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Abstract. This paper addresses the task of natural texture and appearance clas-
sification. Our goal is to develop a simple and intuitive method that performs
at state of the art on datasets ranging from homogeneous texture (e.g., material
texture), to less homogeneous texture (e.g., the fur of animals), and to inhomo-
geneous texture (the appearance patterns of vehicles). Our method uses a bag-
of-words model where the features are based on a dictionary of active patches.
Active patches are raw intensity patches which can undergo spatial transforma-
tions (e.g., rotation and scaling) and adjust themselves to best match the image
regions. The dictionary of active patches is required to be compact and represen-
tative, in the sense that we can use it to approximately reconstruct the images that
we want to classify. We propose a probabilistic model to quantify the quality of
image reconstruction and design a greedy learning algorithm to obtain the dic-
tionary. We classify images using the occurrence frequency of the active patches.
Feature extraction is fast (about 100 ms per image) using the GPU. The experi-
mental results show that our method improves the state of the art on a challenging
material texture benchmark dataset (KTH-TIPS2). To test our method on less ho-
mogeneous or inhomogeneous images, we construct two new datasets consisting
of appearance image patches of animals and vehicles cropped from the PASCAL
VOC dataset. Our method outperforms competing methods on these datasets.

Keywords: Active Patch, Texture Classification, Appearance Recognition.

1 Introduction

Visual appearance is one of the most essential cues for human vision cognition. In
particular, analysis and recognition of the appearance on real-world textured surfaces/
materials has been an increasingly important research topic in computer vision. It also
has great significance in many applications such as remote sensing, biomedical im-
age processing, object recognition and image segmentation. Previous texture analysis
works have mainly concentrated on the recognition of material categories from a wide
range of pose, viewpoint, scale and illumination variations. Accordingly, much effort
has been devoted to building benchmark material datasets for texture classification,
such as CuRET [8], Outex [22], Brodatz [32], KTH-TIPS [14] and KTH-TIPS2 [3]. In
the left panel of Fig. 1, some example images are shown from the KTH-TIPS2 dataset
[3]. As we can see, the material texture images tend to be roughly homogeneous and
have frequently repeated local patterns. Although recent methods [13,27,28] show sat-
isfactory results on those material datasets, these methods have not been systemically
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Fig. 1. Sample images from the three types of appearance datasets studied in this paper. Left
panel: material texture dataset (KTH-TIPS2); Middle panel: animal texture dataset (AniTex);
Right panel: vehicle appearance dataset (VehApp). The images range from roughly homoge-
neous (KTH-TIPS2) to partially homogeneous (AniTex), and to inhomogeneous (VehApp). (Best
viewed in color).

explored for the related tasks of recognizing the less homogeneous or inhomogeneous
visual appearance of general object categories (e.g., animals and vehicles).

In order to explore less homogeneous texture and appearance, in this paper, we con-
struct two new real-world appearance datasets (called “AniTex” and “VehApp”)1. They
include more complex and less homogeneous visual patterns than previous material
datasets as shown in Fig. 1. More precisely, our AniTex and VehApp datasets include
a variety of animal texture patches and vehicle appearance regions respectively, all
of which are taken from the PASCAL VOC dataset [11]. From the middle panel of
Fig. 1, we can see that the image patches from AniTex possess less homogeneous tex-
ture patterns compared to traditional material images. This results in larger intra-class
variations and inter-class ambiguities, hindering discrimination of appearance between
different categories. As shown in the right panel of Fig. 1, the inhomogeneity of ap-
pearance increases further for man-made vehicle objects, which exhibit larger visual
variations spatially.

In the literature, there are different approaches for addressing the appearance classi-
fication problem. For material textures, the filter-bank-based methods [8,16,39] are the
most widely used methods in the early stage. They typically exploit a variety of filter
response features at multiple scales and orientations, to capture summary statistics for
representing the texture images. Winn et. al [35] learned a universal dictionary based
on these features to categorize objects. Recently, Varma et. al [33] demonstrated that
local image patches can obtain better results than filter banks. They also provided theo-
retical arguments which justify the use of raw intensity image patches. Their approach,
however, has several limitations such as some sensitivity to image rotations. For more
complex and less homogeneous appearance of structural objects (e.g., animals and vehi-
cles), some other descriptors such as SIFT [18] and HOG [7] are commonly adopted in
literature, and traditional texture descriptors tend to be less investigated in these cases.

