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Abstract. Similarity search is an important technique in many large
scale vision applications. Hashing approach becomes popular for similar-
ity search due to its computational and memory efficiency. Recently, it
has been shown that the hashing quality could be improved by combining
supervised information, e.g. semantic tags/labels, into hashing function
learning. However, tag information is not fully exploited in existing un-
supervised and supervised hashing methods especially when only partial
tags are available. This paper proposes a novel semi-supervised tag hash-
ing (SSTH) approach that fully incorporates tag information into learn-
ing effective hashing function by exploring the correlation between tags
and hashing bits. The hashing function is learned in a unified learning
framework by simultaneously ensuring the tag consistency and preserving
the similarities between image examples. An iterative coordinate descent
algorithm is designed as the optimization procedure. Furthermore, we
improve the effectiveness of hashing function through orthogonal trans-
formation by minimizing the quantization error. Extensive experiments
on two large scale image datasets demonstrate the superior performance
of the proposed approach over several state-of-the-art hashing methods.
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1 Introduction

Due to the explosive growth of the Internet, a huge amount of image data has
been generated, which indicates that efficient similarity search becomes more
important. Traditional similarity search methods are difficult to be directly used
for large scale datasets since the computational cost of similarity calculation
using the original visual features is impractical for large scale applications. Re-
cently, hashing has become a popular approach in large scale vision problems
including image retrieval [5], object recognition [20], image matching [19], etc.
Hashing methods design compact binary codes for a large number of images so
that visually similar images are mapped into similar codes. In the retrieving pro-
cess, these hashing methods first transform query images into the corresponding
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hashing codes and then similarity search can be simply conducted by calculating
the Hamming distances between the codes of available images and the query, and
selecting images within small Hamming distances.

Recently hashing methods have shown that the hashing performance could be
boosted by leveraging supervised information into hashing function learning such
as semantic tags/labels. Although existing hashing methods generate promising
results in large scale similarity search, tag information is not fully exploited
especially when tags are incomplete and noisy. Most of the existing hashing
methods only utilize a small portion of the information contained in tags, e.g.,
pairwise similarity or listwise ranking information, which might not be accurate
or reliable under the situation where only partial tags are available. There are
three main challenges to incorporate tags into hashing function learning: (1) we
have no knowledge about how tags are related to the hashing bits; (2) we need
to deal with noisy and incomplete tags when only partial tags are available; (3)
we need to deal with the ambiguity of semantically similar tags.

This paper proposes a novel semi-supervised tag hashing (SSTH) approach to
fully exploits tag information in learning effective hashing function by modeling
the correlation between tags and hashing bits. The hashing function is learned in
a unified framework by simultaneously ensuring the tag consistency and preserv-
ing the similarities between image examples. In particular, the objective function
of the proposed SSTH approach is composed of two parts: (1) Tag consistency
term (supervised), which ensures the hashing codes to be consistent with the
observed tags via modeling the correlation between tags and hashing bits. (2)
Similarity preservation term (unsupervised), which aims at preserving the visual
similarity between images in the learned hashing codes. An iterative algorithm is
then derived based on the relaxed objective function using a coordinate descent
optimization procedure. We further improve the quality of hashing function by
minimizing the quantization error.

We summarize the contributions in this paper as follows: (1) propose a uni-
fied framework to incorporate the supervised tag information for jointly learning
effective hashing function and correlation between tags and hashing codes; (2)
propose a coordinate descent method for the relaxed joint optimization prob-
lem; (3) prove the orthogonal invariant property of the optimal relaxed solution
and learn an orthogonal matrix by minimizing the quantization error to further
improve the code effectiveness.

