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Abstract. To cope with the richness in appearance variation found in
real-world data under natural illumination, we propose to synthesize
training data capturing these variations for material classification. Using
synthetic training data created from separately acquired material and
illumination characteristics allows to overcome the problems of existing
material databases which only include a tiny fraction of the possible
real-world conditions under controlled laboratory environments. How-
ever, it is essential to utilize a representation for material appearance
which preserves fine details in the reflectance behavior of the digitized
materials. As BRDFs are not sufficient for many materials due to the lack
of modeling mesoscopic effects, we present a high-quality BTF database
with 22,801 densely measured view-light configurations including surface
geometry measurements for each of the 84 measured material samples.
This representation is used to generate a database of synthesized im-
ages depicting the materials under different view-light conditions with
their characteristic surface geometry using image-based lighting to sim-
ulate the complexity of real-world scenarios. We demonstrate that our
synthesized data allows classifying materials under complex real-world
scenarios.

Keywords: Material classification, material database, reflectance, tex-
ture synthesis.

1 Introduction

Image-based scene understanding depends on different aspects such as the de-
tection, localization and classification of objects. For these tasks, it is essential
to consider characteristic object properties like shape or appearance. While its
shape tells us how to grasp a particular object, its material tells us how fragile,
deformable, heavy, etc. it might be and hence, how we have to handle it. The
understanding of the recognized surface material thus guides the interaction of
humans with the corresponding object in daily life, and it also represents a key
component regarding industrial applications. However, image-based classifica-
tion of materials in real-world environments is a challenging problem due to
the huge impact of viewing and illumination conditions on material appearance.
Therefore, training an appropriate classifier requires a training set which covers
all these conditions as well as the intra-class variance of the materials.
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So far, there have been two main approaches to generate suitable training sets.
One approach is to capture a single representative per material category under a
multitude of different conditions, such as scale, illumination and viewpoint, in a
controlled setting [8,13,7,18] (see Table 1). However, the measured viewing and
illumination configurations are rather coarse and hence not descriptive enough to
capture the mesoscopic effects in material appearance, which consider the light
interaction with material surface regions mapped to approximately one pixel,
in an accurate way. In addition, the material samples are only measured under
controlled illumination or lab environments which does not generalize to material
appearance under complex real-world scenarios. As an alternative, the second
category of methods uses images acquired under uncontrolled conditions. In [25],
images from an internet image database (Flickr) have been used. This has the
advantage that both the intra-class variance of materials and the environment
conditions are sampled in a representative way. Unfortunately, the images have
to be collected manually, and the materials appearing in the images have to be
segmented and annotated. The necessary effort again severely limits the number
of configurations that can be generated this way (see Table 1).

In this paper, we instead make use of synthesized data which has already
been explored for different applications (e.g. [11,21,29,28,27,19,2,3]). In particu-
lar, separately acquired material characteristics and illumination conditions offer
the possibility to create synthetic training data for material classification that
capture the variations of real-world data. This decoupling of the sampling of
material from environment conditions allows us to overcome the limitations of
existing material databases that contain only a few hundred configurations of
viewing and lighting conditions per material category. For these synthetic im-
ages, perfect segmentations are directly available without the need for manual
segmentation, and a huge number of them can be obtained easily and fully auto-
matically. This approach requires creating realistic renderings, which accurately
simulate the appearance of a material in a real-world scenario. In particular,
the appearance of many daily life materials like cloth, skin, etc. is determined
by effects taking place on surface structures mapped to a size of approximately
1 pixel (e.g. scratches or fibers) such as subsurface scattering, interreflections,
self-shadowing and self-occlusion. These effects cannot be modeled by standard
Bidirectional Reflectance Distribution Function (BRDF) models, which are suit-
able especially for locally smooth surfaces like plastic or metal as these fulfill the
assumption of a homogeneous surface reflectance behavior. This was pointed out
in [35], where the concept of Apparent BRDFs (ABRDFs) has been introduced to
take the above-mentioned effects into account. Bidirectional Texture Functions
(BTFs) [9] are a data-driven approach to efficiently capture and store ABRDFs
and represent these mesoscopic effects. The results in [16], where training data
has been synthesized based on BRDFs, support exactly this claim by showing
that using BRDF materials for synthetic training data alone is not sufficient and
leads to classification results significantly worse than using real-world images.
In contrast, our experiments indicate that using an appropriate representation
of the reflectance behavior like the BTF opens the possibility for using solely
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synthesized training data for classification tasks. We demonstrate that the classi-
fication of real-world test data can be boosted significantly by using image-based
lighting via environment maps [10] instead of simple directional light sources.
To achieve this, we generate synthesized training samples under a vast amount
of different lighting conditions simulated by arbitrary HDR environment maps
which adequately represent the complexity of real-world materials and lighting.