1 Both datasets are available at http://www.stat.ucla.edu/˜junhua.mao/
texture.html

http://www.stat.ucla.edu/~junhua.mao/texture.html
http://www.stat.ucla.edu/~junhua.mao/texture.html
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Fig. 2. Illustration of our approach. (a). An active patch will take actions to best fit the image
region near a target position (the green rectangle region in the image) in the best way. The actions
consist of the combination of scaling and rotation. (b). To implement these actions efficiently,
each active patch consists of a basic patch (e.g. the patch in the solid red rectangle in the left panel
of (b)) and a deformed patches set (e.g. the patches in the dashed red rectangle). Given an image
position, the active patch will find one of its deformed patches that has the maximum matching
score with the image region near this position. If the score is larger than a threshold, the active
patch is “fired” at the image region. In this way, the images can be reconstructed and represented
by a set of firing active patches. We learn the active patch dictionary in a greedy manner using
criteria based on the reconstruction of the training images. (c). The histogram of firing frequencies
of the active patches in the dictionary will be treated as the feature for appearance classification.
(Best viewed in color).

In this paper, we present a unified appearance classification method and apply it to
all of the three types of datasets with different granularities of visual complexity and
homogeneity. We develop a new image representation for appearance modeling and
classification based on Active Patches. They are raw intensity patches which can un-
dergo spatial transformations (e.g., rotation and scaling) and adjust themselves to fit the
target image region (see Fig. 2). We use normalized cross-correlation to calculate the
matching score. If the matching score is larger than a threshold, we treat it as a firing
active patch for that region. Images can be reconstructed by a set of firing active patches
in this way and we allow patches to overlap with each other. Compared with traditional
filter-bank-based texture analysis approaches, our method, which utilizes raw intensity
patches, has the advantages of being simple and intuitive. We introduce a probabilistic
model based on our active patches to quantify the reconstruction quality. On the basis
of this model, we propose a novel greedy learning algorithm to establish a compact
yet representative active patch dictionary. Starting from a large candidate pool of active
patches, our learning algorithm greedily selects the ones with high firing frequency, tak-
ing into account the criteria such as small reconstruction error and small overlapping
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area with other patches in the reconstructed image. For appearance classification task,
we simply use the histogram of the firing frequency of the active patches in the dic-
tionary as the image feature descriptor. In our experiments, we evaluate the proposed
method on three challenging appearance/texture datasets (i.e., KTH-TIPS2 [3], AniTex
and VehTex), which are illustrated in Fig. 1. The experimental results validate the ef-
fectiveness of our approach in real-world appearance classification, and show consistent
performance improvement w.r.t. the previous texture classification approaches on all of
the three datasets.

The main contributions of this paper are summarized as follows: (1) We present an
active patch model and a probabilistic formulation to quantify the quality of images
reconstructed using a set of active patches. (2) We propose a novel greedy forward fea-
ture selection algorithm to learn a compact and representative active patch dictionary
based on the representation-by-reconstruction principle. (3) We build two new datasets
(AniTex and VehApp) for real-world appearance recognition, which provide a compre-
hensive evaluation scenario for less homogeneous or inhomogeneous visual patterns
than traditional material textures. Using image features based on the learned dictionary,
our method consistently outperforms the previous approaches on these two datasets as
well as a challenging material texture benchmark dataset (KTH-TIPS2).

2 Related Work

Traditional filter-bank-based approaches [8,16,39] have been dominant in texture anal-
ysis literature in early years. The filter banks extract salient statistical characteristics
from a large support of image patch around the central pixel, and their responses can
be used to represent the repeated visual patterns in texture images. Recently, the ne-
cessity of the use of filter bank was argued by many methods based on the local pixel
neighborhood statistics [27,4,23,30], which can capture the repeated micro-structure
from relatively smaller texture patches (e.g., 3 × 3). This sort of approaches includes
local binary patterns (LBP) [13,12,23], local ternary patterns (LTP) [30], Weber local
descriptor (WLD) [4], local higher statistics (LHS) [27], etc. In particular, the LHS
method extends the original LBP by considering the second order statistics in local
pixel intensities of a small patch using gaussian mixture model and fisher vector encod-
ing [26]. It achieves the state-of-the-art results on several texture benchmark datasets
such as KTH-TIPS2. Besides, there are some very recent works which utilize deep con-
volutional network [28] and semantic attributes [21] for texture analysis. However, the
descriptors generated from above methods cannot be used to reconstruct the images and
not very interpretable. On the other hand, Varma et. al [33] proposed a method based
on intensity patches for material texture classification and demonstrated the power of
using intensity patches both experimentally and theoretically.

