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Abstract. We present a method that utilizes bracket sequence images
to automatically extract the alpha matte of a motion-blurred object. This
method makes use of a sharp, short-exposure snapshot in the sequence
to help overcome major challenges in this task, including blurred object
detection, spatially-variant object motion, and foreground/background
color ambiguity. A key component of our matte estimation is the infer-
ence of approximate, spatially-varying motion of the blurred object with
the help of the sharp snapshot, as this motion information provides im-
portant constraints on the aforementioned issues. In addition, we take
advantage of other relationships that exist between a pair of consecutive
short-exposure and long-exposure frames, such as common background
areas and consistencies in foreground appearance. With this technique,
we demonstrate successful alpha matting results on a variety of moving
objects including non-rigid human motion.
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1 Introduction

Matting aims to extract a foreground object from an image while accounting for
fractional opacity values of foreground pixels. In most previous works on matting,
the foreground object is assumed to be static, and fractional opacity arises from
partial pixel coverage by the object, such that the pixel color is formed from
a combination of foreground and background colors. A common example is a
strand of hair, which is often too thin to fully occupy pixels, so that the pixels it
appears in are shared with the background behind it. Another source of fractional
opacity is object motion, in which a pixel is occupied by the foreground object
for only part of the camera exposure period, and occupied by the background for
the rest of the snapshot. We deal in this paper with matting of motion-blurred
objects, which is a needed step in compositing such objects into other images,
and for deblurring of moving objects as well. Important practical applications of
matting motion-blurred objects also include video editing and post-production.

While matting techniques designed for static foregrounds can be applied to
motion-blurred objects, this can lead to inadequate results as observed in previ-
ous works on motion deblurring [9,16]. This problem can be attributed in part
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(a) Sharp image (b) Blurry image (c) foreground (d) foreground

Fig. 1. (a) and (b) are taken sequentially using the auto-bracket mode of a digital
camera. (c) is the binary segmentation of the sharp foreground in (a). (d) is the alpha
matte extracted by our method for the motion-blurred object in (b). The matte is
computed automatically without any user guidance.

to blurred colors in the foreground region and broad areas of fractional opacity
along the motion direction. Recently, a few matting methods have been proposed
to specifically deal with motion-blurred objects. To help solve this problem, some
of these methods require some form of external input, such as a user-supplied
trimap indicating which regions are fully foreground and which are fully back-
ground [13], user-drawn scribbles that indicate motion paths of the foreground
[22], or known blur kernels [10]. Obtaining this information, however, can itself
be challenging or require much user assistance. Alternatively, other methods em-
ploy special hardware that obtains motion information to aid in motion-blurred
object matting [14,20,21].

In this work, we propose a fully automatic technique for alpha matting of
motion-blurred objects that does not require special equipment. We instead uti-
lize bracket sequence imaging, a standard function in digital cameras where
photos are taken consecutively at different exposure levels. Exposure bracketing
yields images with blurred object motion at longer exposures, and also a short-
exposure image in which moving foreground objects typically appear sharp. From
computed blur-aware correspondences between a short and a long exposure im-
age, as well as consistencies in their foreground and background, we derive ap-
proximate information on both the trimap for the blurred object and spatially
variant blur kernels over the foreground region. Constraints formulated from
this information are incorporated into a conventional alpha matting framework
to more accurately extract the alpha mattes of motion-blurred objects.

Assumptions made in this work are that blurs from hand shake are negligible
in the images, that the scale of the moving object changes little between the
consecutively captured images, that the background is static, and that moving
objects are opaque and contain no saturated pixels. With bracketed images cap-
tured under these conditions, our method is shown to generate alpha mattes
comparable to those estimated with the help of considerable user interaction.
In addition, reasonable performance is obtained in challenging cases such as
non-rigid human motion and highly textured backgrounds, as demonstrated in
Figure 1.
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2 Related Work

A comprehensive survey of general matting techniques was presented in [24].
Here we review matting algorithms most closely related to our method, as well
as relevant work on motion deblurring.

