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Abstract. Fine-grained visual categorization aims at classifying visual
data at a subordinate level, e.g., identifying different species of birds. It
is a highly challenging topic receiving significant research attention re-
cently. Most existing works focused on the design of more discriminative
feature representations to capture the subtle visual differences among
categories. Very limited efforts were spent on the design of robust model
learning algorithms. In this paper, we treat the training of each category
classifier as a single learning task, and formulate a generic multiple task
learning (MTL) framework to train multiple classifiers simultaneously.
Different from the existing MTL methods, the proposed generic MTL
algorithm enforces no structure assumptions and thus is more flexible in
handling complex inter-class relationships. In particular, it is able to au-
tomatically discover both clusters of similar categories and outliers. We
show that the objective of our generic MTL formulation can be solved
using an iterative reweighted �2 method. Through an extensive experi-
mental validation, we demonstrate that our method outperforms several
state-of-the-art approaches.

Keywords: Fine-grained visual categorization, inter-class relationship,
multiple task learning.

1 Introduction

Object recognition has been extensively studied in computer vision. Significant
progress has been made in the recognition of basic categories like bird and
car. Recently, an increasing amount of attention is being paid to the study
of Fine-Grained Visual Categorization (FGVC), which aims at the identifica-
tion and distinction of subcategories such as different species of birds or dogs
[5,11,18,19,34,37,40,41,42,43]. Algorithms and systems with such capabilities not
only enhance the performance of conventional object recognition, but also can
aid humans in specific domains, since even human experts may have difficulties
in recognizing some subcategories.

Generally, there are two critical challenges in the design of a robust FGVC
system. First, object categories under the same coarse semantic level often share
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Fig. 1. Illustration of category relationships in fine-grained visual categorization prob-
lems, using birds as an example. There may exist multiple clusters containing highly
similar categories (e.g., various species of Gull and Cormorant), as well as outlier cate-
gories that are distinct from others (e.g., Cardinal and Chuck will Widow). This paper
proposes a generic multiple task learning algorithm, which is able to automatically dis-
cover and utilize the category grouping and outlier structure for improved fine-grained
categorization performance.

similar appearances and the visual differences are very subtle. As shown in Fig-
ure 1, the subcategories within the same group (Gull or Cormorant) tend to
share similar appearances. Therefore, very sophisticated features may be needed
to distinguish such fine-grained categories. The second challenge is that fine-
grained categorization tasks always lack in training data since the acquisition
of clean positive samples for each subordinate category needs strong domain
knowledge.

To address these challenges, we underline that FGVC systems should encode
at least two characteristics of inter-class relationships: 1) sufficient discriminative
capability to distinguish the subtle differences among the subcategories, and 2)
strong learning power to explore similarities among categories to compensate for
the lack of training samples. Most of the existing works only focused on solving
the first issue by proposing new feature representations, as they emphasized that
insufficient discriminative power resides in the way that features are encoded
[19,41,18,43,34,40].

In this paper, we adopt and improve the multiple task learning (MTL) frame-
work to design more discriminative classifiers. Instead of training classifiers inde-
pendently, MTL trains multiple classifiers jointly and simultaneously to explore
model commonalities in either structure or parameter space [3,12]. Since simul-
taneously learning multiple tasks will benefit from the learning of each other,
the MTL paradigm often leads to better performance. However, standard MTL
highly relies on the assumption of a clean model commonality, which is too ide-
alistic to be practically used for FGVC. Although some recent works relaxed
the strong assumption to grouped structure [25] or outlier structure [22] of tasks,
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the category relationships in the realistic FGVC problem could be more compli-
cated and do not fit those existing structure assumptions.

Realizing the limitation of the existing MTL paradigms and the practical
needs of FGVC, this paper presents a generic MTL framework without any spe-
cific structure assumptions. Our method exploits the relationships among the
fine-grained categories by imposing a mixture norm penalty on the classifier co-
efficients to automatically learn the task structures, where a ridge term is used
to reflect the categories’ grouping structure and a lasso term represents outlier
categories. Our objective is formulated as an unconstrained convex optimization
problem, whose optimal solution can be obtained by iteratively solving a se-
ries of reweighted �2 problems. Extensive evaluations on two well-known FGVC
benchmark datasets demonstrate the effectiveness our proposed method.