For this purpose, we have acquired a database containing dense BTF mea-
surements of 84 material samples. The samples can be grouped into 7 categories
(i.e. 12 samples per class). Per BTF, all combinations of 151 view and 151 light
directions have been measured which results in 22,801 images per sample or a
total of 7 · 12 · 22,801 > 1.9M images respectively. The data of our measured
database with directional illumination is used as input for generating the syn-
thesized data. By acquiring a height map of each material sample via structured
light, we also include the complexity of the geometric structure of the different
materials in the process of generating synthetic training images. While in fact an
arbitrary number of configurations could be easily included in the synthesized
database, we so far used 42 different viewpoints and 30 different illumination
conditions per material sample.

In summary, the key contributions of our paper are:

– a technique for decoupling the acquisition of material samples from the en-
vironment conditions by generating synthetic training samples

– a publicly available novel BTF database of 7 material categories, each con-
sisting of measurements of 12 different material samples, measured in a dark-
ened lab environment with controlled illumination

– a second, novel database containing data synthesized under natural illumi-
nation which is a clear difference to other datasets which only use directional
illumination or an additional single ambient illumination

– an evaluation which shows that these synthetic training samples can be used
to classify materials in photographs under natural illumination conditions

2 Previous Work

In this section, we briefly review commonly used databases for material recog-
nition and discuss their limitations. Subsequently, we discuss approaches that
follow the recent trend of using synthetic training data in various applications.

Databases. Table 1 gives an overview of several different material databases.
The CUReT database [8] has been extended in the scope of the KTH-TIPS
database [13] in terms of varying the distance of the acquired sample to the
camera, i.e. the scale of the considered textures, in addition to changing view-
point and illumination angle. In both databases, however, only a single material
instance is provided per class, and thus the intra-class variation is not repre-
sented. Aiming for a generalization to classifying object categories, the KTH-
TIPS database was further extended by adding measurements of different sam-
ples of the same material category and also considering ambient lighting in the
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Table 1. Overview of different databases. Please note that the FMD considers different
configurations of viewing and lighting conditions as well as different material samples
for each individual image. Our databases are highlighted in red (∗: in principle, an
arbitrary number of configurations could be considered in the synthesis).
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& ambient & ambient
viewpoints 7 27 27 27 1 151 100 42*
images per sample 205 81 108 108 150 22,801 1 1,260*
total image number 12,505 810 4,752 1,188 13,500 1,915,284 1,000 105,840*

KTH-TIPS2 database [7]. However, taking only four samples per category still
limits the representation of the intra-class variance of materials observed in real-
world scenarios. More recently, a spectral material database was used in [18].
However, the samples are imaged from only one single viewpoint. A common
limitation of all these databases is the rather limited number of measurements,
which are furthermore acquired in a lab environment. Hence, the influence of
the complexity of real-world environment conditions is not taken into account.

The Flickr Material Database (FMD) [25] is designed to capture the large
intra-class variation in appearance of materials in complex real-world scenarios.
Images downloaded from Flickr.com show different associated material samples
under uncontrolled viewing and illumination conditions and compositions. While
manual segmentations are available, these masks are not always accurate, leading
to the inclusion of background appearance and problematic artifacts for mate-
rial classification. Since the manual annotation is time-consuming, the number
of images is very small in comparison to the other databases. While standard
classification schemes such as [32] reach excellent results on the above-mentioned
databases, there is a significant decrease in the performance on the FMD [17].
This is a hint on the fact, that the CUReT and KTH-TIPS databases are not
sufficient to represent the complexity of real-world materials.