2 Related Work

Hashing methods [1,15,16,17,24,25,27,30,32] are proposed to generate reasonably
accurate search results in a fast process with compact binary vector representa-
tion. Hashing based fast similarity search methods transform the original visual
features into a low dimensional binary space, while at the same time preserve the
visual similarity between images as much as possible. Existing hashing methods
can be divided into two groups: unsupervised and supervised/semi-supervised
hashing methods.
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Among theunsupervisedhashing approaches,Locality-SensitiveHashing (LSH)
[3] is one of themost popularmethods,whichuses random linear projections tomap
images from a high dimensional Euclidean space to a binary space. This method
has been extended toKernelizedLSH [7] by exploiting kernel similarity.Traditional
dimensionality reduction methods try to solve the hashing problem based on the
original feature information via simple thresholding. For example, the Principle
Component Analysis (PCA) Hashing [8] method represents each example by
coefficients from the top k principal components of the training set, and the coeffi-
cients are further binarized to 1 or -1 based on the median value. Restricted Boltz-
man Machine (RBM) is used in [17] to generate compact binary hashing codes.
Recently, Spectral Hashing (SH) [28] is proposed to design compact binary codes
with balanced and uncorrelated constraints in the learned codes that preserve the
similarity between data examples in the original space. The work in [11] proposes
a graph-based hashing method to automatically discover the neighborhood struc-
ture inherent in the data to learn appropriate compact codes. More recently, a bit
selectionmethod [12] has been proposed to select themost informativehashing bits
from a pool of candidate bits generated from different hashing methods.

For the supervised/semi-supervised hashing methods, a Canonical Correlation
Analysis with Iterative Quantization (CCA-ITQ) method has been proposed in
[4,5] which treats the image features and tags as two different views. The hashing
function is then learned by extracting a common space from these two views. The
work in [26] combines tag information with topic modeling by extracting topics
from texts for document retrieval. Recently, several pairwise hashing methods
have been proposed. The semi-supervised hashing (SSH) method in [22] uti-
lizes pairwise knowledge between image examples besides their visual features
for learning more effective hashing function. A kernelized supervised hashing
(KSH) framework proposed in [10] imposes the pairwise relationship between
image examples to obtain good hashing codes. Complementary Hashing (CH)
[29] uses pairwise information to learn multiple complementary hash tables in
a boosting manner. Most recently, a ranking-based supervised hashing (RSH)
[23] method is proposed to leverage the listwise ranking information to improve
the search accuracy. However, these pairwise/listwise information is usually ex-
tracted from the image tags, and thus only represents a small portion of tag
information rather than the complete supervised information contained in tags.
Moreover, tags may have different representations for a similar semantic mean-
ing (e.g.,‘car’ versus ‘automobile’) and could be missing or incomplete, which
makes the pairwise/listwise information not reliable.

3 Semi-Supervised Tag Hashing

3.1 Problem Setting

Assume there are total n training image examples. Let us denote their features
as: XXX = {x1, x2, . . . , xn} ∈ Rd×n, where d is the dimensionality of the visual
feature. Denote the observed/partial tags as: TTT = {t1, t2, . . . , tl} ∈ {0, 1}n×l,
where l is the total number of possible tags for each image. A label 1 in TTT means
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an image is associated with a certain tag, while a label 0 means a missing tag or
the tag is not associated with that image. The goal is to obtain a linear hashing
function f : R

d → {−1, 1}k, which maps image examples XXX to their binary
hashing codes YYY = {y1, y2, . . . , yn} ∈ {−1, 1}k×n (k is the length of hashing
code). The linear hashing function is defined as:

yi = f(xi) = sgn(WWWTxi) (1)

where WWW ∈ R
d×k is the coefficient matrix representing the hashing function and

sgn is the sign function. yi ∈ {−1, 1}k is the binary hashing code of xi.
The objective function of SSTH is composed of two components: (1) Tag

consistency term, the supervised part which ensures that the hashing codes are
consistent with the observed tags. (2) Similarity preservation term, the unsuper-
vised part which aims at preserving the visual similarity in the learned hashing
codes. In the rest of this section, we will present the formulation of these two
components respectively. Then in the next section, we will describe the opti-
mization algorithm together with a scheme that can further improve the quality
of the hashing function by minimizing the quantization error.

