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Abstract. The perceived success of recent visual recognition approaches has
largely been derived from their performance on classification tasks, where all
possible classes are known at training time. But what about open set problems,
where unknown classes appear at test time? Intuitively, if we could accurately
model just the positive data for any known class without overfitting, we could
reject the large set of unknown classes even under an assumption of incomplete
class knowledge. In this paper, we formulate the problem as one of modeling
positive training data at the decision boundary, where we can invoke the statisti-
cal extreme value theory. A new algorithm called the PI -SVM is introduced for
estimating the unnormalized posterior probability of class inclusion.

1 Introduction

Recent classification results reported for the ImageNet Large-Scale Visual Recognition
Challenge [31,32] have captured the computer vision community’s interest. With such
low error rates (the top performing algorithm on the 2013 ImageNet challenge, a con-
volutional neural network, achieves an error rate of 11.1%), one might believe that we
are closer to solving real-world visual object recognition than ever before. However, it
is fair to ask if a scenario in which all classes are known during training time leads to an
accurate assessment of the overall state of object recognition. Importantly, the detection
results from the 2013 ImageNet challenge tell a different story. When unknown objects
must be rejected in the process of detecting the location and label of a known object, no
approach produces a result as impressive as what we see for classification: the best re-
sult is a mean average precision of just 22.6%. Detection falls under the general class of
machine learning problems known as open set recognition [45], i.e. when the possibility
of encountering novel classes not present in training exists during testing.

Emerging research that moves beyond typical binary models of positive/negative
class association for open set recognition has examined the issues of detecting novel
classes [16,5,4], rejecting outlier or unknown classes [24,57,2], and/or simultaneously
detecting and recognizing known classes in the midst of unknown classes [45,11,14].
These approaches have been a good start, but they do not directly address the overar-
ching problem: multi-class open set recognition, wherein models should account for
multiple known classes as well as provide an option to detect novel classes or reject
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Fig. 1. What happens when the MNIST database of handwritten digits [33] is converted from a
closed set classification task to an open set recognition task? (a) Standard supervised learning
algorithms approach ceiling on the original MNIST classification problem. Here we show results
for a 1-vs-Rest SVM with Platt [37] probability estimates using the same number of training
and testing classes, where all classes are seen during training. (b) Training data consisting of
six classes from MNIST. (c) Testing data consisting of all ten classes from MNIST, including
four classes unseen during training. (d) By changing the testing regime to cross-class-validation,
where some number of classes are held out during training (e.g. subfigure b) but included in
testing (e.g. subfigure c), MNIST once again becomes a challenge. As soon as classes are with-
held during training, the accuracy of the 1-vs-Rest SVM (with a rejection option provided by
thresholding the Platt probability estimates) drops significantly. In this paper, we propose a new
algorithm called the PI -SVM, which retains higher levels of accuracy as the problem grows to
be more open.

unknown classes. In this paper, we introduce a new and effective algorithm for this
task. Moreover, in contrast to popular detection challenges such as PASCAL VOC [19]
where background classes have the same distribution in the training and test sets, the
problem considered here assumes that completely new background classes can appear
at test time.

Careful experimental design is necessary to evaluate multi-class open set recogni-
tion. Ideally, we would like to use well-known data sets. However, open set recognition
requires an experimental regime that provides classes unseen during training – using
all testing classes during training inflates performance on recognition problems. To ad-
dress this, we can extend the familiar idea of cross-validation to cross-class-validation,
wherein we simulate the unknown classes of an open set scenario by defining the num-
ber of training classes, target classes to recognize, classifiers, and validation classes,
leaving some classes out during training while including them in testing. After moving
to the open set multi-class recognition scenario, even what appear to be very simple
“solved” pattern recognition tasks become quite difficult. To illustrate this point, Fig. 1
demonstrates how cross-class-validation transforms a classic closed set classification
problem such as the MNIST database of handwritten digits [33] into a challenging
multi-class open set recognition problem. In closed set classification (Fig. 1(a)), stan-
dard approaches such as multi-class 1-vs-Rest SVM achieve an average accuracy rate
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of approximately 98%. However, their accuracy drops significantly when using open
set cross-class-validation testing (Fig. 1(d)).

An obvious way [30,23,57] to approach the multi-class open set recognition problem
is to incorporate a posterior probability estimator P (y|x), where y ∈ N is a class label
and x ∈ R

d is multi-dimensional feature data, and a decision threshold into an existing
multi-class algorithm. Letting C be the set of known classes, testing is a two step pro-
cess: 1) compute the maximum probability over known classes, and 2) label the data as
“unknown” if that probability is below the threshold δ:

y∗ =

{
argmaxyi∈C P (yi|x) if P (y∗|x) ≥ δ.