Synthetic Training Data. Recombination methods focus on some specific
aspects present in real-world examples and recompose them to new examples
as done in [11,21] to enlarge the available training data by recombining shape,
appearance and background information for pedestrian detection. In [29], new
virtual training images are synthesized via photometric stereo for texture clas-
sification. This way, less training images need to be acquired. In contrast, ren-
dering techniques can be used to produce new examples based on an underly-
ing model, e.g. pose estimation was facilitated using synthesized depth maps in
[27]. In [28], object detection based on 3D CAD models is investigated using
viewpoint-dependent, non-photorealistic renderings of the object contours for
learning shape models in 3D, which then can be matched to 2D images showing
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the corresponding object. Furthermore, an evaluation of the commonly used im-
age descriptors based on a photorealistic virtual world has been carried out in
[15]. This virtual scenario represents a well-suited setting for analyzing the effect
of illumination and viewpoint changes. The methods in [2] and [3] use a renderer
to synthesize shading images based on given depth maps and a spherical har-
monic model of illumination for estimating shape, illumination and reflectance
from input images. This way, a decoupling of albedo and illumination is reached.
The decoupling of measured surface material and environmental lighting has also
been addressed in [19], where shape and BRDF of objects have been jointly es-
timated under known illumination from synthetic data, generated from different
combinations of shapes, environment illuminations and BRDFs. In [33], geomet-
ric textons are rendered under different view-light configurations for estimating
geometric texton labels used in a hybrid model for geometry and reflectance.

Recently, this trend has resulted in the development of the virtual MPI-VIPS
database introduced in [16] (see Table 1). This database is based on using BRDFs
for representing the light exchange on the surface of an object and does not
rely on physical measurements but uses a texture map and material shaders of
available rendering packages. Bump maps are used to simulate the local meso-
structure of the material surface for improving the shading effects. The selection
of shaders, viewpoints and illuminations for rendering the materials are closely
oriented on the KTH-TIPS2 database. The texture map does not capture intra-
class variance and the approximate rendering models result in a loss concerning
the realistic depiction of some materials such as aluminum foil, which appear
rather artificial, especially in complex light situations. The reason for this is
that mesoscopic effects contributing to the appearance of many materials are
not modeled. The investigations in [16] therefore indicate that a training set
based on the utilized virtual samples alone performs poorly for material classifi-
cation and a mixture of real and rendered samples is necessary to get acceptable
results. In contrast to these studies, we show that the approach for synthesizing
virtual samples matters. Our measured database better covers intra-class vari-
ances and includes significantly more viewing and lighting configurations than
any of the other databases. These dense measurements are required for the re-
alistic depiction of many materials with their characteristic traits in a virtual
scene via BTFs to preserve the mesoscopic effects in the synthesized data.

3 Generation of Synthetic Training Data

In this section, we discuss the details of our database of measured BTF material
samples and how it is used to produce synthetic training images of these samples
under a range of different viewing and illumination conditions.

3.1 BTF Material Database

Since we intend to create synthetic training images, it is necessary to digitize
the material samples in such a way that it becomes possible to reproduce the
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material appearance under nearly arbitrary viewing and lighting conditions.
Though a wide range of material descriptions exists, image-based BTFs have
proven to be a representation which is suitable for a wide range of materials as
already discussed in Section 1. Since their introduction in [8], the technology has
advanced considerably, and today devices for the practical acquisition of BTFs
at high angular and spatial resolutions are available (e.g. [24]). In contrast to the
small number of representative images acquired for the other databases listed in
Table 1, these setups allow to acquire tens of thousands of images. Those images
are taken in a lab environment and, hence, not directly applicable for typical
real-world scenarios. However, this much larger number of viewing and lighting
conditions offers the possibility to render high-quality images of the materials
under nearly arbitrary viewing and lighting conditions, where material traits are
still accurately preserved. For a recent survey on BTFs, we refer to [12].