3.2 Tag Consistency

Image data is often associated with various tags in many vision applications.
These tag information provides useful supervised knowledge in learning effective
hashing function. Therefore, it is necessary to design a scheme for leveraging tag
information. There are three main challenges to incorporate tags. (1) We have no
knowledge about how tags are related to the hashing bits. Therefore, we need to
explore the correlation between them in order to bridge tags with hashing codes.
(2) Tags could be partial and missing, and we need to deal with the situation of
incomplete tags. (3) We need to deal with the ambiguity of semantically similar
tags (e.g., ‘human’ versus ‘people’, ‘car’ versus ‘automobile’).

In this work, we propose to model the consistency between tags and hashing
codes via matrix factorization using the latent factor model [21]. Semantically
similar tags are represented by different tags (e.g., ‘human’ and ‘people’ are two
distinct tags) in our model and we will discuss how this issue can be addressed
later. In the latent factor model, a set of latent variables cj for each tag tj is
first introduced to model the correlation between tags and hashing bits, where
j ∈ {1, 2, . . . , l} and cj is a k × 1 vector indicating the correlation between the
j-th tag and k hashing bits. Then a tag consistency component can be naturally
formulated as:

n∑

i=1

l∑

j=1

‖TTT ij − yTi cj‖2 + α
l∑

j=1

‖cj‖2 (2)

here TTT ij is the label of j-th tag on the i-th image. Intuitively, yTi cj can be
essentially viewed as a weighted sum that indicates how the j-th tag is related
to the i-th image, and this weighted sum should be consistent with the observed
label TTT ij as much as possible.

∑l
j=1 ‖cj‖2 is a regularizer to avoid overfitting
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and α is the trade-off parameter. In this way, the latent correlation between tags
and hashing bits can be learned by ensuring this consistency term.

The ambiguity issue for semantically similar tags is addressed by the latent
factor model since these tags often appear in common images, and thus the
learned corresponding latent variables will be similar by ensuring the tag consis-
tency term. This can also be explained by the formulation above, which ensures
the consistency between tag t and YYY c (i.e., t ≈ YYY c). Therefore, if two tags ti
and tj are associated with similar images, their corresponding ci and cj will be
close as well. In the extreme case, if two tags appear in exactly the same set of
images, their latent variables will be identical.

An importance matrix III ∈ Rn×l is introduced to deal with the missing tag
problem. As mentioned above, TTT ij = 0 can be interpreted into two ways: j-th
tag on the i-th image is either missing or not related. Therefore, we set IIIij = a
with a higher value when TTT ij = 1 than IIIij = b when TTT ij = 0, where a and b are
parameters satisfying a > b > 01. Then the whole tag consistency term becomes:

n∑

i=1

l∑

j=1

IIIij‖TTT ij − yTi cj‖2 + α

l∑

j=1

‖cj‖2 (3)

By substituting Eqn.1, the above equation can be rewritten as a compact matrix
form:

‖III 1
2 ··· (TTT − sgn(XXXTWWW )CCC)‖2F + α‖CCC‖2F (4)

where III
1
2 is the element-wise square root matrix of III, and ··· is the element-

wise matrix multiplication. ‖‖F is the matrix Frobenius norm and CCC is a k × l
correlation matrix bridging the hashing codes with tags. By minimizing this
term, the consistency between tags and the learned hashing codes is ensured.

3.3 Similarity Preservation

One of the key problems in hashing algorithms is similarity preserving, which
indicates that visually similar images should be mapped to similar hashing codes
within a short Hamming distance. The Hamming distance between two binary
codes yi and yj can be calculated as 1

4‖yi − yj‖2. To measure the similarity
between image examples represented by the binary hashing codes, one natural
way is to minimize the weighted average Hamming distance as follows:

∑

i,j

SSSij‖yi − yj‖2 (5)

Here, SSS is the similarity matrix, which can be calculated from image featuresXXX .
In this paper, we adopt the local similarity [31], due to its nice property in many
machine learning applications. To meet the similarity preservation criterion, we
seek to minimize this quantity since it incurs a heavy penalty if two similar
images are mapped far away.