Intensity patches have been increasingly used in the field of computer vision in recent
years. In particular, patch-based methods have dominated the field of texture synthesis
[9,17]. Wolf et. al [36] used patches as an alternative to traditional filter-bank-based
methods for edge detection and segmentation, but they did not use a large patch dic-
tionary. In addition, Ullman and his collaborators used patches for object classification
[10,31] and image segmentation [2]. Coates et. al [6] exploited a single-layer network
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Table 1. Summary of important notations in section 3

Notation Description Notation Description
A Active patch IR(I) Reconstructed image of I
SB Basic patch Ω Training image set
SD Deformed patches set λe, λov Non-zero weights for energy terms
Sdt Deformed patch in SD M(A, I, pos) Matching score between A & image I at pos
D Active patch dictionary Mbest(I, pos) Best matching score for image I at pos
Do Over-completed dictionary Sbest

dt
Best fitted deformed patch in SD

Df Final dictionary F(A, I) Firing frequency of A for image I

with optimal parameter settings using patches as features. Singh et. al [29] presented a
mid-level patch work based on HOG descriptors to sparsely detect discriminative im-
age regions. However, the patches used in the works mentioned above are not active
and thus may not deal well with the scaling and rotation transformations of real-world
appearance/ texture. In [15], an epitome framework was proposed for image representa-
tion, and was recently developed by [24,5]. For an epitome, the basis patches spatially
overlap in a single image (the epitome), which is not a constraint in this paper. An-
other related work is from Ye et. al [38]. It presented a deformable patch method for
handwritten digit recognition. In addition, Wu et. al [37] propose a generative model for
object detection based on active basis. Their active basis model consists of a small num-
ber of handcrafted Gabor wavelet filters at selected locations and orientations, which is
different from our learned dictionary of raw pixel intensity active patches. Besides, their
model concentrates on recognizing shape of objects and not modeling their appearance.

3 The Active Patch Model For Appearance Modeling

In Section 3.1, we introduce our active patch model and describe how to use a set of ac-
tive patches to reconstruct and represent images. Then we present a probabilistic model
to quantify the quality of the reconstruction in Section 3.2. A simple but effective greedy
learning algorithm based on this probabilistic model will be introduced in Section 3.3 to
build the active patch dictionary. Image features for classification can be generated us-
ing the dictionary. We show the implementation details in Section 3.4. Some important
notations are summarized in Table 1.

3.1 The Active Patch Model

An active patch (denoted as A) consists of two parts: a basic patch SB and a deformed
patches set SD (see Fig. 2(b)). The deformed patches (denoted as Sdt , t = 1, 2, . . . , nT )
in SD are generated by applying various spatial transformations on the basic patch SB .
nT is the number of the allowed transformations. The transformation, represented by
T = (sx, sy, θ), involves combination of rotation and scaling. (sx, sy) denotes the
width and height of the patch in its upright form after scaling. θ represents the rotation
angle. Our active patches use the raw intensity pixels as basic features for its basic patch
and deformed patches.
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Given an input image I and a position pos, an active patch will automatically select
one of its deformed patches which best fits the input image region near the position.
To make the fitting robust and get rid of the redundancy for duplicate matches in the
nearby positions, we apply a spatial max-pooling operation to the neighborhood posi-
tions N (pos) of pos. N (pos) is set as a 3 × 3 region centering at pos. Normalized
Cross-Correlation (NCC) is adopted to calculate the matching score M(A, I, pos):

M(A, I, pos) = max
pos′∈N (pos)

max
Sdt∈SD

{NCC(Sdt , I(pos
′))} (1)

I(pos′) denotes the image region near pos′, which has the same dimension as Sdt . If
the matching score is larger than a threshold (we use 0.8 to ensure perceptual similarity
and high performance in this paper, please see supplementary material for detailed jus-
tification.), the active patch will be treated as a firing one for image I at pos. Otherwise,
we will treat the position as “not fired” by this active patch.