Our measured database is formed by 7 semantic classes which are relevant
for analyzing indoor scenarios (see Fig. 1). To sample the intra-class variances,
each of these 7 material categories of our database contains measurements of 12
different material instances. These instances share some common characteristics
of the corresponding category but also cover a large variability. With a total
of 84 measured material instances, we provide more than CUReT, KTH-TIPS
and KTH-TIPS2 (see Table 1). For each of the materials, we have measured
a full BTF with 22,801 HDR images (bidirectional sampling of 151 viewing
and 151 lighting directions) of a 5cm × 5cm patch with a spatial resolution of
512 × 512 texels. Thus, our database contains more than 1.9 million images.
Additionally, for each sample, a height map has been acquired via structured
light. This helps to reduce compression artifacts and allows to render realis-
tic silhouettes. We employed a reference geometry to evaluate the RMS error
between the reconstruction and the ground truth geometry which was approx.
25μm. The acquisition of both geometry and BTF of a material sample was
achieved fully automatically in approximately 3 hours, and up to 4 samples can
be acquired simultaneously. In particular, there is no need for manual annota-
tion which is not feasible for large image collections. Our database is available
at http://cg.cs.uni-bonn.de/en/projects/btfdbb/download/ubo2014/.

carpet fabric felt leather stone wallpaper wood 

Fig. 1. Representative images for the material samples in the 7 categories

http://cg.cs.uni-bonn.de/en/projects/btfdbb/download/ubo2014/
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Fig. 2. Synthesis of representative training data: The full Cartesian product of material
data (corresponding geometry and reflectance) and environment lighting (environments
taken from [1]) can easily be rendered by using a virtual camera with specified extrinsic
and intrinsic parameters. The illustrated output image is generated using the material
and illumination configuration highlighted in red.

3.2 Synthesizing Novel Training Images

Once the materials have been measured, it is in principle possible to render
images showing the materials under nearly arbitrary viewing and lighting con-
ditions. For training a material classifier, we have to decide for which conditions
we synthesize the training images, and we need a technique to synthesize a
sufficiently large number of images efficiently. Additionally, the material repre-
sentation used for producing the renderings needs to be capable of accurately
depicting the traits in material appearance. In the synthesis process (see Fig. 2),
the measured geometry and BTF of a considered material sample are rendered
under different illumination conditions simulated by environment maps which is
a standard in computer graphics (e.g. [10]). Furthermore, utilizing the measured
geometry allows compensating parallax effects. The latter would otherwise be in-
duced by surface regions which significantly protrude from the modeled reference
surface and result in a blurring of the surface details. We followed the technique
in [23] which is based on the reprojection of the BTF onto the geometry. The
result remains a BTF parameterized over the respective (non-planar) reference
geometry (and not a Spatially Varying BRDF), as the reflectance functions still
remain data-driven ABRDFs. Hence, effects like interreflections, self-shadowing,
etc. can still be reproduced. For geometric details not contained in the reference
geometry, the major parallaxes are removed by the reprojection and the remain-
ing disparities do not significantly influence the appearance of the synthesized
material.

In the rendering process, the exitant radiance Lr(x, ωo) is calculated for each
surface point x via the image-based relighting equation

Lr(x, ωo) =

∫

Ω

BTF(x, ωi, ωo) Li(ωi) V (x, ωi) dωi, (1)
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Fig. 3. Examples for synthesized images of the same material sample demonstrating
the large variation under different viewing and illumination conditions

where ωi and ωo represent the incoming and outgoing light direction. Li(ωi)
denotes the radiance distribution in the environment map over the spherical do-
main Ω. The visibility function V (x, ωi) represents a binary indicator function
considering if the environment map is visible from surface point x in the direc-
tion ωi. To solve the integral, the Mitsuba pathtracer [34] can be used. Due to
the enormous number of images we want to synthesize, the use of an efficient
rendering technique is mandatory. Therefore, we decided to additionally use an
OpenGL-based renderer for generating our database. To simulate the HDR en-
vironment in this renderer, we approximated it in a similar way to the work in
[4] with 128 directional light sources, distributed representatively over the envi-
ronment via a relaxation algorithm. In this case, the equation for evaluating the
exitant radiance Lr(x, ωo) reduces to