1 In our experiments, we set the importance parameters a=1 and b=0.01.
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By introducing a diagonal n× n matrix DDD, whose entries are given by DDDii =∑n
j=1SSSij . Eqn.5 can be rewritten as:

tr
(
YYY (DDD −SSS)YYY T

)
= tr

(
YYYLLLYYY T

)
= tr

(
sgn(WWWTXXX)LLLsgn(XXXTWWW )

)
(6)

where LLL is called graph Laplacian [28] and tr() is the matrix trace function. The
similarity preservation term plays an important role in hashing function learning
especially when the supervised information is limit due to noisy and incomplete
tags. By minimizing this term, the similarity between different image examples
can be preserved in the learned hashing codes.

3.4 Overall Objective

The entire objective function consists of two components: the tag consistency
term in Eqn.4 and the visual similarity preservation term given in Eqn.6 as
follows:

min
W,CW,CW,C

‖III 1
2 ··· (TTT − sgn(XXXTWWW )CCC)‖2F + γ tr

(
sgn(WWWTXXX)LLLsgn(XXXTWWW )

)
+ α‖CCC‖2F

s.t. WWWTWWW = IkIkIk
(7)

where α and γ are trade-off parameters to balance the weights among the terms.
The hard orthogonality constraints enforce the hashing bits to be uncorrelated
with each other and therefore the learned hashing codes can hold least redundant
information.

4 Optimization Algorithm

4.1 Relaxation

Directly minimizing the objective function in Eqn.7 is intractable since it is
a constrained integer programming, which is proven to be NP-hard to solve.
Therefore, we first convert the hard constraints into a soft penalty term by
adding a regularizer to the objective and use the signed magnitude instead of
the sign function as suggested in [10,23]. Then the relaxed objective function
becomes:

min
W̃ ,CW̃ ,CW̃ ,C

‖III 1
2 ··· (TTT −XXXT W̃̃W̃WCCC)‖2F + γ tr

(
W̃̃W̃WT L̃̃L̃LW̃̃W̃W

)
+ α‖CCC‖2F + β‖W̃̃W̃WT W̃̃W̃W − IkIkIk‖2F (8)

where L̃̃L̃L ≡XLXLXLXXXT and can be pre-computed. However, even after the relaxation,
the objective function is still difficult to optimize since W̃̃W̃W and CCC are coupled
together and it is non-convex with respect to W̃̃W̃W and CCC jointly. We propose
to split the optimization problem into two simpler sub-problems. The idea is
that given W̃̃W̃W , CCC has a closed form solution with respect to W̃̃W̃W (see details in
SP2 below). Thus we split the relaxed objective with respect to W̃̃W̃W and CCC and
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solve the two sub-problems iteratively using coordinate descent method. The
two sub-problems are given as:

SP1 : min
W̃̃W̃W

‖III 1
2 ··· (TTT −XXXT W̃̃W̃WCCC)‖2F + γ tr

(
W̃̃W̃WT L̃̃L̃LW̃̃W̃W

)
+ β‖W̃̃W̃WT W̃̃W̃W − IkIkIk‖2F (9)

SP2 : min
CCC

‖III 1
2 ··· (TTT −XXXT W̃̃W̃WCCC)‖2F + α‖CCC‖2F (10)

SP1 is still non-convex, but it is smooth and differentiable which enables gradient
descent methods for efficient optimization. The gradient of SP1 is calculated as
follows:

∂
SP1

W̃̃W̃W
= 2XXX(III ··· (XXXTW̃CW̃CW̃C − TTT ))CCCT + 2γL̃W̃L̃W̃L̃W̃ + 4βW̃̃W̃W (W̃̃W̃WT W̃̃W̃W − IkIkIk) (11)

With this obtained gradient, L-BFGS quasi-Newton method [9] is applied to
solve SP1.