The remainder of this paper is organized as follows. Section 2 briefly reviews
existing works in FGVC. Section 3 presents our proposed generic MTL frame-
work. Section 4 provides experimental validations and comparative studies, and,
finally, Section 5 concludes this paper.

2 Related Works

In this section we briefly review existing works on FGVC; the backgrounds of
MTL will be discussed later in Section 3.1. Like any visual categorization ap-
plications, an FGVC system normally contains two major components: feature
extraction and classifier learning. As mentioned earlier, most existing works fo-
cused on improving the discrimination power of the extracted feature represen-
tations (e.g., [19,26,43,41], among others), and a standard SVM classifier was
often employed in the learning phase.

For feature representations used in FGVC, many researchers adopted local
features as the basis to develop more powerful visual descriptors. For instance,
locality-constrained linear coding [36], an effective bag-of-words quantization
method, was adopted in [42] as a baseline. In [26], Khan et al. proposed a multi-
cue method to build discriminative compound visual words from primitive cues.
The kernel descriptors (KDES) [10] have also been adopted for FGVC and shown
to be promising [40].

Another popular group of works used template-based feature representation
and demonstrated good performance for FGVC applications. In [41], Yao et al.
used randomly selected templates and generated visual features through con-
catenating the pooling results on template response maps. In [40], Yang et al.
proposed an unsupervised template learning method to capture the common
shape patterns across different categories. Several other factors such as the co-
occurrence and diversity of templates were also taken into account.

In addition, Chai et al. [13] proposed a method called TriCoS to segment
discriminative foregrounds. Segmentation based approaches were also explored
in [1,14,39]. Several works further adopted localization approaches to identify
discriminative parts or details of the target objects [44,21]. These methods,
however, are computationally slow as both the segmentation and the part local-
ization processes are expensive.



428 J. Pu et al.

All the aforementioned approaches are less powerful in exploring the cate-
gory relatedness and identifying the subtle differences across categories. Perhaps
the most intuitive way to identify the subtle differences among categories is to
use human-assisted techniques. Representative works include the human-in-the-
loop approaches that asked humans to input object attributes [11,34], and the
crowdsourcing-based method to identify more discriminative features [17]. An-
other approach that is loosely related to this category is the poselet-like methods
[19,43], where human inputs were needed to label keypoint locations. The acqui-
sition of manual annotations needed by these approaches is very expensive, and
the inputs of the annotation tasks (e.g., the attribute questions) also need to be
designed by experts with sufficient domain knowledge.

The lack of research on better model learning techniques in FGVC, especially
those exploring the category relatedness, motivated us to propose the following
generic MTL framework, which can automatically discover and utilize the com-
plex inter-class relationships to achieve better performance. An intuitive way of
using the category relationships is to explore domain knowledge. For example,
adopting class taxonomies or hierarchies [6,23] may help train better prediction
models by sharing appearance [20,30], visual parts [33], or classifiers [4]. How-
ever, the specific domain knowledge is not easy to be obtained, and the developed
taxonomy for one FGVC application cannot be generalized to other different do-
mains. The idea of using the class relationships was also exploited very recently
in [8,9], where the authors proposed to use one-vs-most SVMs to find significant
features that distinguish different species by omitting some similar classes, which
is fundamentally different from our proposed solution.

3 Exploring Inter-class Relationships in FGVC

In this section, we present our proposed method to explore the inter-class rela-
tionships in FGVC. We start with introducing the notations and a brief back-
ground of MTL.

3.1 Notations and Background

Given a categorization problem, denote the training data containing n samples
as {X, z}, where X = {xi}ni=1 is the training set with xi ∈ R

D representing a
D-dimensional feature of the i-th sample, and z = {zi}ni=1, zi ∈ {1, · · · , L} is the
label set for L categories. For a typical multi-class case, the one-vs-all strategy
is widely used to train a classifier for each category. Hence, for the l-th category,
we convert the multi-class label vector z = {zi}ni=1 to a binary label vector
yl = {yli}ni=1, yli ∈ {−1, 1} as yli = 1 if zi = l, otherwise yli = −1. Assume that
the classifier for the l-th category is defined in a linear form as ŷl = w�

l x + bl,
where ŷl is the prediction; wl ∈ R

D and bl are the coefficient vector and the
bias1, respectively. The cost function for training all the classifiers {wl}Ll=1 is
often written as