Motion-Blurred Object Matting. A few matting techniques explicitly account
for the motion blur of a foreground object. In [13], a solution is computed by
adding a regularization constraint to existing matting formulations [12,23] that
suppresses the matte gradient along the local motion direction. Local motions
are estimated from local gradient statistics, based on an assumption that image
patches without motion blur have a uniform distribution of image gradients.
The method does not detect blurred regions but instead requires a trimap to
be provided by the user. By making use of a short-exposure image, our tech-
nique avoids the need for a user-supplied trimap, and estimates motion blur
information without strong assumptions on local gradient statistics.

In [10], a known blur kernel is incorporated into closed-form matting [12] by
modeling the alpha matte as the convolution of a foreground mask and the blur
kernel. A trimap also needs to be provided by the user. Our work by contrast
infers trimap and blur kernel information from a companion bracket sequence
image, and also addresses spatially-variant blur for which blur kernels are difficult
to obtain by existing automatic deblurring methods.

A different approach to this problem is to employ a hardware solution for
recovering object motion. In [14,20,21], hybrid camera systems are used for this
purpose, where one of the cameras captures multiple, unblurred, high-speed im-
ages of the scene while at the same time the other camera records a longer-
exposure image with object motion blur. Optical flow in the high-speed sequence
is used to recover motion trajectories in the longer-exposure image.

A coded exposure camera is utilized in [22] together with scribbles drawn by
the user along motion paths of the foreground object. From the motion paths
and coded-exposure image, blur kernels are estimated and then used with a
sparsity constraint to deblur the matte obtained from closed-form matting [12].
This result is then re-blurred to obtain the alpha matte. Unlike coded exposure
imaging, the exposure bracketing used in our work is widely available on digital
cameras and does not introduce unsightly discontinuities into the motion blur.

Image Pairs. Previous techniques have utilized image pairs for unsupervised
extraction of mattes. In [18], an image with flash and another without flash are
taken, and a matte is computed based on the property that only the foreground
is significantly brightened by flash, while the background is not if it is suffi-
ciently distant. As this method requires accurate pixel alignment between the
two images, the scene is assumed to be static. This approach was later extended
to handle some misalignment due to hand shake and scene motion through an
analysis of color histograms [19]. This extension deals with foreground segmenta-
tion instead of matting, which would be difficult to handle in this color histogram
approach because of the changing color blends of moving foreground points with
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fractional opacity. Like exposure bracketing, flash/no-flash image pairs can be
captured by ordinary cameras, but a flash has a limited effect in daylight settings
and for distant foreground objects.

In [25], a method is presented for co-matting, which is the joint matting of
two images with the same foreground, different backgrounds, and similar matte
properties. This method for static scenes would be difficult to extend to motion-
blurred objects since the algorithm requires foreground alignment and assumes
consistency between the mattes of the two images.

Similar to our work, a long-exposure and short-exposure image pair is cap-
tured as input in [26], which uses this data to estimate a spatially-invariant blur
kernel to deblur the long-exposure image. The method deals with camera shake
rather than object motion, and focuses mainly on using the short-exposure image
to reduce deconvolution artifacts. The blur kernel is estimated using large-scale,
sharp image features in the short-exposure image, which may not be sufficiently
dense to recover spatially-varying blur.

A blurry photo is deblurred with the help of a sharp reference example in [8],
which alternately computes locally aggregated correspondences between the two
images, estimates blur kernels, and solves for the sharp image. In contrast to
their work on deblurring of camera shake, ours deals with matting of motion-
blurred objects, for which we compute globally optimized dense correspondences
that cover the boundary of the object. Such an approach often yields a denser
set of correspondences needed in our work to constrain the alpha matte.