We can learn a dictionary of active patches {A(1),A(2), . . . ,A(n)} from the training
set of a dataset (e.g. KTH-TIPS2, AniTex or VehApp). The dictionary size n equals
to the number of different active patches. We will introduce the learning process later.
Given the dictionary D, we can reconstruct the images using D. The reconstructed
image IR(I) is generated by copying the pixel value of the best fitted deformed patch
of a fired active patch to the corresponding image position. Some of the image regions
might not be covered by any active patches in the dictionary. We will treat the pixels
in these regions as unreconstructed pixels and set the corresponding pixels in IR(I) as
void. If several fired active patches overlap over one pixel, that pixel will be set as the
corresponding pixel value of the active patch with the largest matching score. We will
use the quality of the reconstructed image and the compactness of the dictionary as the
measurements for choosing the optimal active patch dictionary.

3.2 The Probabilistic Model as Criterion for Image Reconstruction

We model the probability of reconstructing and representing an image I by the active
patch dictionary D as an exponential distribution with energy term E(I|D):

P(I|D) =
1

|Z|e
−E(I|D). (2)

D∗ = argmin
D

∑

I∈Ω

E(I|D). (3)

We incorporate the reconstruction quality and the compactness of D into the energy
function (Equ. 4). It consists of three terms, where λe and λov are non-zero weights for
the energy terms, #(I) denotes the number of pixels in I , p denotes the pixel value in
the original image I , which is normalized to [0 1], and pr denotes the corresponding
reconstructed pixel in IR(I).

E(I|D) =
1

#(I)
[

∑

pr∈IR(I)

Ec(pr) + λe ·
∑

p∈I

Ee(p|pr) + λov ·
∑

p∈I

Eov(p|D) ] (4)
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The first term is
∑

pr∈IR(I) Ec(pr) , where Ec(pr) = 1 if pr = void (i.e. pr is
unreconstructed), otherwise Ec(pr) = 0. This term encourages more reconstructed
pixels.

The second term is
∑

p∈I Ee(p|pr), where Ee(p|pr) = |p − pr| if pr �= void,
otherwise Ee(p|pr) = 0. This term encourages a small difference of intensity value
between the original image pixel and the corresponding reconstructed pixel.

The third term is
∑

p∈I Eov(p|D), where Eov(p|D) is set as the number of firing
active patches overlapped on pixel p. This term encourages a small overlapping area
for different active patches. If most of the reconstructed regions of an active patch A

overlap with those of other patches in D, it is highly possible that A can be replaced.
This term will reduce the redundancy in the dictionary and restrict the dictionary size.

The energy function of the whole training images can be calculated by Equ. 5, where
#(Ω) represents the number of images in Ω.

E(Ω|D) =
1

#(Ω)

∑

I∈Ω

E(I|D) (5)

We set λe and λov to get a relatively small dictionary that can reconstruct more than
90% pixels with the root-mean-square error of pixel intensity less than 0.1. In this pa-
per, we set λe = 1, λov = 0.5 by cross validation on KTH-TIPS2. With these settings,
we can acquire appropriate dictionaries for all the three datasets (i.e. KTH-TIPS2, An-
iTex and VehApp) in our experiments. Please refer to Section 4.5 to understand how
performance varies with the dictionary size.

3.3 Greedy Learning of the Active Patch Dictionary

It is hard to learn the model directly because the parameter space of D is very large.
Instead, we first acquire an over-complete active patch dictionary Do by unsupervised
clustering (e.g. Kmeans) randomly sampled patches in dataset images to get the basic
patches. Then we select active patches from Do as the final dictionary Df .

If we want to exhaustively search for the optimal Df , we have to run the reconstruc-
tion process 2m times, where m is the size of the Do. This is impractical. To efficiently
get the results, we adopt a fast greedy forward feature selection strategy to learn Df and
reconstruct training images at the same time (some reconstructed samples are shown in
Fig. 3). This greedy algorithm sequentially selects the active patches that provide the
highest reconstruction quality with the minimal redundancy. More specifically, we first

Original

Recons-

tructed

Fig. 3. Sample reconstructed and the original images from VehApp and AniTex using the learned
dictionaries from the two datasets respectively
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Algorithm 1. Our learning method for active patch dictionary
Initialization:
1. Get Do from clustering algorithm;
2. Df ← ∅; ∀Mbest(I, pos)← 0; ∀pr ← void, pr ∈ ∀IR(I);