1 In the following we omit the bias term bl for simplicity.



Exploring Inter-class Relationships in Fine-Grained Visual Categorization 429

min
W

L∑

l=1

(
n∑

i=1

V(w�
l xi, yli) + λ‖wl‖2

)
. (1)

A major issue of the above formulation is that the relationships of differ-
ent categories are ignored and the training for each category is performed in-
dependently. This normally leads to degraded performance particularly when
the positive training samples are insufficient, which is often observed in FGVC
applications. Simultaneously training multiple classifiers by MTL can effectively
alleviate this problem. Formally, a basic MTL method is to replace the �2 penalty
of each classifier with a structure penalty to constrain all the classifiers, with the
following cost function:

min
W

L∑

l=1

n∑

i=1

V(w�
l xi, yli) + λ‖W‖2,1. (2)

where the matrix W is formed through concatenating single classifiers as W =

[w1,w2, · · · ,wl]. The regularization term ‖W‖2,1 =
∑

i

(∑
j w

2
ij

)1/2

induces

row sparsity that encourages the elements of the same row to maintain similar
zero/nonzero patterns. Minimizing the above cost to derive the optimal W can
also be viewed as a feature selection process since the commonly shared discrim-
inative features will be preserved as non-zero row vectors in the W matrix. The
major limitation of this basic MTL formulation lies in the assumption that all
the classifiers {wl}Ll=1 share a common sparse structure.

To relax the common structure assumption, there are two major categories of
advancedMTLmethods. First, cluster-basedMTLmethods consider the existence
of several task (category) clusters, where features are only shared within each clus-
ter and irrelevant to tasks outside the cluster. Thus, several approaches introduced
latent variables to indicate the cluster information or to select the features to be
shared [25,28,45]. The optimization of the latent variables is usually merged into
the main MTL procedure as a subroutine. Second, robust MTL methods assume
that all the tasks consist of a major task group peppered with several outlier tasks.
A popular way of tackling this robust MTL problem is to use a decomposition
framework, which forms a learning objective with a structure term and an out-
lier penalty term [24,16,22]. Then, the target model is further decomposed into
two components, i.e., a group component and an outlier component, which can
be efficiently solved separately. Figure 2(a) illustrates the learned classifiersW by
cluster-basedMTL, where each column vector represents a single learning task and
a total of two groups of tasks are identified. Similarly, Figure 2(b) demonstrates a
structure of the learned classifiers from the robust MTL, where a major group of
tasks and two outlier tasks can be observed.

3.2 Generic Multiple Task Learning (GMTL)

Since there always exist certain kinds of relationships between the categories in
FGVCapplications, performingMTLcanhelpboost the classificationperformance
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(a) Cluster-based MTL (b) Robust MTL (c) Our GMTL

Fig. 2. Illustration of the structures of the learned classifiers W using cluster-based
MTL, robust MTL, and our GMTL. Each column represents a classifier wl and each
row represents the learned coefficients corresponding to a feature dimension. The white
color indicates zero coefficient value, and the gray-scale colors reflect the magnitude of
nonzero values. See text for more explanations.

through identifying the shared features across the categories. Especially, MTL is
very suitable when the positive samples are inadequate for each classifier and the
feature representation is in very high dimensions. However, due to the complex
structures of the fine-grained categories, the aforementioned MTL models are in-
feasible for suchapplications since theyall rely on strong assumptions of simple task
structures. As illustrated by the bird examples in Figure 1, a usual FGVC problem
may have the following structure characteristics: 1) some categories are strongly
related and form a category group since they share similar visual signatures; 2) the
similarity between different category groups may be very low (e.g., the Gull and
Cormorant groups); 3) some categories are not similar to all the other categories,
e.g., the Cardinal and Chuck will Widow (i.e., outlier categories).