“unknown” Otherwise
(1)

Such a thresholded probability model can support a multi-class classifier with a rejec-
tion option, e.g. the 1-vs-Rest SVM with a threshold applied over Platt calibrated [37]
decision scores as shown in Fig. 1(d). A key question when applying any probability
estimator is: how do we build a consistent probability model without over-fitting or
over-generalizing? While better than a strict multi-class SVM, which always assigns
a known class label, SVM with a rejection option is still not very good for open set
recognition. It is weak because it implicitly makes closed set assumptions during the
decision score calibration process. In open set recognition, a sample that is not from
a known negative class does not imply that it is from the positive class. Furthermore,
because we must consider the possibility of unknown classes, Bayes’ theorem does
not directly apply. The best we can do is produce an unnormalized posterior estimate.
In essence, we need a good way, in an open class setting, to consistently estimate the
unnormalized posterior probability of inclusion for each class.

In this paper, we introduce the novel idea of fitting a robust single-class probability
model over the positive class scores from a discriminative binary classifier. The use
of an underlying binary classification model helps to discriminate the positive class
from the known negative classes, while the single-class probability model adjusts the
decision boundary so unknown classes are not frequently misclassified as belonging
to the positive class. For consistency with open set assumptions, this model does not
directly use negative data in its probabilistic modeling. Our algorithm, the PI -SVM,
follows this approach by modeling the unnormalized posterior probability of inclusion
for multiple classes using a multi-class SVM as a basis, and fitting probability distri-
butions consistent with the Statistical Extreme Value Theory (EVT) [12] to decision
scores from positive training samples. This paper extends the recent statistical learning
work of Scheirer et al. [43,42], which is limited to closed set problems. Our extension
directly models the probability of inclusion for open set problems.

2 Related Work

The related work spans one-class classifiers, open set recognition, decision score cali-
bration and probability-based rejection techniques for multi-class recognition. Of these
topics, one-class classifiers, which require only positive training data, are a natural start-
ing place for a solution to open set recognition. Density Estimation, Support Vector
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Data Description (SVDD), and the One-class SVM are all prevalent techniques used for
one-class classification. A simple way to obtain a one-class model is to fit a Gaussian
distribution to the positive training data for a class and set a threshold on the resulting
density [50]. A more sophisticated approach to accomplish the same goal is SVDD [49],
where a hypersphere with the minimum radius is estimated around the positive class
data that encompasses almost all training points. Using a different strategy, the training
procedure for a one-class SVM [46] treats the origin in feature space as the only mem-
ber of the second class, and maximizes the margin with respect to it. One-class models
are typically less effective than binary classifiers [5,45,54].

More powerful binary classification models have been proposed specifically for open
set visual recognition tasks. Scheirer et al. [45,41] offer a formalization of the risk of
the unknown in open set recognition that is used to develop the 1-vs-Set Machine (a
dual-plane linear classifier) [45] and W-SVM (a calibrated non-linear classifier) [41]
algorithms. An approach similar to the 1-vs-Set Machine was described by Cevikalp and
Triggs [8] for object detection. Unlike the approach we introduce here, none of these
algorithms leverages a robust probability estimator for a single class that is derived from
a binary classifier. Also related to the idea of unknown data is the “universum” [55],
which constructs a data-dependent structure on the set of admissible functions by using
a set of unlabeled training examples. However, the resulting model is still a traditional
closed set binary classifier.

To estimate probabilities, various researchers [26,53,37,56,17,28,6] have proposed
different techniques for converting a raw decision score to calibrated output. In all of
these techniques a parametric model is assumed for the underlying distribution; pa-
rameters are estimated from calibration data and the raw scores mapped based on the
resulting model. In practice, Gaussian modeling is common. The most widely used tech-
nique for score calibration is Platt’s approach [37], which was originally proposed for
SVM calibration, but has since been extended and evaluated on many types of learning
systems [36]. In a cross-validation style training regime, a sigmoid function is fit to the
decision scores from each fold, which is then used as a probability estimator for the
overall classification model. Zadrozny and Elkan [56] note that “Platt scaling is most
effective when the size of training/calibration data is small,” which is potentially useful
for open set recognition, where known negative class data in training is always smaller
than the full domain of negative class data encountered during testing. Hybrid classifiers
such as Naive Bayes Nearest Neighbor (NBNN) [3,34] can also provide probability es-
timation, but do so under a closed set assumption. It may be possible to adapt their
estimates for an open setting, but we have not found an efficient means to do so.