Lr(x, ωo) =
∑
ωi∈L

BTF(x, ωi, ωo) Li(x, ωi) V (x, ωi) (2)

where V (x, ωi) represents a shadowing term computed via shadow mapping [22]
and L denotes the set of light source directions, i.e. the ωi represent the direc-
tions to the utilized directional light sources. That way, it becomes possible to
render the images with a double resolution full-scene anti-aliasing at a resolution
of 1,280 × 960 pixels in about 2s on a GPU, including the computation of the
128 shadow-maps necessary to compute V (x, ωi). Fig. 3 illustrates the consider-
able variations in material appearance captured in the synthesized data due to
changes in the illumination and viewing conditions.

For every combination of material sample and environment map, we then
generated training images, depicting a planar material sample under a range
of 21 different rotations of the material sample (θ ∈ {0.0◦, 22.5◦, 45.0◦} × ϕ ∈
{−67.5◦,−45.0◦,−22.5◦, 0.0◦, 22.5◦, 45.0◦, 67.5◦}) and in two different distances
to also consider the scale-induced variations in appearance of the materials. To
further increase the variance captured by our dataset, we also use 6 rotated
versions of each of the 5 environment maps available at [1]. As a consequence,
we obtain 1,260 images per material sample (see Table 1). Though we only used
planar samples for this paper, the BTFs could in principle also be rendered on
arbitrary geometry to further increase the space of sampled conditions.
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4 Classification Scheme

Fig. 4 illustrates our classification scheme. For capturing different aspects of
material appearance, we use densely sampled 3 × 3 color patches and SIFT
features which represent standard descriptors (e.g. [17]). Although the color of
a material varies depending on the environmental conditions and the viewpoint,
it still contains valuable information as the variance of the color of a certain
material sample under natural illumination is typically limited. Furthermore, we
extract dense SIFT features which has become a popular choice in scene, object
and material recognition [5,36,17,16]. These features capture the local spatial and
directional distribution of image gradients and provide robustness to variations
in illumination and viewpoint. In our system, these features are extracted on
multiple scales (s ∈ {1, 2, 4, 6, 8}). Both descriptor types are extracted on a
regular grid with a spacing of 5 pixels as in [17].

Once features have been extracted, an appropriate representation for the con-
tent of the masked image regions has to be computed for each type of descriptor.
For this purpose, we first generate a dictionary of visual words for the individ-
ual feature types by k-means clustering of the respective descriptors extracted
from the images in the training set. This allows us to represent the single images
either by histograms as used in standard bag-of-words (BOW) approaches or
by more sophisticated representations such as Fisher vectors [20] or vectors of
locally aggregated descriptors (VLADs) [14] which have shown to yield supe-
rior performance when compared to standard BOW. Hence, we choose VLADs
for describing the content of the masked regions. This means that all the local
descriptors xi in an image are first assigned to their nearest neighbor cj with
j = 1, . . . , k in the corresponding dictionary with k visual words for each feature
type. Subsequently, the entries in the VLAD descriptor are formed by accumu-
lating the differences xi − cj of the local descriptors and their assigned visual
words according to

vj =
∑

{xi|NN(xi)=cj}
xi − cj . (3)

The final descriptor is built via the concatenation v =
[
vT
1 , . . . ,v

T
k

]T
. However,

the dimensionality of this representation is rather high-dimensional (d ·k). Here,
d represents the dimensionality of the local descriptors (e.g. d = 128 for SIFT)
and k the number of words in the dictionary. We utilize PCA and take the 250
most relevant components of the PCA space per descriptor type for the training
data. The VLAD representations of the test set are projected into this space.