Motivated by the above observations, we formulate a generic MTL (GMTL)
framework without any specific structure assumption: the categories are related
in a mixture manner with unknown clusters and outliers. As illustrated in Fig-
ure 2(c), the categories consist of multiple clusters and outliers. To capture such
a complex task structure for FGVC applications, the proposed GMTL model
explores a balanced mixture of the category clusters and outliers as

min
W

L∑

l=1

n∑

i=1

V(w�
l xi, yli) + λ (α‖W‖2,1 + (1− α)‖W‖1,1) . (3)

The first term is the empirical loss of fitting the training data, and the regulariza-
tion term consists of two parts: the feature sharing part for category grouping and
the outlier detection part for category outliers. Accordingly, the ‖W‖2,1 penalty
reflects a grouping structure, and encourages feature sharing among tasks within
each task group. The ‖W‖1,1 penalty reflects an element-wise sparse structure,
highlighting the outlier categories. The coefficient λ weighs the contribution of
the total penalties, and the parameter α balances the two regularization terms.
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In this paper, we particularly choose the squared hinge loss as our empirical loss
for the FGVC problem:

V(w�x, y) =
[
max(0, 1− yw�x)

]2
. (4)

Compared with the standard hinge loss, the above squared hinge loss penalizes
less when the sign of prediction is correct but within the margin, and penalizes
more when the sign of prediction is wrong. In addition, the squared hinge loss
provides a better computational efficiency, which is extremely important when
we need to solve the primal problem directly [15,29]. Note that a similar objective
function with mixture norms and the hinge loss was investigated in a recent
work [46] for other purposes using a different optimization strategy. However,
the non-smoothness of the hinge loss may affect the convergence speed of their
method. Another work used similar structural regularization forms with the
mixture norms for regression problems [35], which is also different from the
classification scenario of FGVC.

To further explore the role of these two penalties and better understand the
above formulation, we rewrite Eq. 3 as:

min
W

L∑

l=1

(
n∑

i=1

V(w�
l xi, yli) + λ(1 − α)‖wl‖1

)
+ λα‖W‖2,1. (5)

In contrast to the basic MTL formulation in Eq. 2, although we have the same
MTL penalty W2,1 to encourage feature sharing among tasks, the term in the
parentheses is different: we are solving an �1 regularized data fitting instead of
the unregularized data fitting for each category. This �1 regularized term can
shrink the small values of wl to zero. Combining the effects of the two penal-
ties, the optimization of Eq. 3 can satisfy all the three situations in fine-grained
categorization: 1) the �2,1 norm generally enforces categories to share features,
including those categories from different groups; 2) since the categories in differ-
ent groups are less relevant, the magnitude of feature sharing should be small;
the �1,1 penalty tends to shrink the corresponding weights to zero; 3) for the
outliers, the mixture of the �2,1 and �1,1 penalties shrinks the unrelated fea-
tures to be zero weighted. In summary, the above mixed structure regularization
encourages category grouping, as well as identifies outlier categories.

3.3 Optimization Strategy

Solving the optimization problem in Eq. 3 is nontrivial due to the coupling
of all the classifiers and the discontinuity of the regularization penalty. One
way to optimize this problem is to employ the proximal gradient method [7].
However, for such a mixture norm penalty, it usually requires two shrinkage
operations in the projection step [32], which are inefficient. Another way to
optimize the mixture norm penalty is to iteratively solve a series of reweighted
�2 problems [38]. With some derivations, the original problem in Eq. 3 can be
rewritten as
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min
W

L∑

l=1

(
n∑

i=1

V(w�
l xi, yli) +

λ

2
‖Clwl‖2

)
. (6)

Here Cl = diag [(Cl)1, · · · (Cl)d, · · · , (Cl)D] is a diagonal weight matrix with the
elements computed as:

(Cl)d = α‖wd·‖−1
2 + (1− α)|wdl|−1, (7)

where wd· represents the d-th row vector of W. Note that (Cl)d consists of
two components: a group impact term ‖wd·‖−1

2 imposing the global effect across
all categories, and an individual term |wdl|−1 denoting the impact of the d-th
feature on the l-th category.