In this paper, we propose using the Extreme Value Theory [12] for calibrating SVM
decision scores to unnormalized posterior probabilities reflecting class inclusion. For
recognition problems in computer vision, EVT has been demonstrated to be a powerful
explanatory theory [43] and an effective tool for statistical modeling [7,22,21], includ-
ing fitting probability estimators [44,42,41]. The most relevant work in EVT modeling
is the multi-attribute spaces approach of Scheirer et al. [42], which applies EVT cali-
bration over binary classifiers for visual attribute assignment. In essence, the algorithm
estimates the probability of exclusion from the negative class. For example, in a gender
classifier, the probability of being female is 1−P (male). This may be viable in a binary
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closed set problem, but is not an option for open set recognition. Moreover, Scheirer et
al. do not describe how to estimate the critical “tail size” parameter.

Finally, using probabilities it is possible to reject “unlikely” samples (see Eq. 1),
which can often improve our ability to reject unknown inputs. For multi-class recogni-
tion problems in computer vision, posterior probabilities are widely used to make de-
cisions in applications such as pedestrian classification and orientation estimation [18],
image retrieval [15], attribute fusion [42], part-based human tracking [47], large-scale
multi-class object categorization [4], and activity recognition [39], among others. To
operate in open set scenarios, a threshold for these algorithms can be set at a certain
confidence interval to reject unknown classes. Chow [10] showed that the optimal deci-
sion rule is always a threshold over the posterior probability. Thus various score thresh-
olds have been studied as rejection techniques, e.g. [30,23,57]. Recent prior work on
thresholding [2,24] extends the notion of rejection via a threshold to the loss function
of SVM to increase the cost of confusing samples. However, we note that in open set
recognition the derivation of optimality in [10] does not hold, bringing the closed set
modeling of all of these approaches into question for the general problem.

3 Single-Class Probability Estimation from a Binary Model

Fig. 2. Problems with existing models for two known
classes (“1” and “2”) when unknown classes (“?”) are
possible. If modeled by a one-class RBF SVM, the
points with the red circles become support vectors defin-
ing the light red region as class 1. The model misclas-
sifies most of class 2, but rejects unknowns. A binary
RBF SVM separating 1 & 2 yields the blue region for
class 1 with blue squares indicating positive support
vectors. It can correctly classify class 1 and reject class
2, but it incorrectly classifies the unknowns with a cut-
ting plane that over-extends rightward. SVM parame-
ters in this example were optimized with 5-fold cross-
validation grid-search.

Intuitively, a one-class classifier
such as the one-class SVM [46]
seems like it should help us solve
the open set recognition problem
by providing a per-class model
using just the positive data for
each class. One-class classifiers do
not assume a closed world, nor
do they make any assumptions
about negative or unknown classes.
Unfortunately, it is precisely be-
cause they do not use any nega-
tive data that one-class classifiers
have trouble enforcing separation
between known positive and nega-
tive classes. The example in Fig. 2
highlights this issue.

To improve discrimination, bi-
nary classifiers such as RBF SVM
use data from both positive and
negative classes. But these models
do not have an effective mechanism for rejecting classes; unknown classes must be clas-
sified as either positive or negative. In Fig. 2, a binary RBF SVM will misclassify all of
the “?” points because there is no distinction between class 1 and the unknown classes
in the region where they appear. Converting decision scores to probabilities using the
estimation technique of Platt [37] could provide an indication of class membership for
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a test sample. For the example in Fig. 2, this means that an unknown test sample should
receive a low probability score for association with either class 1 or class 2. However,
this technique (like other estimators [26,53,56,17,28,6]) assumes that all scores must be
from a known positive or known negative class. Because of this, it is not very effective
for open set recognition when combined with a threshold (see Sec. 6).

Thus we seek an approach for probability estimation that combines the ability to
discriminate between known classes like a binary classifier, but with one-class-like re-
jection ability. To model this, the probability of inclusion, we only consider scores from
the binary classifier that are associated with training data samples from a single class of
interest in modeling. But what probabilty model should we use?

As shown by [1], for any ζ ∈ (1/2, 1) one can accurately estimate conditional proba-
bilities in the interval (1− ζ, ζ) only if support vectors are not sparse over that interval.
For efficient classifiers we need some degree of sparsity, thus ζ should be close to 1/2
and probability calibration is only well defined close to the decision boundary. And
since that boundary is defined by the training samples that are effectively extremes,
we conclude that proper models for efficient SVM calibration should be based on ex-
treme value theory [25]. Different from previous calibration work for visual recogni-
tion [44,42,41] that has applied EVT via rejection of a hypothesis, we use EVT to
directly model probability of inclusion PI for a class of interest.

