLOSS. 1,664 1,392 0 0 0 0 0 0 0 0 0 0 0 0
DITREVI 1,518 0 1,381 0 0 0 0 0 0 0 0 0 0 0
ST.PET. 1,129 0 0 967 0 0 0 0 0 0 0 0 0 0
COL IN 1,089 0 0 0 774 0 0 0 0 0 0 0 0 0
ST.P IN 952 0 0 0 0 728 0 0 0 0 0 0 0 0
PANTH. 775 0 0 721 0 0 0 0 0 0 0 0 0 0
PAN IN 672 0 0 0 0 0 512 0 0 0 0 0 0 0
ALTPAT 604 0 0 498 0 0 0 0 0 0 0 0 0 0
ANGELO 304 0 0 0 0 0 0 251 0 0 0 0 0 0
SPAN DN 220 0 0 0 0 0 0 0 0 0 0 0 0 0
SPAN UP 212 0 0 0 0 0 0 0 136 0 0 0 0 0
ARCH 211 166 0 0 0 0 0 0 0 0 0 0 0 0
FORUM 208 0 0 0 0 0 0 0 0 138 0 0 0 0
SENAT 206 0 0 0 0 0 0 0 0 0 156 0 0 0
COLON. 206 0 0 0 0 0 0 0 0 0 0 158 0 0
SISTINE 195 0 0 0 0 0 0 0 0 0 0 0 108 0
ST.P TV 182 0 0 0 0 0 0 0 0 0 0 0 0 152
other 2,702 0 0 225 0 0 0 0 0 0 0 0 0 0

of FLANN calls in the second layer. Note that in the following only the visual
word index is needed for our method, so in principle one need not store the
original descriptors after they have been quantized.

Table 1 shows computation times measured on a standard desktop machine
(Intel(R) Core(TM) i7-3930K with 24 GB of RAM) running 64bit Linux. Apart
from SIFT extraction running in 6 threads, all steps are currently single-threaded
and implemented in MATLAB. In particular, due to format and implementation
details of the pretrained vocabulary, an older, single-threaded version of FLANN
had to be used for the quantization, so our timings are a conservative upper
bound for the potential of the method.
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(a) MERGED (b) ROME

Fig. 4. (a) The only inaccuracies in the clustering of MERGED. (b) The sole failure
of vocabulary-based clustering for ROME. See text for details.

After generating the inverted file the absolute and relative numbers of shared
visual words are counted for all pairs of images. Note that this step is only
needed for incremental SfM—if approximate pose information is available from
external sources, then one might be able to filter outliers based on the full tracks
and directly proceed to bundle adjustment. Constructing the adjacency graph
and searching connected components takes less than 10 seconds. The resulting
clusters nicely match the structure of the data, see Tables 2 and 3. For MERGED
the three ground truth clusters are given explicitly, because the images were
found with three different queries. We point out that the “ground truth” clusters
each contain a significant amount of unrelated images, so one should not expect
the estimated clusters to include all images. The clusters are very clean: we
verified by visual inspection that the overwhelming majority of unrelated images
was correctly rejected and very few unrelated images are contained in any of the
three retained clusters. Regarding confusions between clusters, only 12 images
are assigned to the wrong cluster. None of these mistakes are specific to the
proposed vocabulary-based matching: the 11 images from DUOMO are due to
similarly decorated Christmas trees present at both locations. The 1 failure image
from DITREVI is due to a dotted dress, which also matches the Christmas trees,
see Figure 4a. All 12 images are later removed during SfM computation. The
reason for the low number of images in M2 is a technical issue: the relevant
DUOMO images are actually made up of three only weakly connected sub-
clusters for the front facade, the inside and the roof. These are indeed recovered
separately, but only the one for the front facade is large enough to be exported
(≥ 100 images).

For ROME we consider the division into individual 3D models (which is pro-
vided together with the data) as the ground truth clustering. Also in this case
the recovered clusters are clean w.r.t. the ground truth grouping, with two ex-
ceptions. In R1 our clustering corrects the ground truth: the Constantine ARCH
and the outside of COLOSSEUM are located near each other and can in fact
be reconstructed into a connected 3D model. R3 is an actual failure case, where
multiple sites (the front of St. Peter’s Basilica, the front of the Pantheon, and
the Altare della Patria) are mixed, because the images are dominated by similar
column structures, see Figure 4b. Nevertheless, all the sub-models could be re-
constructed. The recovered cluster for SPANISH STEPS DOWN had less than
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(a) Duomo Milano (b) Fontana di Trevi

(c) Old Town Square Prague

Fig. 5. SfM results for the MERGED dataset (matches created by the proposed
method). Estimated camera poses are denoted by red pyramids.

100 images and thus was removed. Since for the ROME dataset clean ground
truth clusters without unrelated clutter are given we could also check the com-
pleteness of our clustering. On average, > 77% of all images were found for a
given landmark.

Overall, the quality of clustering is more than satisfactory, considering the
fact that it was performed without any geometric verification.

4.2 Export of Matches and 3D Reconstruction

After exporting the matches for each cluster, Bundler was called with the de-
fault settings to perform sparse 3D reconstruction, see Figures 5, 1, and 6. In
most cases, all or almost all relevant images from a cluster could be oriented.
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(a) Pantheon (b) St. Peter’s Basilica

(c) Colosseum inside (d) St. Peter’s Basilica inside

(e) Altare della Patria (f) Castel Sant’Angelo

Fig. 6. SfM results for the ROME dataset (matches created by the proposed method).
Estimated camera poses are denoted by red pyramids.