Algorithm 1. Training Procedure of GMTL

Require: X: feature representation of all the samples; {yl}Ll=1: binary label vector for
each category;

1. Initialize {Cl}Ll=1 with the identity matrix;
2. while not converged do
3. for l = 1 to L do
4. Reweight the training data:

x̃li = (Cl)
−1xi;

5. Solve an �2 regularized minimization problem:
w̃l = minw̃l

(∑n
i=1 V(w̃�

l x̃li, yli) +
λ
2
‖w̃l‖2

)
;

6. Compute the coefficient wl for each classifier:
wl = (Cl)

−1w̃l;
7. Update the weight matrix:

Cl = diag
(
α‖wd·‖−1

2 + (1− α)|wdl|−1
)
;

8. end for
9. end while

Compared with the formulation of basic MTL in Eq. 1, the key difference lies
in the regularization term, where a diagonal matrix Cl is applied to weight the
importance of the individual feature dimensions for each classification model
wl. To further simplify such a weighted �2 form in Eq. 6, we can transform
the problem to reweighted data instead of reweighted classifiers. Denoting w̃l =
Clwl and x̃li = C−1

l xi, we can derive a standard �2 regularized optimization
problem with reweighted data as:

min
W̃

L∑

l=1

(
n∑

i=1

V(w̃�
l x̃li, yli) +

λ

2
‖w̃l‖2

)
. (8)

Starting from any reasonable initialization, we can solve the above minimiza-
tion problem iteratively, where during each iteration we need to update the
weight matrices {Cl}Ll=1 using Eq. 7 and reweight the data. Algorithm 1 sum-
marizes the training procedure of the proposed GMTL through the iterative
reweighted �2 method. In each iteration, to learn a classifier, there are four
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Fig. 3. Illustration of the iterative training process in GMTL

steps: a) reweight the data to obtain x̃li; b) solve an �2 regularized minimization
problem; c) compute the coefficient vector of the classifier wl; d) update the
weight matrix Cl (referring to step 4-7 in Algorithm 1). The first three steps are
equivalent to solving an �2 reweighted classifier, and the last step updates the
weight matrix Cl. Therefore, the GMTL optimization is formed in nested loops,
where the outer loop (while-loop) is for pursuing local convergence and the inner
loop (for-loop) is for updating the classifier of each category. Detailed proof of
the convergence of the GMTL is omitted due to space limitation. In our experi-
ments, we have empirically observed that the convergence can be often achieved
after just a few iterations. The conceptual pipeline of using the proposed GMTL
for learning fine-grained categorization models is also demonstrated in Figure 3.

4 Experiments

In this section, we first introduce the used datasets and experimental settings.
Then we discuss our results and present comparison studies with state-of-the-art
methods. After that we visualize the automatically identified category groups.

4.1 Datasets and Settings

We evaluate our approach using mainly two public datasets: the Stanford Dog [27]
and the Caltech-UCSD Bird-200-2010 [37], which are widely used in the FGVC
literature. The Stanford Dog dataset contains 20, 580 images from 120 breeds of
dogs. Following the standard setup of [27], 100 images from each category are used
for training and the rest are used for testing. The Caltech-UCSD Bird-200-2010
(CUB-200-2010) contains 6, 033 images from 200 bird species in North America,
with about 30 images per class and 15 of them for training [37]. Exemplar images
from Dog and Bird datasets are shown in Figure 4. Following the standard proce-
dure in existing FGVC works [27,37], all the images are cropped according to the
provided dog/bird bounding boxes before feature extraction. The images are then
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Fig. 4. Image examples from the Stanford Dog Dataset (top) and the CUB-200 Dataset
(bottom)

resized to be no larger than 300× 300 with the original aspect ratio preserved. At
the end of the experiments, we also briefly discuss our results on the newer 2011
version of the bird dataset, which has more training and testing images per class.

We adopt the kernel descriptors (KDES) [10,40] to represent each image as
a feature vector. Following [10,40], we use four types of the kernel descriptors:
color-based, normalized color-based, gradient-based, and local-binary-pattern-
based. The color and normalized color kernel descriptors are extracted from the
original RGB images, and the other descriptors are extracted from converted
gray scale images. All the kernel descriptors are computed on 16 × 16 image
patches over dense regular grids with a step size of 8 pixels. Combining all the
descriptors, we receive the final image representation as a 120, 000-dimension
feature vector.