Motion Deblurring. Given the alpha matte of a blurred object, the method in
[4] estimates local motions of the object using a motion blur constraint in which
the image gradient at a blurred point is equal to the difference between two non-
blurred points along a linear blur direction. With the help of a short-exposure
image, our method does not require a greatly simplified motion blur model.

Motion-blurred regions have been segmented from a single image based on
their differences in intensity gradient distributions from the background [11] and
additionally using a prior model on the local frequency components of sharp im-
ages [2]. These methods compute a hard segmentation of motion-blurred objects
rather than a blur matte, and they obtain promising results for this challenging
problem. In our work, we take advantage of an image that contains the fore-
ground object without blur to more robustly detect and matte motion-blurred
foreground objects.

3 Proposed Method

In this section, we present the proposed method for automatic alpha matting of
a motion-blurred object in a bracket sequence image pair. Our approach consists
of four main steps: (1) estimating a binary segmentation through integrating a
foreground/background color model and a background probability model com-
puted from sparse correspondences between the two images; (2) establishing
dense correspondence between the moving object in both images while consid-
ering potential motion blur; (3) estimating spatially varying blur kernels for the
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motion-blurred foreground object in the longer-exposure image with the help
of the corresponding sharp object in the shorter-exposure image; (4) extract-
ing an alpha matte of the motion-blurred object through an optimization that
accounts for the binary segmentation, dense correspondences, and motion blur
information. To improve the estimation of dense correspondences and blur ker-
nels, the second and third steps are iterated until there is convergence in the
correspondences. Each of the four steps is presented in the following.

3.1 Binary Segmentation

We start by computing a binary segmentation of the moving object in both of
the images. After matching the exposure levels of the two images via the relative
response function [5], the appearance of the background should be similar, as
the two images are captured in rapid succession. We utilize this as a cue for
segmenting the moving object.

We formulate foreground/background segmentation as a binary labeling prob-
lem. Given the two images, where the short-exposure image with a sharp fore-
ground is denoted as Isharp and the longer-exposure image as Iblurry, we define
an energy function measuring the quality of binary segmentation of each image
as

E(x) =
∑

i∈P
Di(xi) +

∑

(i,j)∈N
Vij(xi, xj), (1)

where xi is the binary label of pixel i, P denotes the set of all pixels, N denotes
pairs of adjacent pixels, Di is a data term for i, and Vij is a pairwise term defined
between two adjacent pixels i and j.

Data Term: The data term for each pixel consists of two parts:

Di(xi) = γDb
i (xi) +Dc

i (xi), (2)

where Db
i (xi) is the background likelihood term, Dc

i (xi) is the foreground/
background color likelihood term, and γ is a weighting parameter set to 5 in
our implementation. To compute the background likelihood term, we first ob-
tain sparse correspondences between the two images using the SURF matching
algorithm. The matches should primarily be of background points, since the col-
ors and gradients of the foreground object become distorted by motion blur in
Iblurry. The matched background points should be similar in appearance, and
we model this similarity in terms of the intensity difference of pixel i between
Isharp and Iblurry:

�Ii =
h(Isharpi )− h(Iblurryi )

h(Isharpi ) + h(Iblurryi )
, (3)

where h(Ii) denotes the exposure normalized pixel value of Ii. Similar to [19],
we model the distribution of these background pixel differences as a Gaussian
N(�Ii|μ, σ2) with mean μ and standard deviation σ.
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(a) Sharp/blurry 
image pair

(b) Background prob. (c) Color likelihood (d) Binary segmentation

Fig. 2. Binary segmentation results of a short/long exposure image pair. (a) input
image pair, (b) background probability, (c) foreground color likelihood, and (d) binary
segmentation.

Then, we can define the probability fb(i) of a pixel i belonging to the back-
ground as

fb(i) = exp(−‖�Ii − μ‖/σ). (4)

Note that fb(i) lies within the range of [0,1]. If the difference of a certain pixel
is far from μ, then we assign low background probability to that pixel. This
probability is computed for every image pixel, using correspondences obtained
by registering the two images via a homography computed from the sparse SURF
matches. Figure 2 shows an example of the calculated background probability.