By taking the derivative of SP2 w.r.t. CCC and setting it to 000, we can obtain
the closed form solution of SP2 below:

∂
SP2

CCC
= 2W̃̃W̃WTXXX(III ··· (XXXTW̃CW̃CW̃C −TTT )) + 2αCCC = 000

⇒ cj = (W̃̃W̃WTXXXIIIjXXX
T W̃̃W̃W + αIkIkIk)

−1W̃̃W̃WTXXXIIIjTTT j

(12)

where IIIj is a n × n diagonal matrix with IIIij , i = 1, 2, . . . , n as its diagonal
elements and TTT j = (TTT ij), i = 1, 2, . . . , n is a n× 1 label vector of j-th tag.

We alternate the process of updating W̃̃W̃W and CCC for several iterations to find
a locally optimal solution. In practice, we have found that a reasonable small
number of iterations (i.e., 30 in our experiments) can achieve good performance.

4.2 Orthogonal Transformation

After obtaining the optimal hashing function W̃̃W̃W for the relaxation, the hashing
codes YYY can be generated using Eqn.1. It is obvious that the quantization error
can be measured as ‖YYY −W̃TXXXW̃TXXXW̃TXXX‖2F . Inspired by [5], we propose to further improve
the hashing function by minimizing this quantization error using an orthogonal
transformation. We first prove the following orthogonal invariant theorem.

Theorem 1. Assume QQQ is a k×k orthogonal matrix, i.e., QQQTQQQ = IkIkIk. If W̃̃W̃W and
CCC are an optimal solution to the relaxed problem in Eqn.8, then W̃QW̃QW̃Q and QQQTCCC
are also an optimal solution.

Proof. By substituting W̃QW̃QW̃Q and QQQTCCC into Eqn.8, we have:
‖III 1

2 ··· (TTT −XXXTW̃QW̃QW̃QQQQTCCC)‖2F = ‖III 1
2 ··· (TTT −XXXT W̃̃W̃WCCC)‖2F ,

tr
(
(W̃QW̃QW̃Q)T L̃̃L̃LW̃QW̃QW̃Q

)
= tr

(
QQQT W̃̃W̃WT L̃̃L̃LW̃QW̃QW̃Q

)
= tr

(
W̃̃W̃WT L̃̃L̃LW̃̃W̃W

)
, ‖QQQTCCC‖2F=‖CCC‖2F

and ‖(W̃QW̃QW̃Q)TW̃QW̃QW̃Q− IkIkIk‖2F = ‖QQQT (W̃̃W̃W T W̃̃W̃W − IkIkIk)QQQ‖2F = ‖W̃̃W̃WT W̃̃W̃W − IkIkIk‖2F .
Thus, the value of the objective function in Eqn.8 does not change by the or-
thogonal transformation.
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According to the above theorem, we propose to find a better hashing function
WWW = W̃QW̃QW̃Q by minimizing the quantization error between the binary hashing
codes and the orthogonal transformation of the relaxed solution as follows:

min
Y,QY,QY,Q

‖YYY − (W̃QW̃QW̃Q)TXXX‖2F
s.t. YYY ∈ {−1, 1}k×n, QQQTQQQ = IkIkIk

(13)

Intuitively, we seek binary codes that are close to some orthogonal transforma-
tion of the relaxed solution. The orthogonal transformation not only preserves
the optimality of the relaxed solution but also provides us more flexibility to
achieve better hashing codes with low quantization error. The idea of orthogonal
transformation is also utilized in ITQ [5]. However, ITQ method is not designed
for incorporating partial tag information into learning effective hashing function
and it does not preserve the local similarities among data examples. The above
optimization problem can be solved by minimizing Eqn.13 with respect to YYY and
QQQ alternatively as follows:

Fix Q and update Y . The closed form solution can be expressed as:

YYY = sgn
(
(W̃QW̃QW̃Q)TXXX

)
= sgn(WWWTXXX) (14)

which is identical with our linear hashing function in Eqn.1.
Fix Y and update Q. The objective function becomes:

min
QQQTQQQ=IkIkIk

‖YYY −QQQT W̃̃W̃WTXXX‖2F (15)

In this case, the objective function is essentially the classic Orthogonal Pro-
crustes problem [18], which can be solved efficiently by singular value decom-
position using the following theorem (we refer to [18] for the detailed proof).