4 The PI-SVM Algorithm

To begin, consider a kernelized SVM h that for any d-dimensional feature vector x
will generate an uncalibrated hypothesis score s, which can be used to assign class
membership:

h(x) =
n∑

i=1

yiαiK(xi, x) + b (2)

where αi are support vectors, K(xi, x) is a radial basis function kernel, and b a bias
term. A collection of such binary classifiers for each class y ∈ C forms a multi-class
SVM. For an uncalibrated SVM hypothesis score s = hy(x), s > 0 we assume larger
scores imply more likely inclusion in class y. We also assume such inclusion scores
are bounded from below, though it is straightforward to adapt the model to unbounded
scores, depending on the desired EVT distribution for probability estimation.

We consider a multi-class problem for the known training classes C where we do not
assume that the list of classes is exhaustive, i.e. at test time other classes may occur. The
objective of the PI -SVM is to compute a per class unnormalized posterior probability
estimate for any input sample x. ForPI -SVM training, let {(x1, y), (x2, y), . . . , (xn, y)}
be a collection of training samples that will be used to fit a probability estimator for a sin-
gle class. Let our overall match set be represented by My, with sj ∈ My if hy(xj) > 0.
Let �y be the lower extremes of My (for SVM, the scores closest to 0).

After fitting, we can use the probability model of inclusion defined by a set of pa-
rameters θy as a robust probability estimator for a classifier. If we let ρ(y) be the prior
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Algorithm 1. Multi-class EVT-based Probability Modeling for PI -SVM Training

Require: A set of class labels C; a set of labeled training data points for each class Xy, y ∈ C; a
pre-trained 1-vs-Rest RBF SVM hy for each class y ∈ C, with positive support vectors α+

y ;

for y = 1 → |C| do
for j = 1 → |Xy | do � Generate decision scores for fitting

sy,j = hy(xy,j)
if sy,j > 0 then

My = My ∪ {sy,j}
end if

end for
py = 1.5 ∗ |α+

y | � See Sec. 5 for an explanation of this step
Sort My retaining py smallest items as vector �y
[τy, κy , λy ] = wblfit(�y) � Fit a Weibull distribution
θy = [τy , κy , λy]

end for
return W = [θ1 . . . θ|C|] � The result is a multi-class parameter set

probability of class y, then we can estimate the posterior probability of inclusion PI for
the input x and class label y conditioned on the parameters θy as:

PI(y|x, θy) = ξρ(y)PI(x|y, θy) = ξρ(y)(1 − e
−(

x−τy
λy

)κy

) (3)

for some constant ξ. If all classes and priors are known, then Bayes’ Theorem yields

ξ =
1∑

y∈C ρ(y)PI(x|y, θy) (4)

But we do not assume that all classes are known, so we let ξ = 1 and treat the posterior
estimate as unnormalized. The use of unnormalized posterior estimation is well-known
in computer vision [29,27,52,38,51], in part because as long as the missing normal-
ization constant is consistent across all classes it still allows the use of maximum a
posteriori estimation. Note that unnormalized posterior probabilities are always an ap-
proximation; the unknown constant ξ could be very large or very small which changes
the true probability.

With a set of scores bounded from below, the correct EVT distribution to model �y is
the Weibull [12]. The Weibull distribution has three parameters: location τ , shape κ, and
scale λ (for details of the Weibull distribution, see Eq. 4 of [43]). For this work, we used
the libMR library provided by the authors of [43], which uses Maximum Likelihood
Estimation (MLE) to find the τy, κy, λy that best fit �y . In a multi-class setting, these
three parameters are defined for each known class y, and we let θy represent the vector
of those parameters. Alg. 1 provides a precise description of the Weibull probability
modeling of class inclusion for each of the classes present during PI -SVM training.

For multi-class open set recognition using a set of Weibull models we set a minimum
threshold δ on class probability and select

y∗ = argmax
y∈C

PI(y|x, θy) subject to PI(y
∗|x, θy∗) ≥ δ. (5)
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Algorithm 2. Multi-class Probability Estimation for PI -SVM Testing

Require: A set of class labels C; a pre-trained 1-vs-Rest RBF SVM hy for each class y; param-
eter set W from Alg. 1; probability threshold δ for rejection; class prior probability ρ(y) for
each class y; a test sample x

y∗ = “unknown”
ω = 0 � Maximum probability score
for y = 1 → |C| do

PI(x|y, θy) = wblcdf(x, θy) � The Weibull CDF provides the probability of inclusion
PI(y|x, θy) = ρ(y)PI(x|y, θy) � Unnormalized posterior probability
if PI(y|x, θy) > δ then

if PI(y|x, θy) > ω then
y∗ = y
ω = PI(y|x, θy)

end if
end if

end for
return [y∗, ω] � The result is the label and unnormalized posterior probability