Process:
3. Sort A(k) ∈ Do w.r.t. F(A(k)) in descending order;
4. for each A

(k) ∈ Do do
5. ∀I ∈ Ω, record current IR(I) and Mbest(I, pos); ΔE ← 0;
6. for each position pos of each image I ∈ Ω where A

(k) is firing do
7. for each pixel pd ∈ Sbest

dt , Sbest
dt ∈ S

(k)
D do

8. Calculate ΔE according to Equ. 4;
9. if the corresponding pr = void orM(A(k), I, pos) > Mbest(I, pos) then

10. pr ← pd; Mbest(I, pos)←M(A(k), I, pos);
11. end if
12. end for
13. end for
14. if ΔE < 0 then
15. Add A

(k) to Df

16. else
17. ∀I ∈ Ω, restore IR(I) and Mbest(I, pos) to previous value;
18. end if
19. end for

sort the active patches A
(k) in Do in the descending order of their firing frequency

F(A(k)) for all the training images. F(A(k)) =
∑

I∈Ω F(A(k), I) where F(A(k), I)

denotes the firing frequency of an active patch A
(k) for image I . We then check the

active patches one by one. If the energy function decreases when adding A
(k) to Df

(i.e. ΔE < 0), A(k) will be selected and its firing image regions will be reconstructed.
The detailed algorithm is shown in Algorithm 1. M best(I, pos) records the current

best matching score for image I at position pos for all the previously selected active
patches in Df . Sbest

dt
∈ S

(k)
D is the deformed patch of an active patch A

(k) that best
matches the target image region. Before each iteration of the greedy algorithm, we
record the previous reconstruction state (line 5) in order to restore if the candidate active
patch is not selected (line 17).

The learning algorithm is unsupervised and does not need the labels of the training
images. This is an advantage because we can readily apply the algorithm to a large
dataset without too much human labor.

Assuming that the learned dictionary is Df = {A(1)
f ,A

(2)
f , . . . ,A

(n)
f }, the corre-

sponding feature descriptor of an image I is set as the histogram of the firing frequen-
cies of the active patches in Df for I:

[F(A
(1)
f , I),F(A

(2)
f , I), . . . ,F(A

(n)
f , I)] (6)

We apply L1 normalization and power normalization (square root) [25] to this feature
descriptor for classification tasks.
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3.4 Implementation Details

The possible transformations {T } applied on the basic patch SB are described as fol-
lows. For rotation, the direction of the patches ranges from −45◦ to 45◦ with a step size
of 15◦. For scaling, the maximum and minimum heights of the deformed patches are
1.2× and 0.8× the height of the basic patch respectively. We adopt the same scaling
setting for the width of the deformed patches. The step size for scaling is 2 pixels.

We use the Kmeans algorithm to initialize the greedy forward feature selection al-
gorithm. The seed patches are randomly sampled from the training images. Their sizes
are 10× 10, 7 × 7, and 5 × 5. We also experimented with seed patches of larger sizes.
However, it does not improve the performance. On the other hand, using larger patches
requires much larger dictionaries if we want to achieve the same reconstruction abil-
ity as the small patch dictionary. We conduct zero-mean whitening [1] on seed patches
before clustering them. The number of seed patches is about 500,000.

The normalized cross-correlation operation can be treated as a matrix multiplication
operation if we normalize the patches and target image regions beforehand. We utilize
highly optimized matrix operation packages (i.e. Matlab Distributed Computing Tool
Box and CUDA with cudablas library) to efficiently calculate the matching statistics
of a set of active patches. The speed of our algorithm is very fast. It takes 100 ms
on average to extract the proposed feature descriptors for a KTH-TIPS2 image with a
computer using one Tesla C1060 GPU.

4 Experiments

To validate the effectiveness of the active patch model, we test it on a range of real
world appearance images from a roughly homogeneous dataset (KTH-TIPS2), to a par-
tially homogeneous dataset (AniTex), and to a inhomogeneous dataset (VehApp). Some
sample images of these datasets are shown in Fig. 1. The AniTex and VehApp datasets
contain color images cropped from the PASCAL VOC dataset [11]. We will first intro-
duce the details of these two datasets then compare the classification performance on
all the three datasets with previous methods. Finally, the effect of the transformations
and the dictionary size will be analyzed.