Theorem 2. Let SΛVSΛVSΛV T be the singular value decomposition of YYYXXXT W̃̃W̃W . Then
QQQ = V SV SV ST minimizes the objective function in Eqn.15.

We then perform the above two steps alternatively to obtain the optimal hashing
codes and the orthogonal transform matrix. In our experiments, we find that
the algorithm usually converges in about 40∼60 iterations. The full learning
algorithm is described in Algorithm 1.

4.3 Complexity Analysis

This section provides some analysis on the training cost of the optimization
algorithm. The optimization algorithm of SSTH consists of two main loops. In
the first loop, we iteratively solve SP1 and SP2 to obtain the optimal solution,
where the time complexities for solving SP1 and SP2 are bounded by O(nlk +
nkd+nk2) and O(nk2+nkl) respectively. The second loop iteratively optimizes
the binary hashing codes and the orthogonal transformation matrix, where the
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Algorithm 1. Semi-Supervised Tag Hashing (SSTH)

Input: Images XXX , Observed Tags TTT and trade-off parameters
Output: Hashing function WWW , Hashing codes YYY and Correlation CCC

Initialize CCC = 000 and QQQ = IkIkIk, Calculate L̃̃L̃L.
repeat

Optimize SP1 using Eqn.11 and update W̃̃W̃W
Optimize SP2 using Eqn.12 and update CCC

until the solution converges
repeat

Update YYY using Eqn.14
Update QQQ = V SV SV ST according to Theorem 2.

until the solution converges
Compute hashing function WWW=W̃QW̃QW̃Q.

time complexities for updating YYY and QQQ are bounded by O(nk2 + nkd + k3).
Moreover, both two loops take less than 60 iterations to converge as mentioned
before. Thus, the total time complexity of the learning algorithm is bounded by
O(nlk+ nkd+ nk2 + k3), which scales linearly with n given n 	 l > d > k. For
each query, the hashing time is constant O(dk).

5 Experimental Results

5.1 Datasets

We evaluate our method for large scale image retrieval on two image bench-
marks: NUS-WIDE and FLICKR-1M . NUS-WIDE [2] is created by NUS lab for
evaluating image annotation and retrieval techniques. It contains 270k images
associated with 5k unique tags. 500-dimensional visual features are extracted
using a bag-of-visual-word model with local SIFT descriptor [13]. We randomly
partition this dataset into two parts, 1k for testing and around 269k for training.
FLICKR-1M [6] is collected from Flicker images for image retrieval tasks. This
benchmark contains 1 million image examples associated with more than 7k
unique tags. 512-dimensional GIST descriptors [14] are extracted from these im-
ages and are used as image features for hashing function learning. We randomly
choose 990k image examples as the training set and 10k for testing.

We implement our algorithm using Matlab on a PC with Intel Duo Core i5-
2400 CPU 3.1GHz and 8GB RAM. The parameters α, β and γ in SSTH are
tuned by 5-fold cross validation on the training set.

5.2 Evaluation Method

To conduct fair evaluation, we follow two criteria which are commonly used
in the literature [5,10,23]: Hamming Ranking and Hash Lookup. Hamming
Ranking ranks all the points in the database according to their Hamming dis-
tance from the query and the top k points are returned as the desired neighbors.
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Fig. 1. Precision results on two datasets. (a)-(b): Precision of the top 200 returned
examples using Hamming Ranking. (c)-(d): Precision within Hamming radius 2 using
Hash Lookup.