The final classification task can be performed using standard classifiers such
as the nearest neighbor classifier, random forests [6] or support vector machines
[31]. The latter have already been successfully applied in the domain of material
recognition [32,7,26]. Since an SVM with RBF kernel outperformed the nearest
neighbor classifier or random forests in our experiments, we only report the num-
bers for the SVM, where the regularization parameter and the kernel parameter
are estimated based on the training data using grid search.
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Fig. 4. Classification scheme: Based on the descriptors extracted from the synthetic
training data (where the masks for the presence of materials are automatically given)
we calculate a dictionary via k-means clustering. This dictionary is used to encode the
descriptors per masked region via VLADs. Then, a dimensionality reduction of these
VLADs is performed via PCA which is followed by an SVM-based classification.

5 Experimental Results

In the scope of our experiments, we focus on whether real-world materials can
be classified using synthesized training data. For this purpose, we first validate
our classification scheme on standard material databases. In the next step, we
perform a detailed evaluation of using our synthesized training data for material
classification which is followed by a comparison to using other datasets. After
this, we analyze the potential of our synthesized training data for classifying
materials in internet photos. For obtaining the VLAD representation of the in-
dividual feature types, we use dictionaries with 150 visual words for the color
descriptor and 250 visual words for the SIFT descriptor in our experiments.

Validation of Classification Scheme on Commonly Used Material Data-
bases. With accuracies of 99.11% and 99.25% on the CUReT database and the
KTH-TIPS database respectively, our system is on par with recent state-of-the-
art approaches as listed in [30] which achieve accuracies of around 99%.

Analysis of Using Synthetic Training Data. Our main experiments target
material classification under everyday illumination conditions. For this reason,
we acquired photographs of the samples of the 7 classes considering arbitrarily
chosen poses of the camera w.r.t. the material samples for the test set Tte,1.
Different illumination conditions are taken into account by placing the material
samples into different environments: a room with natural illumination, a room
with a mix of natural illumination and neon lamps, a room with neon lamps
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and two darkened room scenarios with a rather directional illumination. In each
of the 5 scenarios, each material sample is photographed twice using different
viewpoints which results in a test set of 840 images. Based on this test set, we
evaluate if our synthesized training data (both pathtraced and OpenGL-based)
can be used for training a robust classifier. Additionally, we perform an evalua-
tion of considering natural illumination vs. considering directional illumination
as present in the measurement data. This will indicate if and how much can
be gained from the training data synthesized under natural illumination. The
results are summarized in Table 2.

Comparison of Measured vs. Pathtraced Training Data (Directional Lighting).
In a first step, we considered learning the classifier using training data with
illumination via point light sources. We randomly selected 50 images per material
sample from the measured data resulting in a training set Ttr,m of 4,200 images.
Using this training data, we obtain a classification accuracy of 58.92% on Tte,1. To
support our assumption that virtual images are of a similar quality as their real-
world counterparts, we generated a virtual duplicate of the utilized measurement
device using the pathtracer implementation in [34]. Using this virtual setup, we
produce synthetic training data following Fig. 2 for exactly the same viewing and
illumination configurations as present in Ttr,m. In this case, we use illumination
by point light sources as present in the real device instead of environment maps.
The resulting classification accuracy of 60.48% closely matches to the accuracy
obtained for the real-world measurement data.

Comparison of Measured vs. Pathtraced Training Data (Natural Lighting). Here,
we analyzed the effect of considering more complex illumination as encountered
in typical real-world scenarios for the training. We captured all the 84 mate-
rial samples under two representative room environments and an outside en-
vironment in a courtyard, and from two different viewpoints which results in
a training set of 504 images. Based on this training set, where we expect the
camera settings (viewpoints w.r.t. material samples, white-balancing, . . . ) to be
close to the ones used for the test set, we obtain a classification accuracy of
75.83%. For synthetically simulating this scenario, we captured light probes of
the three environments and used them for generating training data under more
typical real-world lighting but under the same viewpoints as present in Ttr,m.
This results in a training set of 12,600 images for which we obtain an accuracy
of 68.21%.