For a fair comparison, we use a SVM classifier with histogram intersection kernel
[19] for all the methods. It is a very efficient kernel and has no hyperparameters. As
most of the existing state-of-the-art texture analysis methods ([23,12,13,27]), we focus
on the analysis of gray scale texture information in the dataset images. We discuss the
role of color in the supplementary material, and show that color will provide additional
information and further improve the results.

4.1 The Two New Texture Datasets

The Animal Texture Dataset (AniTex). This dataset contains a main image set and
a supplementary image set. The main image set contains 3120 texture patch images
extracted randomly (i.e. cropped) from the torso region inside the silhouette of different
animals in the PASCAL VOC 2012 database. Only one image will be cropped from
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the same object in an image. We do not re-scale or rotate the original PASCAL images
before extraction. No object contour information is included. There are no background
pixels and no easily identifiable features, such as the face of animals in these patch
images. There are five classes of animals: cat, dog, sheep, cow and horse. Each class
consists of 624 images. The size of the images in the dataset ranges from 64 × 64
to 100 × 100 pixels. The images in this database are under a range of harsh image
conditions, such as scaling, rotation, viewing angle variations and lighting condition
change. Some images suffer from low resolution. Occlusion sometimes occurs, such as
the dog collars in some dog images and the sheepfold in some sheep images. We denote
this dataset as the 3120 animal texture dataset (3120AniTex).

The supplementary image set contains 250 images of animals from the same five
classes, with 50 images for each class. This dataset is built to meet the requirement of
some psychophysics experiments for testing human’s performance on the classification
of animals’ fur texture. We briefly discuss these experiments in section 5. The size
of the images is 100 × 100 pixels. They are sampled using the same strategy as the
3120AniTex. But care was taken to select cropped regions which contained consistent
textural information and no tell-tale signs of category membership (e.g., dog collars or
sheepfold). There are no overlapping images between this set and the 3120AniTex set.
Although the images in general are clearer than those in the 3120AniTex set, this dataset
is also very challenging. The experiment shows that humans also do not perform very
well in this task (see Section 5). We denote this image set as the 250 animal texture
dataset (250AniTex).

For the 3120AniTex dataset, we separate it into training set and testing set randomly.
There are 2496 training images and 624 testing images. We treat the 250AniTex dataset
only as a testing dataset. Neither dictionary nor classifier is trained, or retrained, on this
image set for any of the methods we compared in the experiments. Only the training set
of 3120AniTex is available for learning the dictionary and the classifier. So the 250An-
iTex set can also be used to evaluate the effectiveness of algorithms on the learning
transfer test. This is similar to the intuition behind the development of the KTH-TIPS2
dataset from the original KTH-TIPS dataset [3].

The Vehicle Appearance Dataset (VehApp). This dataset also contains a main image
set and a supplementary image set. The main image set contains 13723 images cropped
from the PASCAL VOC dataset. They consist of 6 kinds of vehicles: aeroplane, bicycle,
car, bus, motorbike, and train. The image size is 100 × 100. The sampling strategy is
similar to 3120AniTex and 250Anitex except that we allow the images to contain a small
portion of background pixels (≤ 20%). The reason is that the contour of the vehicles
(bicycle and motorbike in particular) is much more irregular than animals. Sometimes it
is impossible to crop a 100×100 image patch that is totally inside the silhouette region.
The large variance of the background pixels also makes this dataset challenging. We
separate this image set into a training set (80%) and a testing set (20%) randomly. We
denote this dataset as VehAppcrop.

To further evaluate the performance of existing method on long-range appearance
patterns, we also build a supplementary image set consisting of the silhouette regions
of the same kinds of vehicles. There are 2408 images in the dataset. All the images
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Table 2. Performance comparison on AniTex and VehApp

LBP [23] HOG [7] SIFT [18] LCP [12] disCLBP [13] LHS [27] Ours
3120AniTex 35.6 39.2 31.7 35.5 40.8 48.1 50.8
250AniTex 30.4 53.2 33.6 29.6 36.8 50.0 56.8
VehAppcrop 42.9 55.6 44.0 49.8 47.8 53.3 63.4
VehAppsih 53.4 65.9 45.8 62.1 62.1 69.1 76.6

are rescaled to ensure that their height and width are both no larger than 100 pixels.
We generate a foreground mask for each image and the background pixels are set to 0.
All the methods are only allowed to extract features within the mask in order to insure
that they only utilize the appearance information. We also separate this image set into a
training set (80%) and a testing set (20%) randomly. Training and testing on this image
set are independent of VehAppcrop. We denote this image set as VehAppsih.