This demonstrates that for practically all images the inlier fraction of the pro-
posed vocabulary-based matching is high enough to successfully RANSAC cor-
rect epipolar geometries. The worst failure is that for PANTHEON 20% of the
images, which show the inside of the building, could not be connected.

As baseline we also perform standard pairwise ANN matching (Bundler de-
fault) in each image cluster. As expected, the running time is orders of mag-
nitude longer, even if the matching is parallelized in 24 threads, see Table 4.
Note that state-of-the-art CUDA-enabled SiftGPU matching from VisualSFM
for a slightly smaller number of SIFT features was not much faster than the
multi-threaded CPU matching either, the proposed method—export of matches
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Table 4. Time needed for exhaustive pairwise matching within the clusters (in hours).
Three methods are compared: multi-threaded ANN CPU matching, SiftGPU (CUDA-
enabled GPU matching), and the proposed method. For the first two methods matching
all image pairs without prior clustering would take orders of magnitude longer.

cluster # img # pair 24× CPU
∑

CPU time 448× GPU proposed

M1 1,973 1,945,378 35:00 822:40 11:10
M2 580 167,910 3:30 75:50 0:55
M3 1,414 998,991 15:00 341:40 5:40

MERGED total time 53h 30min 1,240h 10min 17h 45min 30min
speed-up 107× 2,480× 35×

R1 1,558 1,212,903 17:25 404:00 7:00
R2 1,381 952,890 13:35 314:20 5:30
R3 2,411 2,905,255 30:25 716:30 16:45
R4 774 299,151 6:06 138:50 1:45
R5 728 264,628 3:20 76:10 1:30
R6 512 130,816 0:55 20:15 0:45
R7 251 31,375 0:27 8:30 0:10
R8 136 9,180 0:11 3:20 0:03
R9 138 9,453 0:14 4:00 0:03
R10 156 12,090 0:10 2:50 0:04
R11 158 12,403 0:27 8:15 0:04
R12 108 5,778 0:05 1:30 0:02
R13 152 11,476 0:20 6:30 0:04

ROME total time 73h 40min 1,705h 33h 45min 1h 15min
speed-up 59× 1,364× 27×

from the inverted file—is still roughly 30× faster. Comparing the quality of the
reconstructed models we note the following:

(i) Practically the same number of correct camera poses are reconstructed
with both methods. For most applications this is the most important quality
criterion. In localization/navigation-type applications the camera pose is the
immediate goal. If the goal is 3D object modeling then SfM also serves mainly
to recover the camera poses, since the final model is constructed in a subsequent
step with some form of dense matching or 3D surface reconstruction.

(ii) Full pairwise matching on average generates about twice as many matches
as the vocabulary-based method, whereas both yield approximately the same
number of 3D structure points. It seems that vocabulary-based matching is in
fact stricter and cannot always find the complete track for an object point.
This is in all likelihood also the reason why Bundler took significantly longer to
construct the 3D models from conventional pairwise matches.

(iii) The vocabulary-based point clouds are a bit noisier, which means that
the correspondences detected with the proposed method are either not quite as
accurate, or that they contain more epipolar-consistent miss-matches. The lower
accuracy is somewhat expected, since shorter tracks mean fewer rays per point
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and thus higher uncertainty of the triangulation. While the issue still needs to
be investigated in more detail, we believe that also miss-matches play a role:
in Internet photo collections many images are typically taken from the same
height with similar viewing direction, e.g. viewing the front side of a monument
from street level. Under that viewing geometry repetitive or diffuse appearance
along the (horizontal) epipolar lines can lead to miss-matches. Such matches
will be rejected by the 2nd-best ratio test in standard SIFT matching, but the
vocabulary-based approach includes no such test.

5 Conclusions

We have shown that multiview correspondence can be efficiently established even
for large datasets, if one replaces pairwise image feature matching with image
indexing, using only visual words that appear at most once in every image.
What makes the proposed method practical is the realization that today’s visual
vocabularies are large enough to ensure that, even in datasets > 10,000 images,
the overwhelming majority of all words are in fact unique in all images they
appear in.

Formally speaking, the steps required for feature track generation with the
proposed VocMatch method, namely (i) interest point extraction, (ii) feature
quantization against a fixed vocabulary, and (iii) inverted file generation are all
linear in the size of the image set. The additional steps needed to integrate the
method with incremental SfM, namely (iv) clustering based on match counts
and (v) export of two-view matches are still quadratic. But they involve only
very simple operations and in practice are orders of magnitude faster than full
ANN matching.

Regarding scalability of the proposed approach, for 100,000 images with 10,000
features per image, the inverted file would take 6 GB of RAM (6 bytes per fea-
ture) and the clustering matrix Q would take 10 GB (2 bytes per image pair).
Extrapolating the measured times, inverted file generation would take 6 hours
(linear in the total number of features) and generation of Q 16 hours (quadratic
in the track length) using a single thread, which are still very competitive times.
For 1,000,000 images the method is currently not feasible, storing matrix Q in
RAM would be impossible (1 TB).

An open question is when a vocabulary becomes too large to be useful for
matching. It seems clear that a too fine quantization will cause tracks to be-
come fragmented, or lost altogether. We did not experience problems in our
experiments, but note that the critical size is also dependent on the dataset:
image sets with few interest points or weak connectivity are more vulnerable to
a loss of correspondences. To counter the problem it might be possible to exploit
the similarity between different visual words, either by direct comparison or by
analyzing the descriptors they were trained on, and augment the vocabulary
with neighborhood information. This could potentially allow one to also match
descriptors if they do not quantize to the exact same visual word.
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