Finally, the background likelihood term Db
i (xi) is defined as

Db
i (xi) =

{
2max{fb(i), 0.5} − 1 if xi = 1

0 if xi = 0
. (5)

This energy term assigns a penalty if the pixel i is labeled as foreground (= 1)
and the background probability fb(i) is higher than 0.5. From this, the labels
are determined using only the color and regularization terms when fb(i) < 0.5.

The foreground/background color likelihood term Dc
i (xi) is calculated using

the negative log likelihood of Gaussian mixture models, which are constructed
from all pixels with fb(i) > 0.6 and fb(i) < 0.4, respectively.

Pairwise Term: The pairwise term is defined as the usual contrast dependent
energy Vij(xi, xj) = |xi − xj |exp(−β||Ii − Ij ||2), with β is set to the inverse of
the standard deviation of I.

Binary graph cut [1] is applied to minimize the objective function in Eq. (1).
This is a standard formulation for using motion information to extract a fore-
ground object [3,17].

The results of binary segmentation are shown for an example image pair in
Figure 2. Since the boundary of the motion-blurred object is less distinct and has
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inconsistent color likelihoods, the binary segmentation result is not as accurate
for the blurred foreground as it is for the sharp object. It nevertheless provides
a useful cue for matting, and we use it in conjunction with other cues soon to
be described.

3.2 Blur-Aware Dense Correspondence Estimation

After binary segmentation of the foreground object in both images, we establish
a dense correspondence between the two segmented regions. The blurred/sharp
object regions are represented as graphs G and G′, respectively, whose nodes
represent image patches defined by a coarse image grid in each segment. For the
patch Ip of node p in G, we denote its associated local motion blur kernel as bp.
Similar to [6], we represent correspondences between G and G′ as displacements
within the graph grid, such that for a node p in G matched to a node p′ in G′,
its correspondence is represented as displacement dp, where Ip′ = Ip+dp .

We define an energy function that measures the quality of displacements as

E(d) =

N∑

p

Dp(dp) +
∑

p,q∈E
Ppq(dp, dq), (6)

where D and P denote unary and binary potentials, N is the number of nodes,
and E is the set of neighboring node pairs. For computational considerations, we
set a maximum displacement of K in each direction, which leads to a total of
K2 possible displacements dp for each node n. We empirically set K to 30 and
the patch size to 50.

The unary term Dp is defined as

Dp(dp) = ||A(p+dp) ∗ bp − Ibp||2, (7)

whereA(p+dp) denotes the patch in the sharp object graph G′ with a displacement
dp from the patch of node p in G. Note that this term accounts for the motion
blur bp of p’s patch in measuring this match cost. The pairwise term is used to
enforce spatial consistency, and is formulated as done in [6]:

Ppq(dp, dq) = P s
pq(dp, dq) + P c

pq(dp, dq). (8)

The first term penalizes the L1 distance between two neighboring displacements:

P s
pq(dp, dq) = −λ||dp − dq||1, (9)

where λ is a positive constant set to 5 in our implementation. The second term
penalizes instances where two neighboring displacements indicate a switch in the
order of the two patches:

P c
pq(dp, dq) =

⎧
⎨

⎩

−μ[dxq − dxp]+ if xq = xp + 1 and yq = yp
−μ[dyq − dyp]+ if yq = yp + 1 and xq = xp

0 otherwise
, (10)



132 H. Myeong, S. Lin, and K.M. Lee

(a) Sharp matte (b) Dense correspondence (c) Transferred matte

Fig. 3. Dense correspondence of patches and the transferred matte, which is trans-
formed from the binary segmentation of the sharp object. (a) Binary segmentation
of the sharp foreground object. (b) Blur-aware dense correspondence. (c) Transferred
matte from the sharp object to the blurry object.

where μ is a positive constant set to 10 in our implementation, (xp, yp) are the
grid coordinates of p’s patch, and [z]+ = max{0, z}. Equation (6) is optimized
using the curve-expansion method for solving dense graph matching problems.