Obviously, there is a clear benefit of using representative environments in the
generation of the easy-to-produce synthetic training data in comparison to the
illumination via point light sources as present in Ttr,m. In addition, the character-
istic material traits seem to be preserved sufficiently within our synthesized data.
However, we recognize a difference in performance between using the training set
of 12,600 images synthesized under environment lighting and the use of the 504
photos taken in the respective environments. This might be due to the noise in-
troduced by the pathtracer with only 32spp (samples per pixel) which influences
the descriptors as well as not perfectly matching the assumptions of far field
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illumination and the neglection of emitting surfaces. The reason for only taking
32spp is that data generation using a pathtracer takes a lot of time, especially if
different environmental lighting and different scales are desired. Rendering the
4,200 images for the virtual measurement device (under one single environment
map) for instance already takes about two days using 32spp with our implemen-
tation based on Mitsuba on a Intel Xeon CPU E5−2690v2 workstation (32 cores,
3 GHz). We also did not perform a white balancing of the data under the en-
vironmental lighting which might influence both descriptor types. Furthermore,
the acquisition conditions (view conditions, camera characteristics) of both Tte,1
and the 504 real-world training images were similar.

Comparison of Measured vs. Rasterized Training Data (Natural Lighting). As a
consequence of the slow rendering via a pathtracer, we used our OpenGL-based
synthesis procedure for generating the huge amount of images in our synthesized
database. As training set, we consider a random subset of 600 different viewing
and illumination conditions from this synthesized data for each of the classes
resulting in 4,200 images. In this scenario, our classifier yields a classification ac-
curacy of 72.74% which again significantly outperforms the accuracy of 58.92%
obtained when using 4,200 photos acquired during the measurement of the sam-
ples in a lab with controlled illumination for the training. It even almost reaches
the accuracy of 75.83% from the experiment mentioned before. This might be
due to the fact, that we do not encounter the problem of noise induced by the
pathtracing approach when using the OpenGL-based synthesis as well as better
matching the viewpoint conditions in Tte,1 by accounting for multiple scales.

Furthermore, we analyzed the impact of using different numbers of the
OpenGL-synthesized images for the training. The accuracy increases with an
increasing size of the training data, which is to be expected, as larger training
sets cover a larger variance of the utilized viewing and illumination conditions
(Table 2).

Comparison of Per-class Accuracies. There seems to be a trend that in particu-
lar the samples of the categories fabric, felt, leather and stone can be categorized
more reliably when using the synthesized training data (OpenGL-based) with
natural illumination in comparison to measurement data with directional illu-
mination (improvements of around 22% (fabric), 10% (felt), 30% (leather), 35%
(stone) and less overfitting to the remaining categories). This agrees with our
motivation for this study as we expect the samples of these classes to have more
variance in appearance under the different illumination conditions due to their
deeper meso-structure and their surface reflectance behavior.

Classifier Generalization to Unseen Material Samples in Different Environments
Based on Synthesized Data. For each of the classes, we draw a random subset of
600 images with different viewing and illumination conditions from the complete
synthetic training data. We split the material samples of the 7 classes into disjoint
training and test sets by using 8 material samples observed under 4 different
environments for the training set and the remaining 4 samples rendered under
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Table 2. Classification on the manually acquired photos in Tte,1 using different training
sets (∗: pathtraced using Mitsuba renderer [34]; ∗∗: OpenGL-based synthesis using 5
environment maps available from [1])

training set illumination type of performance
type training data on Tte,1

4,200 images from measurement directional real-world 58.92%
4,200 synthesized images (pathtraced∗) using the
same viewing and lighting conditions as present
in measurement

directional synthetic 60.48%

12,600 synthesized images (pathtraced∗) using
the same viewing conditions as present in the
measurement data but under 3 measured envi-
ronments

natural synthetic 68.21%

504 photos acquired in 3 measured environments natural real-world 75.83%

525 synthesized images (OpenGL-based∗∗) natural synthetic 62.74%
1,050 synthesized images (OpenGL-based∗∗) natural synthetic 65.71%
2,100 synthesized images (OpenGL-based∗∗) natural synthetic 68.69%
4,200 synthesized images (OpenGL-based∗∗) natural synthetic 72.74%

the fifth environment map as the test set. The resulting accuracy of 62.29%
indicates the ability of our classifier to generalize to unseen material samples
and illumination conditions. Using more material samples per category and more
environment maps would probably lead to an increasing accuracy.