The formulation in Eq. 5 yields the most likely class, which is appropriate if the
classes are exclusive (as in our testing). Alternatively, if the classes are overlapping,
one might return all classes above a given probability threshold. Note that we are deal-
ing with unnormalized posterior estimations so the priors ρ(y) only need to be rela-
tively scaled, e.g. they could sum to one even if there are unknown classes. It has been
shown [10] that the optimal value for the threshold is a function of the risk associated
with making a correct decision, making an error, or making a rejection respectively,
as well as the prior probabilities of the known or unknown classes. In practice, these
would come from the domain knowledge. In our experiments, we assume equal pri-
ors per class; accordingly, we set δ to be the prior probability of an unknown instance.
Alg. 2 describes the PI -SVM probability estimation process for a new test sample. The
estimate for probability of inclusion PI(x|y, θy) comes from the CDF of the Weibull
model defined by the parameters θy (see the right-hand side of Eq. 3).

Algs. 1 & 2 can also be adapted to estimate the unnormalized posterior probability
of class inclusion for a one-class SVM. We use this method as a performance baseline
in Sec. 6. In the one-class variant PI -OSVM, we fit a Weibull distribution to the lower
extrema of the positive decision scores estimated from an RBF kernel machine trained
over just the positive data for a single class. The multi-class EVT-based probability
modeling and multi-class probability estimation for PI -OSVM use the same steps of
Algs. 1 and 2 – the only necessary change is the replacement of the 1-vs-Rest binary
SVM with a one-class SVM for each class. To our knowledge, this is the first purely
one-class kernel machine probability estimator.

5 A Principled Approach to Estimating Tail Size for EVT Fitting

While EVT helps us model extrema, the theory tells us nothing about how many
samples to use in fitting the EVT distribution. Prior work in EVT models for visual
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recognition [44,43,42,22,21] simply recommends choosing a tail size as an arbitrary
percentage (not exceeding 50%) of the available data. How much data can be consid-
ered a proper tail: 1%, 5%, 10%, 20%? We have found that the difference between a
tail size of 5% and 20% of the data can produce a difference in recognition accuracy
between 15-20%, with some models needing 5% and others needing 20% to achieve
their best performance. Automatic estimation is a better strategy. One basic approach
for estimating the tail size is to use cross-validation. However, our own experiments
and those from others working in the area of financial modeling [40] have shown this
approach to be unstable in practice. Why is this the case?

We believe the reason for this difficulty is that for visual learning, we apply EVT
after mapping high-dimensional problems into one-dimensional scores. Inherent in our
high-dimensional problems is a complex boundary where points can be near any part
of it – there are many dimensions and directions in which points can appear as extrema.
Reconsidering Fig. 2, what would the appropriate tail size be for modeling the score
data from class 1? It depends not just on the training points but on the chosen classifica-
tion model as well. When class 1 is modeled with a one-class SVM, the n-dimensional
boundary is simpler (i.e. has fewer support vectors) than when it is modeled with a
binary SVM. As the dimensionality of the data grows, the boundary can be far more
complicated or it can be simple. With a complex dependency on dimensionality, sam-
pling, and the problem, it should not be surprising that a tail defined by a fixed size or
fixed percentage cannot easily predict how many points are on or near the boundary, or
are extrema in general. We require a model that accounts for boundary complexity.

A useful insight is that, by construction, support vectors are a type of extreme sam-
pling that effectively describes the class boundary. It is natural to ask if there is a known
parametric relationship between training data size, dimensionality, and the number of
support vectors. Unfortunately, there is not. Vapnik has shown [53] that the number of
support vectors can be relatively independent of the number of training samples and
dimensions. Subsequently, Steinward [48] has developed asymptotic sharp upper and
lower bounds on the number of support vectors. For an RBF SVM with L1 regulariza-
tion, the fraction of data that are support vectors tends to be twice the Bayes risk. For an
RBF SVM with L2 regularization, the fraction of support vectors tends to be the prob-
ability of noise. In both cases, the fraction of data that are support vectors depends on
a problem specific property that is not known a priori and which is difficult to estimate.
These results reinforce the difficulty of estimating tail size based on the percentage of
training data and/or dimensionality.