This optimization can be time-consuming since the unary term in Equation (7)
requires K2 convolutions per patch in the motion-blurred object region. To re-
duce computation, instead of estimating correspondences for the blurred region
patches, we first solve for correspondences from the sharp region patches, which
need only one convolution to be computed per patch. Negative values of the
computed displacements are then used as initial displacement estimates for the
blurred region patches, and the displacement range is reduced from K ×K to a
small 5× 5 neighborhood around the initial displacement estimate.

The first time that dense correspondence is computed, no blur kernel infor-
mation is available, so we simply use uniform kernels as the initial kernels. After
estimating blur kernels in the next step, this step is repeated with the updated
kernels.

An example of dense patch correspondence is shown in Figure 3(b), where
the red lines link corresponding patches in the two regions. With this correspon-
dence, the binary segmentation of the sharp object (a) can be transformed into a
transferred matte of the blurred object (c), by mapping the sharp patches using
their corresponding displacements and applying the associated local motion blur
kernels. We utilize this transferred matte as another cue in computing the final
matte solution.

3.3 Spatially Varying Blur Kernel Estimation

For each blurred patch Ibp, we now have its corresponding sharp reference patch

A(p+d̂p)
. With each patch pair, the local blur kernel b̂p for Ibp is solved as follows:

b̂p = argminbp≥0||A(p+d̂p)
∗ bp − Ibp||2, (11)

where d̂p denotes the optimized displacement vector from the dense correspon-

dence estimation in Section 3.2. After obtaining the blur kernels b̂p for all the

patches, we replace each local blur kernel b̂p by a weighted average of computed



Alpha Matting of Motion-Blurred Objects in Bracket Sequence Images 133

blur kernels from neighboring patches to impose local smoothness among the blur
kernels. The blur kernel estimation of Equation (11) and weighted averaging of
neighboring blur kernels are iteratively repeated ten times. In our implementa-
tion, we used a kernel size of 31×31. In the iterative process, a weighted average
of neighboring kernels is computed using equal weights among the ten nearest
neighbor patches. We empirically found the iterative method to converge. The
kernels of nearby points on a moving object tend to be similar, and we use this
averaging as an easy way to apply this constraint. This regularization could al-
ternatively be imposed in the objective, but would result in a large and complex
optimization problem.

The converged blur kernels are used to re-estimate the dense correspondence
in the previous step. The correspondence and blur kernel steps are iterated until
the correspondences do not change.

3.4 Motion-Blurred Matte Estimation

Conventional image matting algorithms need user guidance to estimate accurate
mattes. In our formulation, instead of user guidance we use the binary segmenta-
tion, blur-aware dense correspondence, and motion blur kernels computed in the
previous steps to automatically guide our matte extraction of motion-blurred ob-
jects. Our method is built upon closed-form matting [12], whose energy function
is defined as

α = argminαTLα+ λ(α− α̃)TDS(α− α̃) (12)

where α̃ is a vector of specified alpha values (e.g., foreground and background
pixels in a trimap); DS is a diagonal matrix whose diagonal elements are set to
1 for pixels with alpha value constraints and set to 0 for unconstrained pixels; λ
is a weight typically set to a large value; and L is the matting Laplacian matrix,
whose (i, j)-th element is

∑

k|(i,j)∈wk

(δij − 1

|wk| (1 + (Ii − μk)(
∑

k

+
ε

wk
I3)

−1(Ij − μk))) (13)

where
∑

k is a 3 × 3 covariance matrix, μk is a 3 × 1 mean vector of the colors
in a window wk, and I3 is the 3× 3 identity matrix.