4.2 Performance Evaluation on AniTex and VehApp

To validate the effectiveness of our algorithm on the AniTex and VehApp datasets, we
compare it with four state-of-the-art texture descriptors and report their performance.
They are the Local High-order Statistics (LHS) [27], the general Local Binary Patterns
(LBP) [23] and two of its most recent extensions, the Discriminative Features of LBP
Variants (disCLBP [13]) and the Local Configuration Pattern (LCP [12]). For LBP and
disCLBP, we use the code released by the authors.For LHS, we implement the algo-
rithm exactly according to the paper and the suggestions from the authors. We achieve
similar classification accuracy of 71.1 ± 4.9 (rectangular sampling) on KTH-TIPS2
compared to 71.7 ± 5.7 reported by the original paper. The small difference might be
due to the different settings of whitening or other implementation details. The feature
dimension of LHS is 2048. In [27], it shows that LHS feature with larger dimension
(e.g. 4096) does not improve the performance. HOG and SIFT features are extracted as
the baselines in these two datasets. These two features have been successfully applied
in the field of object detection and classification [7,18,20]. We use VLFeat [34] imple-
mentation of HOG and SIFT. For HOG, the cell size is set to 10 pixels. For dense SIFT,
the scale and step is set to 10 pixels and 5 pixels respectively. The bag-of-visual-word
algorithm is applied to improve their performances. The number of visual words is set
to 3000 for both HOG and SIFT.

The results are summarized in Table 2 and the detailed comparisons for different
categories are given in Fig. 4. For our method, we learned the dictionaries of size 2799,
2981 and 2958 for AniTex, VehAppcrop and VehAppsih respectively. Our method out-
performs all the competing methods. For AniTex datasets, the performance gains are
2.7% and 6.8% on 3120AniTex and 250AniTex respectively compared to LHS (the
second best performed method on 3120AniTex). The performance gains are 11.6%
and 3.6% on 3120AniTex and 250AniTex respectively compared to HOG (the second
best performed method on 250AniTex). In addition, for most of the categories, our
algorithm is the best or the second best method. Some comparing methods might be
more effective on some specific categories, such as LBP for sheep and HOG for horse.
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Fig. 4. Performance comparisons on (a) 3120AniTex for the five animal categories, and (b)
VehAppcrop for the six vehicle categories. (Best viewed in color)

But their overall performances are much lower than our method. Since the AniTex
dataset contains images under harsh real image conditions, the results show that our
algorithm can handle the classification task of real world partially homogeneous tex-
ture. It is a little surprising that SIFT does not perform well in these datasets. It is
perhaps because the small image size is not suitable for SIFT as discussed in [4].

It is also interesting to compare the results between 3120AniTex and 250AniTex.
As stated in Section 4.1, the images in 250AniTex are clearer visually than those in
3120AniTex, which makes 250AniTex easier than 3120AniTex. We should expect the
performance increase on 250AniTex even using the dictionary and the classifier trained
by the training set of 3120AniTex. Our algorithm indeed performs better on 250AniTex
than 3120AniTex with a margin of 6.0% in this training transfer experiment.

For VehAppcrop and VehAppsih datasets, the performance gains of our method are
7.8% and 7.5% respectively compared to the second best methods. In addition, our
algorithm is the best method for all the categories on VehAppcrop and four categories
out of six on VehAppsih. All the methods generally perform better on VehAppsih than
VehAppcrop because the former one provides more spatial structure information. These
two datasets contain inhomogeneous appearance with more variance spatially. The high
accuracy on these datasets demonstrates the capability of our algorithm to capture long-
range appearance patterns.