In addition to comparing our results with the state-of-the-art FGVC meth-
ods, we also compare with two representative MTL algorithms: Joint Feature
Selection (JFS) [2] and Clustered MTL (CMTL) [45]. The formulation of JFS
can be treated as a special case of our generic solution by setting α = 1, and the
CMTL method is based on the spectral-relaxed k-means clustering. We use the
source codes provided by the authors of [45]. For all the MTL methods including
ours, we use cross validation to estimate suitable parameters.

Table 1. Comparison of the classification accuracies on the Stanford Dog dataset

Approach Accuracy (%)

SIFT [27] 22.0
State-of-the-art KDES [10] 36.0
FGVC methods UTL [40] 38.0

Symb+DPM [14] 45.6

MTL methods
JFS [2] 29.9

CMTL [45] 30.4
Our GMTL 39.3
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4.2 Results and Discussions

Dog Categorization. We now discuss results on the Stanford Dog dataset.
We compare with a SIFT-based method [27], KDES [10], an approach using
unsupervised template learning (UTL) [40] and a recent work [14]. For all the
approaches, the classification accuracies are reported using the same settings.
In addition, the performance of JFS and CMTL are also reported, using the
same KDES features. Table 1 gives the classification accuracies of various ap-
proaches. It is easy to see that the GMTL approach significantly outperforms
the other two MTL methods. It is worth noting that both JFS and CMTL have
worse performance than the KDES baseline. This is due to the existence of both
subtle and drastic appearance variations among categories in FGVC datasets,
which result in negative transfer or improper feature sharing in the JFS and
CMTL methods. As discussed earlier in Section 3, our proposed GMTL is able
to cope with the existence of both category clusters and outliers, which enables a
more appropriate exploration of class relationships, and thus offers better perfor-
mance. Our GMTL improves the KDES baseline by 3.3%, which is a significant
gain considering the difficulty of the problem. Note that the recently developed
approach [14] exploits symbiotic segmentation and part localization techniques
to achieve strong performance on this dataset. However, this approach is com-
putationally more expensive and the performance highly relies on the quality of
segmentation and localization.

14 Bird Species Categorization. Next we experiment with the CUB-200-
2010 dataset, which has more categories, less training data, and even more sig-
nificant appearance variations across categories. Since this dataset is very chal-
lenging, in many existing works, a subset of 14 species was frequently used for
evaluation. For the ease of comparison we also report results on this subset.

The subset contains two families of birds: Vireos and Woodpeckers [19]. Fol-
lowing [19,41], we produce a left-right mirrored image for each training and
test image, which forms a total of 420 training images and 508 testing images.
We compare with the following published approaches: multiple kernel learning
(MKL) [11], Birdlet [19], a random template method [41], and the KDES [10].
A few very recent approaches are excluded from the comparison since they are
designed under different settings and require additional human inputs like [17].

Following [41], we report the performance on this dataset using mean aver-
age precision (mAP) in Table 2. Again, we find that JFS and CMTL fail to
improve the KDES baseline, and our GMTL significantly outperforms these two
MTL methods. Compared with the state-of-the-art FGVC methods, our GMTL
performs better than all of them. Table 3 further gives the per-class results for
the three compared MTL approaches on this subset. For most of the bird sub-
categories, the proposed GMTL provides a visible performance gain over the
compared JFS and CMTL methods.

All Bird Species Categorization. Finally, we test our method on the full
bird dataset of 200 species. Results are summarized in Table 4. We compare with
a multiple kernel learning (MKL) method [11], a bag-of-features approach using
the LLC [36], a randomization based method [42], a multi-cue representation [26],
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Table 2. Performance comparison on the bird subset of 14 species, measured by mean
average precision (mAP)

Approach mAP (%)

MKL [11] 37.0
State-of-the-art Birdlet [19] 40.3
FGVC methods Random template [41] 44.7

KDES [10] 42.5

MTL methods
JFS [2] 38.9

CMTL [45] 40.6
Our GMTL 45.7

Table 3. Per-class average precision (%) of the three MTL-based methods on the bird
subset of 14 species. The best results of each row are shown in bold. We list abbreviated
names of the bird species due to space limitation.