The binary segmentation provides information on a potential trimap for the
motion-blurred object, by using morphological operations on the binary segmen-
tation to determine the unknown region of the trimap. Our morphological kernel
is set to half the blur kernel size. We specifically use the binary segmentation
to obtain a partial trimap that only indicates definite foreground pixels through
erosion of the segment. However, as shown in Figure 2, a binary segmentation
may fail to accurately capture the boundary of the motion blurred object. The
blur-aware dense correspondences and motion blur kernels can also provide a
constraint on alpha values in the form of the transferred matte, computed by
mapping the patches of the sharp region to the blurred region via the correspon-
dences and then applying the associated blurs to the patches to obtain an alpha
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(a) Blurred object (b) Binary segmentation (c) Our method
without transferred matte 

and blur regularization

(d) Our method
without blur regularization

(e) Our method

Fig. 4. Effect of each matting component on the alpha matte result. (a) Original image.
(b) Binary segmentation. (c) Alpha matting without the transferred matte and motion
blur regularization. (d) Alpha matting without motion blur regularization. (e) Proposed
method.

map. In addition, the alpha gradients can be constrained as in [13] according
to the local motion direction and strength indicated by the blur kernels. Incor-
porating all of this information into closed-form matting gives us the following
energy function:

α = argminαTLα+λ(α−α̃)TDS(α−α̃)+μ(α−α̂)TDT (α−α̂)+
∑

d

wd∇dα
T∇dα

(14)
where the second, third and fourth terms account for the partial trimap obtained
from the binary segmentation, the transferred matte α̂ from dense correspon-
dences and blur kernels, and the alpha gradient constraints, respectively. Denot-
ing the partial trimap constraints from the binary segmentation as DS and α̃ as
in Equation (12), we define DT as a diagonal matrix whose diagonal elements
are the intersection of DS and all pixels with α̂ > 0.99. ∇dα is the α-gradient
in direction d, and wd is the weight of regularization for direction d, where d
is sampled in the eight directions of the eight-connected pixel neighbors. The
motion strength wd is obtained by convolving the local blur kernel with a linear
motion in direction d.

The impact of each of these components on the alpha matting result is illus-
trated in Figure 4, which shows the original binary segmentation (b), the result
using only the partial trimap computed from the binary segmentation (c), the
result using the partial trimap and transferred matte (d), and the result using
all the components (e). Improvements are obtained by adding each component
into the optimization.

4 Results

We evaluated our method on both synthetic and real bracket sequence pairs.
The real bracket sequences were acquired using a Panasonic DMC-LX5 camera,
and the synthetic pairs were produced using imagery from this camera as well.
We determined the parameters of our algorithm empirically and fixed all of them
throughout the experiments.
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Fig. 5. Alpha matting results on synthetic data. (a) Synthesized image with motion-
blurred object. (b) Motion matting without matte transfer and motion blur regulariza-
tion. (c) Motion matting without motion blur regularization. (d) The proposed motion
matting method combining all cues. (e) Closed-form matting with user strokes. (f)
Ground truth alpha matte.

Fig. 6. Quantitative error comparisons. Doll, Child and Book sequences correspond to
the first, second and third rows of Figure 5.

4.1 Synthetic Images

We first validate our method on synthetic data, from which ground truth is avail-
able for quantitative evaluation. To generate a bracket pair, we first capture two
sharp images with the same short-exposure setting: one of a static foreground
object in front of a background, and another of just the background. The first
image is used as the short-exposure image in the bracket pair. We also apply
GrabCut [15] with user strokes to it to extract the foreground object from the
background, and apply a known motion blur to this foreground object region.
The motion-blurred object is then composited on the second image using the cor-
responding alpha matte, and a gain is added to the resulting image to synthesize
the long-exposure image.