Using Our Synthesized Database vs. Using Previous Synthesized Train-
ing Data for Classifier Training. A comparison to other approaches using
synthesized data, such as [16], is not directly possible. We focus on different
material categories that might be more relevant for analyzing offices, buildings
or streets and our synthesized data differs significantly from the data in [16] as
we utilize natural lighting conditions which allows material classification outside
a controlled lab environment. We show the benefit of using more realistic data
for the overlapping material category wood in the supplementary material.

Classifying Materials in Internet Photos. We downloaded for each of our
7 material categories 20 images and performed a manual segmentation on each
image. Then, the masked material regions form Tte,20. Taking a subset of 15 im-
ages per class from Tte,20 gives another test set Tte,15. Using our aforementioned
training data of 4,200 images synthesized using OpenGL and under considera-
tion of environmental illumination gives accuracies of 65.71% (Tte,15) and 62.86%
(Tte,20). In comparison, using Ttr,m for the training results in an accuracy of only
56.19% for Tte,15 and 56.43% for Tte,20.

In addition, training the classifier on 5 of the images per class not included in
Tte,15 gives an accuracy of 41.90% on Tte,15. The influence of adding synthesized
data to this training set on the accuracy obtained for Tte,15 as well as a summary
of the other results in this paragraph are shown in Table 3. Taking more training
data with a larger variance of the utilized illumination conditions and the utilized
viewpoints leads to an increasing performance. This clearly demonstrates the
power of using synthesized materials for practical applications.
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Table 3. Classification of internet images (Tte,15 and Tte,20) using different training sets
(∗: OpenGL based synthesis using 5 environment maps available from [1]; †: category
leather is not covered in the CUReT database)

training set illumination type of Tte,15 Tte,20

type training data 15 internet 20 internet
images images

CUReT images † directional real-world 41.11% 36.67%
4,200 images from measurement directional real-world 56.19% 56.43%

4,200 synthesized images∗ natural synthetic 65.71% 62.86%

internet images natural real-world 41.90% −
internet images+ natural mixed 66.67% −

4,200 synthesized images∗

internet images+ natural mixed 72.38% −
16,800 synthesized images∗

Except for the category leather, we also used the samples present in the
CUReT database to represent the categories. For each category, we selected
92 images equally distributed over the material samples contributing to the
classes (carpet: samples 18,19; fabric: samples 2,3,7,22,29,42,44,46; felt: sample
1; stone: samples 10,11,17,30,33,34,36,37,41,49,50; wallpaper: samples 12,31,38;
wood: samples 54,56). In this experiment, we obtained accuracies of 41.11%
(Tte,15) and 36.67% (Tte,20) hinting on a bad generalization of the CUReT
database to natural illumination, varying viewing conditions and intra-class vari-
ances. Furthermore, the image quality is rather low for the CUReT database.

6 Conclusion

In this paper, we have presented an approach for creating synthetic training sam-
ples for material classification. This way, it is possible to decouple the acquisition
of the material samples from the acquisition of the illumination conditions under
which the material is observed. In addition, using synthesized data overcomes
the need for time-consuming manual acquisition, annotation and segmentation
of images. To evaluate our approach, we acquired a database of BTFs, containing
7 classes with 12 samples each, from which the training data is generated. Our
evaluation demonstrates that our approach represents a significant step towards
classifying materials in everyday environments and clearly outperforms the al-
ternative of taking images from the measurement of the material samples under
controlled illumination conditions as training data. This makes our approach
valuable for many applications in the area of texture classification and auto-
matic segmentation of images. We intend to extend the database by additional
material classes. In addition, the number of viewing and lighting conditions could
also be increased for the synthesized database.
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