JFS [2] CMTL [45] Our GMTL

BC Vireo 33.0 33.9 39.5
BH Vireo 22.3 20.9 22.3
P Vireo 33.1 35.6 45.7
RE Vireo 14.5 14.8 13.3
W Vireo 14.0 18.1 17.2
WE Vireo 49.1 48.4 54.7
YT Vireo 23.9 25.0 28.3
N Flicker 66.3 65.2 76.0

ATT Woodpecker 58.1 57.9 63.6
P Woodpecker 50.0 53.5 67.6
RB Woodpecker 41.1 41.2 45.2
RC Woodpecker 19.5 30.8 33.9
RH Woodpecker 89.7 92.7 95.8
D Woodpecker 29.4 30.6 36.8

mAP (%) 38.9 40.6 45.7

the TriCoS[13], the UTL [40], the KDES [10] and two recent approaches [1,14].
Results of most methods are from the corresponding references, except that the
performances of LLC and KDES were reported in [42] and [40] respectively.

As shown in the table, GMTL outperforms most of the compared FGVC ap-
proaches, which again confirms the effectiveness of our method. Compared with
UTL, the gain is marginal. However, UTL focuses on feature representation,
while our method emphasizes on the use of the class relationships during the
learning phase. Since the UTL and KDES results are based the same SVM clas-
sification pipeline, we expect that similar improvement can be attained using our
GMTL over the UTL feature, which however is difficult to validate as the source
codes of UTL are not available online. Several recent works [1,14,17] reported
better performance on this dataset. However, the approaches of [1,14] include
computationally expensive segmentation/detection, and [17] requires additional
human inputs, which is therefore excluded from the table. In addition, similar to
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Table 4. Performance comparison on the entire Caltech-UCSD Bird-200-2010 dataset

Approach Accuracy (%)

MKL [11] 19.0
LLC [42] 18.0

Randomization [42] 19.2
State-of-the-art Multi-Cue [26] 22.4
FGVC methods TriCoS [13] 25.5

UTL [40] 28.2
KDES [10] 26.4

Detection+Segmentation [1] 30.2
Symb+DPM [14] 47.3

MTL methods
JFS [2] 21.7

CMTL [45] 22.0
Our GMTL 28.4

the observations from the experiment on the subset, JFS and CMTL fail again
for the same reason as discussed earlier.

We also evaluate our method on the newer 2011 version of the Bird dataset,
which contains more samples per category. Comparing to the baseline KDES
using SVM (43.0%), our GMTL method achieves an accuracy of 44.2%. The im-
provement on this dataset (1.2%) is less significant than that on the 2010 version
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mountain 
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Fig. 5. Left: Similarity matrix of a subset of the learned tasks on the Stanford Dog
dataset, where the red boxes indicate the automatically generated category groups.
Right: Visual examples of the category groups (and the three outliers in the lower
right corner) indicated on the similarity matrix, ordered from left to right and top to
bottom. For instance, the first red box on the matrix corresponds to the upper left
group of the example images.
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(2.0%), indicating that our method is more effective when there is insufficient
training data.

Visualization of Category Groups and Outliers. Finally, we analyze the
power of our GMTL in identifying the inter-class relationships, including both
the category groups and the outliers. The Stanford Dog dataset is adopted in this
study for the ease of visualization as it contains less categories. We use W�W to
represent the similarity matrix of all the categories, and adopt the Normalized
Cut [31] to group the categories, which are then reordered for visualization.
A subset of the similarity matrix is displayed in Figure 5, which shows ten
category groups and three outliers. Within each category group, the different
species of dogs share similar color, shape and texture, while there exist significant
differences across different groups.

5 Conclusion

We have presented a generic MTL method to explore inter-class relationships
for improved fine-grained visual categorization. Different from the existing MTL
algorithms that often rely on certain assumptions of the task structure, the
proposed GMTL imposes no structural assumptions, making it more flexible
to handle complex category relationships in the FGVC applications. We have
shown that the training of our GMTL can be efficiently achieved using an it-
erative reweighted �2 method. The learned classification models enforce feature
sharing within each automatically discovered category group, which leads to
better discriminative power. Results on two standard benchmarks have clearly
demonstrated the effectiveness of our proposed method. One promising future
direction is to jointly learn visual representations and classification models under
the GMTL framework for further performance improvements.
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