Hash Lookup returns all the points within a small Hamming radius r of the
query. The search results are evaluated based on whether the retrieved image
and the query image share any ground-truth tags (i.e., if a returned image and
the query image share any common semantic tags, then we treat this returned
image as a true neighbor of the query image). We use several metrics to measure
the performance of different methods. ForHamming Ranking based evaluation,
we calculate the precision at top K which is the percentage of true neighbors
among the top K returned examples, where we set K to be 200 in the experi-
ments. We also compute the precision-recall value which is a widely used metric
in information retrieval applications. A hamming radius of R = 2 is used to re-
trieve the neighbors in the case of Hash Lookup. The precision of the returned
examples falling within Hamming radius 2 is reported.

5.3 Results and Discussion

The proposed SSTH approach is compared with five different algorithms, i.e.,
Spectral Hashing (SH) [28], Latent Semantic Hashing (LSH) [3], Canonical Cor-
relation Analysis with Iterative Quantization (CCA-ITQ) [5,4], Semi-Supervised
Hashing (SSH) [22] and Kernel Supervised Hashing (KSH) [10]. For LSH, we
randomly select projections from a Gaussian distribution with zero-mean and
identity covariance to construct the hash tables. For SSH and KSH, we sample 2k
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Fig. 2. Results of Precision-Recall behavior on two datasets. (a)-(b): Precision-Recall
curve with 16 hashing bits. (c)-(d): Precision-Recall curve with 32 hashing bits.

random points from the training set to construct the pairwise constraint matrix.
The reason we choose 2k points is that tags tend to be noisy and incomplete,
and the constructed pairwise matrix based on these tags may be unreliable and
inconsistent especially when tags are very sparse, resulting in even lower perfor-
mance with more samples. Therefore, following the parameter settings in their
papers, we also sample 2k points in our experiments.

In the first set of experiments, we report the precisions for the top 200 re-
trieved images and the precisions for retrieved images within Hamming ball with
radius 2 by varying the number of hashing bits in the range of {8, 16, 32, 64, 128}
in Fig.1. The precision-recall curves with 16 and 32 hashing bits on both datasets
are reported in Fig.2. From these comparison results, we can see that SSTH pro-
vides the best results among all six hashing methods on both benchmarks. LSH
does not perform well in most cases since LSH method is data-independent,
which may generate inefficient codes compared to those data-depend methods.
The unsupervised SH method only tries to preserve image similarity in learned
hashing codes, but does not utilize the supervised information contained in tags.
SSH and KSH achieves better performance than SH and LSH due to the mod-
eling of pairwise information. However, as pointed out in section 2, the coarse
pairwise constraints generated from tags do not fully utilize tag information. The
supervised method CCA-ITQ have similar performance to KSH since it also in-
corporates tags into learning better data representations. But in CCA-ITQ, it
treats tags as another independent source where it may not be even reliable
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as tags can be incomplete, noisy and partially available. Moreover, the visual
similarity is not well preserved in its hashing function learning. On the other
hand, our SSTH not only exploits tag information via modeling the correlation
between tags and hashing bits, but also preserves image similarity at the same
time in the learned hashing function, which enables SSTH to generate higher
quality hashing codes than the other supervised hashing methods. In Fig.1(c)-
(d), we observe the precision of Hash Lookup for most of the compared methods
decreases significantly with the increasing number of hashing bits. The reason is
that the Hamming space becomes increasingly sparse with longer hashing bits
and very few data points fall within the Hamming ball with radius 2, which
makes many queries have 0 precision results. However, the precision of SSTH is
still consistently higher than the other methods for Hash Lookup.

Table 1. Precision of the top 200 retrieved images under different training tag ratios
on two datasets with 32 hashing bits

NUS-WIDE FLICKR-1M

tag ratio 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

SSTH 0.3370.3370.337 0.3410.3410.341 0.3540.3540.354 0.3630.3630.363 0.3740.3740.374 0.4530.4530.453 0.4610.4610.461 0.4760.4760.476 0.480 0.5180.5180.518