4.3 Performance Evaluation on KTH-TIPS2

We also test our algorithm on a benchmark material texture dataset (i.e., KTH-TIPS2).
It is developed based on the CUReT and KTH-TIPS, and contains more variations of
scale, pose and illumination. There are 11 material categories in this dataset and each
category is separated into 4 groups of samples. The samples are photographed under
9 scales, 3 poses and 4 different illumination conditions. The motivation of building
this dataset is to evaluate the capability of the algorithm on previous unseen instances
of materials [3]. All these settings make it an extremely challenging texture dataset.
The best published result so far is 73% [27] to our best of knowledge while the highest
accuracies of other traditional texture datasets are over 90%. We adopt the standard
testing protocol [3,4,27] for this dataset: We run the classification four times and report
the average accuracy. One group of samples will be treated as the testing set while the
other three groups are treated as the training set at each time.
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Table 3. Performance comparison on KTH-TIPS2

LBP [23] HOG SIFT WLD [4] MWLD [4] LCP [12] Caputo [3] LTP [30] LHS [27] Ours
53.6 63.5 52.7 56.4 64.7 60.8 71.0 71.3 73.0 75.7

Because it is a publicly available dataset, we use the results reported by the authors
of their methods for comparison. The methods are LBP [23], WLD & MWLD [4],
LCP [12], Caputo et. al [3], LTP [30], and LHS [27]. We also try SIFT and HOG for
this dataset. The results are shown in Table 3. Our algorithm achieves a better result
than the previous best published result of LHS. Since KTH-TIPS2 is a very challenging
benchmark dataset taken under the settings of the traditional material texture task, this
demonstrates the effectiveness of our active patch model on homogeneous and densely
repeated texture patterns with large variations of scale, pose and illumination.

4.4 Active vs. Non-active

To evaluate the importance of our active patch model, we conduct experiments on a non-
active dictionary that allows no transformations on basic patches. The results are shown
in Fig. 5(a). We can see that the active patch dictionary performs better than the non-
active counterpart on all the datasets. The performance gains are 7.9%, 7.2%, 5.2%,
4.8% and 3.2% respectively on KTH-TIPS2, 3120AniTex, 250AniTex, VehAppcrop
and VehAppsih, demonstrating the advantage and importance of applying rich trans-
formations on the active patch dictionary. It has superior discriminability on handling
scale, rotation and pose variations of real world appearance than the non-active one.

4.5 The Effect of Dictionary Size

To investigate the effect of the dictionary size, we train several dictionaries with differ-
ent sizes on KTH-TIPS2 by changing the value of λov in Equ. 4. λov is the weight for
the energy term Eov(p|D). A Larger value of λov means that there is a larger penalty
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Fig. 5. (a). Performance comparison between the non-active dictionary and the active patch dic-
tionary. (b) Performance comparison with different sizes of dictionaries on KTH-TIPS2 (Best
viewed in color).
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Fig. 6. The confusion matrice for (a) our algorithm and (b) humans on the 250AniTex dataset

when patches in the dictionary overlap with others in the reconstruction process, and
will lead to a smaller dictionary size. The results are shown in Fig. 5(b).

From Fig. 5(b), we can see that the performance improves with the increase of dic-
tionary size initially and reaches the maximum at a dictionary size of 2951. When the
dictionary size increases further, the performance even deteriorates. The reason might
be that a dictionary with 2951 active patches is large enough to model appearance pat-
terns for KTH-TIPS2 images. Adding redundant patches is not useful and may lead to
over-learning. We also show that an active dictionary of size 1100 can produce the same
result as the state-of-the-art algorithm (LHS) which uses a feature of dimension 2096.

5 Discussion

We propose a probabilistic Active Patch Model for real world texture/appearance clas-
sification. A simple but effective greedy learning method is presented to obtain the
active patch dictionary. Image features are generated using this dictionary, which are
interpretable enough to reconstruct the images and have strong discriminability for the
classification task. We validate our method on one published benchmark texture dataset
(KTH-TIPS2) and two newly constructed datasets (AniTex and VehApp). Our algo-
rithm performs better than previous methods in all of the three datasets. In the future
work, we will explore the potential of this method on other tasks such as image labeling
and object segmentation.

To study the difficulty of these classification tasks, in related work with C. Wallraven,
we also performed psychophysics experiments on the 250AniTex dataset. The experi-
mental results show that humans do not perform very well in this task. The accuracy
is 46.8% on average. Our method shows similar error patterns with humans (e.g., the
tendency of confusing dog textures with cats or horses, see Fig. 6). We put the details
of psychophysics experiments in the supplementary material.
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