We are not, however, at a dead end. The above insights suggest a different approach:
consider extrema to be those points close to the boundary in the original feature space
and count them. Using this strategy a new optimization problem, similar to soft-margin
SVM optimization, could be defined to locate and minimize the number of extreme
training samples on either side of the boundary while minimizing a loss function related
to our goal of probability estimation. However, we have found that the exact size of the
tail can vary moderately and have only minimal impact on final multi-class recogni-
tion system performance. Thus defining and solving a new optimization just to estimate
the tail size parameter is not warranted. Since we are applying the EVT model to cali-
brate an SVM classifier, and that classifier already has a well defined boundary, a much
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Fig. 3. What is the trouble with assuming a fixed tail size? Consider 20 random trials for the
different classifiers in our LETTER [35] experiments (Sec. 6). The above plots show how many
trials have a given ratio of support vectors in the training data. (a) shows the variation for just
a single class, and (b) shows the variation over 15 classes. The overall distribution is broad and
asymmetric – it is not consistent with a constant model implicit in assuming tail size is a fixed
fraction; our approach in Eqs. 6 & 7 is different from assumptions made in prior EVT modeling.

simpler alternative is to consider points within some distance ε of the SVM decision
boundary as the potential extrema. For problems not modeled by a binary SVM, e.g.
those with only one class of data, a one-class SVM can still provide such an estimate.
Given an SVM decision function, we define an indicator function B+ and the positive
tail size T+

ε via:

B+(x; ε) =

{
1 if h(x) ≤ ε

0 otherwise
and T+

ε =
∑

x∈My

B+(x; ε) (6)

For a soft margin RBF SVM, which we use in this paper, support vectors include all
points on or outside the positive-class region boundary as defined by the SVM decision
function in Eq. 2. Thus T+

0 is just the number of support vectors that belong to the
positive class. For ε > 0, some points inside the positive boundary would be included.
An approximation that we have found to be both stable and effective is to use a small
multiple of the number of support vectors from the positive class, thereby allowing a
few points inside but near the class boundary. Letting |α+| represent the number of
support vectors from the positive class, we approximate the tail size via:

T̂+
ε = max(3, ψ × |α+|) (7)

where we need ≥ 3 distinct points to ensure a well-defined EVT fitting. One free param-
eter ψ must be estimated. Empirically, we have found that any ψ ∈ [1.25− 2.5] works
well. This range has provided relatively stable multi-class recognition across multiple
problems. For the experiments presented in the next section, we fix ψ = 1.5.

To help illustrate the significant difference between a fixed fraction and our approach,
Fig. 3 shows the variation in fraction of data that are support vectors for the different
classifiers in the LETTER data set [35] considered in Sec. 6 below. The data consists
of 15 classes over 20 random trials with a mean of 0.33, standard deviation of 0.08,
minimum of 0.19, and maximum of 0.59. The distribution is broad and choosing a fixed
tail size across all classes results in a large measure of inconsistency. The number of
support vectors is always a fraction of the data. Thus a post-hoc approach could choose
any arbitrary fraction, but as a fixed size, would still be a poor approximation compared
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to Eqs. 6 & 7. The experiments in the next section show that in conjunction with the
PI -SVM, this principled approach to tail size estimation for SVM is quite effective.

6 Experimental Evaluation

Experiments are performed for two different open set scenarios: (1) the decision com-
ponent of object detection, where individual classifiers are evaluated separately; and (2)
multi-class open set recognition, where ensembles of classifiers are evaluated together.
While our focus is on multi-class open set recognition, we chose to also evaluate a de-
tection problem in order to compare the PI -SVM1 with recent published work in open
set recognition, and to first establish viability in a more restrictive open set context.

Preliminaries. In all experiments we make use of the cross-class-validation evalua-
tion methodology described in Sec. 1. Extending typical cross-validation for machine
learning evaluation, cross-class-validation leaves out not only some training data on
each fold to be used for validation purposes, but also some number of classes. Four
parameters control how open the validation problem is: the number of training classes
t, the target number of known classes η ≤ t that we would like to identify using m
classifiers for the problem, and the number of validation classes e ≥ t. The steps for the
process are shown in Alg. 3 (for simplicity, we show 1-fold), with the final result being
a set of validation statistics (e.g. accuracies or F-measures) that provides a realistic re-
flection of how well a particular classifier is performing in the midst of e − t unknown
classes during testing.