SSTH0 0.328 0.332 0.347 0.351 0.356 0.443 0.449 0.464 0.476 0.505

KSH [10] 0.288 0.296 0.301 0.308 0.316 0.422 0.448 0.459 0.4810.4810.481 0.484

CCA-ITQ [5,4] 0.287 0.290 0.305 0.330 0.348 0.410 0.427 0.445 0.467 0.494

SSH [22] 0.283 0.285 0.291 0.297 0.299 0.398 0.416 0.422 0.435 0.439

In the second set of experiments, we evaluate the effectiveness of the proposed
SSTH if only partial tags are available. We progressively increase the number
of training tags by varying the training tag ratio from {0.2, 0.4, 0.6, 0.8, 1}2
and compare our SSTH with the other supervised hashing methods3, CCA-ITQ,
SSH and KSH on both datasets by fixing the hashing bits to 32. The precision
results of top 200 retrieved images are reported in Table 1. We also evaluate
our method without orthogonal transformation (by setting QQQ = IkIkIk) and call
this SSTH0 in Table 1. It can be seen from the results that our SSTH gives the
best performance among all supervised hashing methods in most cases. We also
observe that the precision result of CCA-ITQ drops much faster than SSTH when
the number of training tags decreases. Our hypothesis is that when training tags
are very sparse, the common space learned from partial tags and visual features
by CCA-ITQ is not accurate and reliable, resulting in low quality hashing codes.
The comparison results of SSTH and SSTH0 in Table 1 demonstrate that the
orthogonal transformation can further improve the effectiveness of the hashing
function, which is consistent with our expectation.

The third set of experiments demonstrate how the learned correlations, CCC,
can bridge tags and hashing codes. We conduct the experiments on FLICKR-1M

2 Tags are randomly sampled from the training data based on the ratio.
3 SH and LSH do not utilize tags and thus are not necessary to be compared here.
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Fig. 3. Results of top 3 predicted tags on FLICKR-1M

to predict tags for query images based on their hashing codes. In particular, we
first generate hashing code for each query image by yq =WWWTxq, and predict its
tag vector using tq = CCCT yq. Then we select the top 3 tags with largest values
in tag vector tq as the predicted tags for the query image. The comparison
results of the top 3 predicted tags with ground truth tags on several images
are shown in Fig.3. From this figure we can see that our SSTH can generate
reasonable accurate tags for query images. The reason is that our method not
only incorporates tags in learning effective hashing function, but also extracts
the correlation between tags and hashing bits. Therefore, the tag information is
fully explored in our SSTH.

In the fourth set of experiments, the training time for learning hashing func-
tion and testing time for encoding each query image on both datasets (with 32
bits) are reported in Table 2. Note that we do not include the cross-validation
time and any offline calculation cost in all methods for fair comparison. We can
see from this table that the training time of SSTH is comparable with most of
the other hashing methods and it is efficient enough in practice. The test time is

Table 2. Training and testing time (in second) on two datasets with 32 hashing bits

NUS-WIDE FLICKR-1M

methods training testing training testing

SSTH 83.57 0.4x10−4 219.03 0.6x10−4

KSH [10] 248.85 2.4x10−4 592.16 2.5x10−4

CCA-ITQ [5,4] 46.13 0.5x10−4 135.37 0.5x10−4

SSH [22] 23.56 0.4x10−4 40.83 0.5x10−4

SH [28] 51.63 3.6x10−4 173.68 4.1x10−4

LSH [3] 2.75 0.4x10−4 7.84 0.4x10−4
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sufficiently fast especially when compared to the nonlinear hashing method SH
and kernel hashing method KSH.

6 Conclusions

This paper proposes a novel Semi-Supervised Tag Hashing (SSTH) framework
that incorporates partial tag information by exploring the correlation between
tags and hashing bits to fully exploit tag information. The framework simultane-
ously ensures the consistency between hashing codes and tags and preserves the
similarities between images. Orthogonal transform is proposed for further im-
proving the effectiveness of hashing bits. Experiments on two large scale datasets
demonstrate the advantage of the proposed method over several state-of-the-art
hashing methods. In future, we plan to investigate generalization error bound for
the proposed learning method. We also plan to apply some sequential learning
approach to accelerate the training speed of our method.
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