The performance of our proposed approach is exhibited with three such image
pairs in Figure 5. To show the contribution of each term in motion-blurred object
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matting, we remove the transferred matte term and blur regularization term in
computing Figure 5(b), remove only the blur regularization term for Figure 5(c),
and show our full results in Figure 5(d). The uncertainty in binary segmentation
along the boundary of a motion-blurred object is resolved by matte transfer and
blur regularization. The corresponding mean squared error with respect to the
ground-truth matte decreases with the addition of each cue as shown in Figure 6.
We also compare our automatic image matting to human-guided closed-form
matting in Figure 5(e). Though the quantitative error is greater for our results,
they are visually similar to the user-guided matte and are computed without
any human interaction. In cases like the book example where the background
is highly textured, closed-form matting with user strokes may actually perform
worse due to color ambiguities along the boundary, while motion information
provides a stronger constraint that helps to resolve such uncertainties.

Our unoptimized implementation was coded in MATLAB with embedded
C++ functions on a PC with a 3.3GHz Intel quadcore i5 CPU and 16GB RAM.
We resize images to 1024× 577 for efficiency. For the Doll sequence, the overall
run time was about 12 minutes, and peak memory usage was 1 GB.

4.2 Real Images

We also tested our method on a variety of real bracket image pairs. Similar to the
results for synthetic images, we compare our method to a version of it without
matte transfer and motion blur regularization. The first two rows of Figure 7
contain non-rigid human motion, which is effectively handled by our approach.
In the second example, the detailed blur of each finger is better extracted with
the help of matte transfer and motion blur regularization. The third and fourth
rows are challenging cases of textured foreground objects moving in front of
highly textured backgrounds.

5 Discussion

The method of HaCohen et al. [8] also computes non-rigid dense correspondences
between a blurred and sharp image, using the method of [7] interleaved with
kernel estimation and deconvolution. Correspondences computed using only [7]
(without iterations of kernel estimation and deconvolution) are shown in Fig-
ure 8. The correspondences are less dense than ours, perhaps because their
bottom-up aggregation of consistent patches may fail in textured areas. The
correspondence density is nevertheless sufficient for the purpose of non-uniform
deblurring of camera shake, and would likely be increased by interleaving ker-
nel estimation and deconvolution as done in [8]. By contrast, our alpha matting
approach requires denser correspondences for computing the transferred matte
and the motion blur regularization constraint along the matte boundary, so the
proposed method is designed to compute a much denser correspondence that
better serves our purpose.

A limitation of the proposed method is that its performance largely depends
on the accuracy of binary segmentation for the sharp foreground object. Errors
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(a) Real image pair (c) Our method(b) Our method
without transferred matte 

and blur regularization

Fig. 7. Alpha matting results of our method on real bracket pairs

in that binary segmentation will degrade the quality of the transferred matte,
and may affect the amount of blur kernel information computed. This binary
segmentation could potentially be refined in future work by re-estimating it in
the matting pipeline using inter-image information. Another limitation is that
our current method cannot be applied if the foreground in the short-exposure
image is also motion-blurred.

(a) Synthetic image pair (c) NRDC matching (d) Our matching(b) Binary segmentation

Fig. 8. Differences in correspondence density between our method and NRDC [7]. Our
method establishes non-rigid dense correspondence between two segmented region pairs
(b). For the motion-blurred object region, (c) shows the matched patches with NRDC,
and (d) shows a thresholded version of our transferred matte.
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6 Conclusion

In this paper, we presented a method to automatically extract the alpha matte
of a motion-blurred object using inter-image information in a bracket sequence
pair. To effectively share information between images, we presented a blur-aware
dense matching technique, which enables our method to determine a transferred
matte and infer dense local blur kernels. Using this information together with
a binary segmentation of the motion-blurred object region, our method can
generate reasonable matte results without user guidance.

In future work, we plan to extend our technique to matte multiple foreground
objects in a dynamic scene. Our current implementation assumes that only one
moving object is present in the bracket sequence. Furthermore, scale and ori-
entation change is not considered in our current pipeline. This issue could be
addressed through an orientation-aware scale-space matching scheme.
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