Cross-class-validation can be used for either detection-oriented problems or multi-
class open set recognition problems. To evaluate a detection problem, the number of
target classes η is set to 1 and the number of validation classes e is set to a value greater
than t. To evaluate a multi-class open set recognition problem, η is set to a number
greater than 1, and e is set to a value greater than η and t. A fully closed problem would
set e = t, meaning the set of unknown classes Cu is empty. The parametersm, t, η, and
e also allow us to quantify “openness” as a single number (where a larger value means
a more open problem), providing a consistent frame of reference for plotting results.
Like the prior work of Scheirer et al. [45], we plot “openness” vs. F-measure for the
experiments in this section2. Adapting Eq. 1 from [45], openness is defined as:

openness = 1−
√
(2× t)/(m× η + e) (8)

The primary question we seek to answer is how much improvement is achieved by
the PI -SVM over viable alternative approaches. To this end, we compare against a
lengthy list of supervised learning algorithms including common classifiers and state-
of-the-art algorithms for open set recognition. With respect to approaches that are suit-
able for detection3, we consider standard SVM variants including the 1-vs-Rest binary

1 Source code is available at https://github.com/ljain2/libsvm-openset.
2 For comparison, accuracy plots are provided in the supplemental material.
3 We also tried reference code for the optimal Naive Bayes Nearest Neighbor algorithm [3], but

at 72 hours per test, and with 2,640 tests (88 classes × 6 levels of openness × 5 folds) needed
to add it to Fig. 4, including it was beyond the scope of this paper. See the longer note in the
supplemental material.
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Algorithm 3. Cross-Class-Validation (1-Fold )

Require: A set of class labels C; a set of labeled data points for each class Xy, y ∈ C; number
of top-level classifiers to train m; number of training classes t; number of target classes η ≤ t,
number of validation classes e ≥ t; a training objective φ, a fusion function F combining η
bottom-level classifiers, and a ground-truth operator Y(x) returning label for x

for i = 1 → m do
Randomly choose t classes for training label set Ct ⊆ C � Different on each iteration
Randomly choose η classes for target label set [y1 . . . yη] ∈ Ct

for y = y1 → yη do
Randomly choose positive training set T+

y from Xy

Randomly choose negative training set T−
y sampling each Xj ; j ∈ Ct, j 	= y

fy = φ(T+
y ∪ T−

y ) � Train a decision model; one-class objectives ignore T−
y

end for
Randomly choose e− t additional class labels Cu ⊂ C, Cu ∩ Ct = ∅

Randomly choose known class validation set Et sampling each Xj , j ∈ Ct;E
t
j ∩T+

j = ∅

Randomly choose unknown class validation set Eu sampling each Xj , j ∈ Cu

vi = ∪x∈(Et∪Eu){Y(x), F
(
fy1(x), . . . , fyη (x)

)} � Fuse classifiers; combine with label
V = V ∪ stats(vi) � Accumulate overall evaluation statistics

end for
return V � Return complete validation statistics for each classifier

RBF SVM, 1-vs-Rest binary linear SVM, and 1-vs-Rest binary RBF SVM with Platt
Probability Estimation [37] and a threshold (all using LIBSVM implementations [9]).
We also compare against the state-of-the-art EVT-based probability estimator Multi-
Attribute Spaces (MAS) [42] with a threshold, and the 1-vs-Set Machine [45], a state-
of-the-art algorithm for open set detection problems. For these latter two approaches,
code was obtained from the public source repositories for the associated references.

With respect to approaches that are suitable for multi-class open set recognition,
we consider standard multi-class SVM variants including the 1-vs-Rest Multi-class
RBF SVM (LIBSVM ErrorCode implementation [28]), Pairwise Multi-class RBF SVM
(LIBSVM implementation [9]), 1-vs-Rest Multi-class RBF SVM with Platt Probability
Estimation and a threshold (LIBSVM ErrorCode implementation [28]), and Pairwise
Multi-class RBF SVM with Platt Probability Estimation and a threshold (LIBSVM im-
plementation [9]). As alternatives to standard SVM, we look at Logistic Regression
analysis for multi-class probabilistic linear classification (LIBLINEAR implementa-
tion [20]), and MAS in a multi-class setting. Finally, the purely single-class PI -OSVM
is also used as a baseline in all experiments.

The first experiment uses a subset of Caltech 256 for training and images from Cal-
tech 256 and ImageNet for separately testing open set “detection” for different classes.
The setup is a replication of the experiment described in Sec. 5 of [45] (Fig. 7 of that
article). 532,400 images are considered in total. Features are a 3,780-dimension vector
of Histogram of Oriented Gradients (HOG) [13]. Using cross-class-validation (Alg. 3),
we set m = 88, η = 1, and e = 88. The number of training classes t always includes
one positive class and a varying number of negative classes to control the openness of
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PI PI 

Fig. 4. Performance for the binary decision component of an open set object detection task for
an open universe of 88 classes [45]. Results are calculated over a five-fold cross-data-set test
with images from Caltech 256 used for training and images from Caltech 256 and ImageNet
for testing; error bars reflect standard deviation. Approaches marked with “Thresh.” have been
augmented to support rejection. The PI -SVM significantly outperforms the prior state-of-the-art
(1-vs-Set Machine) with a 12%–22% improvement in F-measure, as well as the pure single-class
PI -OSVM model. We note that the PI -OSVM is still measurably better than a standard one-class
SVM (not plotted because its F-measures fall below the y-axis scale used in this figure), and is
superior to other binary classifiers making use of probability estimation.

the problem. Alg. 3 is invoked five times, always choosing a new set of 88 classes from
the 256 we have available in C. We report the average result over all trials.

The second experiment uses data from two classic visual learning benchmarks, LET-
TER [35] and MNIST [33], both of which are considered to be solved in their original
closed set forms. To evaluate LETTER in a multi-class open set recognition mode using
Alg. 3, we set m = 1, t = 15, and η = 15. In this case, we vary the number of valida-
tion classes e by adding some number of additional class labels (not exceeding 11, the
number of remaining letters outside of training) to the number of training classes t. To
evaluate MNIST, we set m = 1, t = 6, and η = 6. We vary the number of validation
classes e by adding some number of additional class labels (not exceeding 4, the num-
ber of remaining digits outside of training) labels to t. In both cases, we invoke Alg. 3
20 times and report the average, with standard deviation for error bars.

For multi-class open set recognition, the class with the maximum (depending on the
operation of the algorithm) probability, decision score, or votes is the predicted class.
Each approach producing a probability score has a rejection option via the threshold
δ = 0.5 × openness. Each approach producing an uncalibrated decision score assigns
a sample with a score less than zero as either a true negative if an unknown class, or
a false negative if a known class. For multi-class algorithms with a rejection option
we consider a rejected sample as either a true negative if an unknown class, or a false
negative if a known class. Multi-class SVMs without a rejection option produce no
negative decisions. RBF kernel parameters are tuned via 5-fold cross-validation on the
training data, giving us (C = 2, γ = 2) for LETTER and (C = 2, γ = 0.03125) for
MNIST.
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(a) Multi-Class Open Set Recog. for LETTER

PI PI 

(b) Multi-Class Open Set Recog. for MNIST

Fig. 5. Two classic data sets evaluated in a multi-class open set recognition scenario. All exist-
ing algorithms we tested have significant trouble achieving good performance as the problem
grows to be more open. The PI -SVM is more stable than existing algorithms, and achieves high
F-measure scores across all levels of openness. Note the large gap between the PI -SVM and
MAS [42] algorithms, indicating the EVT fitting strategy of the PI -SVM is significantly better.

Results. The results for the experiment evaluating the binary decision component of
object detection are summarized in Fig. 4. The PI -SVM significantly outperforms the
prior state-of-the-art (1-vs-Set Machine) with a 12%–22% improvement in F-measure.
An important effect in this experiment is the noticeable difference in F-measure between
the PI -SVM, which combines single-class probability estimation with a binary classifi-
cation model, and the PI -OSVM, which is purely single-class for probability estimation
and classification. The extra discriminative power provided by the binary classifier ad-
dresses the limitations inherent in the one-class model. The PI -OSVM, however, is
still measurably better than a standard one-class SVM (off the plot; see supplemental
material), and shows improvement over other binary probability estimators.

The results for the multi-class open set recognition experiments are shown in Fig. 5.
We expected low F-measure scores for all approaches in the first experiment, which
examined a large number of classes for object detection. In contrast, the low scores
present for basic OCR tasks with far fewer classes indicate that existing approaches
are fundamentally constrained to the closed set classification tasks for which they were
designed. The PI -SVM, which does not possess this same limitation, achieves more
stability and considerably better performance over all comparison approaches. We also
tested thresholding 1-vs-Rest Multi-class linear SVM and RBF one-class SVM, both of
which performed worse than the methods in Fig. 5.

7 Conclusion

A surprising finding of this work has been the impact of recasting basic visual bench-
marks like LETTER and MNIST as multi-class open set recognition problems. This sug-
gests that we are much farther away from solving very basic recognition tasks than the
classification performance numbers initially led us to believe. As a solution, one-class
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models are appealing in that they do not suffer from any of the problems associated with
negative class modeling for open set recognition, but they almost always overfit their
training data. Hybrid models such as the PI -SVM we introduced in this paper may be
the key to achieving good generalization through some measure of discrimination with
known negative classes and an estimate of probability of positive class inclusion. Future
work includes incorporating objectness or object saliency as a pre-processing step, as
well as extending novelty detection [5] to multi-class recognition.
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